Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(30): 18010-18017, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32665440

RESUMO

Mutant phenotype analysis of bacteria has been revolutionized by genome-scale screening procedures, but essential genes have been left out of such studies because mutants are missing from the libraries analyzed. Since essential genes control the most fundamental processes of bacterial life, this is a glaring deficiency. To address this limitation, we developed a procedure for transposon insertion mutant sequencing that includes essential genes. The method, called transformation transposon insertion mutant sequencing (TFNseq), employs saturation-level libraries of bacterial mutants generated by natural transformation with chromosomal DNA mutagenized heavily by in vitro transposition. The efficient mutagenesis makes it possible to detect large numbers of insertions in essential genes immediately after transformation and to follow their loss during subsequent growth. It was possible to order 45 essential processes based on how rapidly their inactivation inhibited growth. Inactivating ATP production, deoxyribonucleotide synthesis, or ribosome production blocked growth the fastest, whereas inactivating cell division or outer membrane protein synthesis blocked it the slowest. Individual mutants deleted of essential loci formed microcolonies of nongrowing cells whose sizes were generally consistent with the TFNseq ordering. The sensitivity of essential functions to genetic inactivation provides a metric for ranking their relative importance for bacterial replication and growth. Highly sensitive functions could represent attractive antibiotic targets since even partial inhibition should reduce growth.


Assuntos
Fenômenos Fisiológicos Bacterianos , Genes Bacterianos , Genes Essenciais , Viabilidade Microbiana/genética , Mutação , Taxa de Mutação , Deleção de Sequência
2.
J Bacteriol ; 204(4): e0047921, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35285725

RESUMO

Hospital environments are excellent reservoirs for the opportunistic pathogen Acinetobacter baumannii in part because it is exceptionally tolerant to desiccation. We found that relative to other A. baumannii strains, the virulent strain AB5075 was strikingly desiccation resistant at 2% relative humidity (RH), suggesting that it is a good model for studies of the functional basis of this trait. Consistent with results from other A. baumannii strains at 40% RH, we found the global posttranscriptional regulator CsrA to be critically important for desiccation tolerance of AB5075 at 2% RH. Proteomics experiments identified proteins that were differentially present in wild-type and csrA mutant cells. Subsequent analysis of mutants in genes encoding some of these proteins revealed six genes that were required for wild-type levels of desiccation tolerance. These include genes for catalase, a universal stress protein, a hypothetical protein, and a biofilm-associated protein. Two genes of unknown function had very strong desiccation phenotypes, with one of the two genes predicting an intrinsically disordered protein (IDP) that binds to DNA. Intrinsically disordered proteins are widespread in eukaryotes but less so in prokaryotes. Our results suggest there are new mechanisms underlying desiccation tolerance in bacteria and identify several key functions involved. IMPORTANCE Acinetobacter baumannii is found in terrestrial environments but can cause nosocomial infections in very sick patients. A factor that contributes to the prevalence of A. baumannii in hospital settings is that it is intrinsically resistant to dry conditions. Here, we established the virulent strain A. baumannii AB5075 as a model for studies of desiccation tolerance at very low relative humidity. Our results show that this trait depends on two proteins of unknown function, one of which is predicted to be an intrinsically disordered protein. This category of protein is critical for the small animals named tardigrades to survive desiccation. Our results suggest that A. baumannii may have novel strategies to survive desiccation that have not previously been seen in bacteria.


Assuntos
Acinetobacter baumannii , Proteínas Intrinsicamente Desordenadas , Acinetobacter baumannii/metabolismo , Animais , Biofilmes , Dessecação , Humanos , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteômica
3.
PLoS Genet ; 15(6): e1008195, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31181062

RESUMO

To characterize the consequences of eliminating essential functions needed for peptidoglycan synthesis, we generated deletion mutations of Acinetobacter baylyi by natural transformation and visualized the resulting microcolonies of dead cells. We found that loss of genes required for peptidoglycan precursor synthesis or polymerization led to the formation of polymorphic giant cells with diameters that could exceed ten times normal. Treatment with antibiotics targeting early or late steps of peptidoglycan synthesis also produced giant cells. The giant cells eventually lysed, although they were partially stabilized by osmotic protection. Genome-scale transposon mutant screening (Tn-seq) identified mutations that blocked or accelerated giant cell formation. Among the mutations that blocked the process were those inactivating a function predicted to cleave murein glycan chains (the MltD murein lytic transglycosylase), suggesting that giant cell formation requires MltD hydrolysis of existing peptidoglycan. Among the mutations that accelerated giant cell formation after ß-lactam treatment were those inactivating an enzyme that produces unusual 3->3 peptide cross-links in peptidoglycan (the LdtG L,D-transpeptidase). The mutations may weaken the sacculus and make it more vulnerable to further disruption. Although the study focused on A. baylyi, we found that a pathogenic relative (A. baumannii) also produced giant cells with genetic dependencies overlapping those of A. baylyi. Overall, the analysis defines a genetic pathway for giant cell formation conserved in Acinetobacter species in which independent initiating branches converge to create the unusual cells.


Assuntos
Acinetobacter/genética , Genes Essenciais/genética , Glicosiltransferases/genética , Peptidoglicano/genética , Acinetobacter/enzimologia , Antibacterianos/biossíntese , Ciclo Celular/genética , Divisão Celular/genética , Parede Celular/enzimologia , Parede Celular/genética , Elementos de DNA Transponíveis/genética , Escherichia coli/genética , Deleção de Genes , Genoma Bacteriano/genética , Peptidoglicano/biossíntese , Peptidil Transferases/genética , Deleção de Sequência/genética
4.
J Bacteriol ; 203(14): e0017921, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-33972355

RESUMO

The P. aeruginosa reference strain PAO1 has been used to delineate much of the physiology, metabolism, and fundamental biology of the species. The wild-type parent of PAO1 was lost, and PAO1 carries a regulatory mutation introduced for positive genetic selection that affects antibiotic resistance, virulence, quorum sensing, and other traits. The mutation is a loss-of-function change in an oxidoreductase gene (mexS), which constitutively activates a stress response controlled by a positive regulator (MexT). Fitness defects associated with the constitutive response have led to the inadvertent selection of mexT-minus suppressor mutations, creating genetic heterogeneity in PAO1 sublines studied in different laboratories. To help circumvent complications due to the mexS-minus phenotypes, we created a wild-type version of PAO1 (called LPAO) by "reverting" its mexS to the functional allele likely to have been in its parent. Phenotypic analysis revealed that the mexS-minus allele in PAO1 makes growth sensitive to salt (NaCl) and is lethal when combined with mutations inactivating the major sodium antiporter (ShaABCDEF). The salt sensitivity of PAO1 may underlie some complex mexS-minus phenotypes and help explain the selection of mexT-minus suppressor mutations. To facilitate genetic comparisons of PAO1, LPAO, and other P. aeruginosa strains, we developed a transformation procedure to transfer selectable alleles, such as transposon insertion alleles, between strains. Overall, the study helps explain phenotypic heterogeneity of PAO1-derived strains and provides resources to help recognize and eliminate difficulties due to it. IMPORTANCE The P. aeruginosa reference strain PAO1 carries a regulatory mutation that may affect processes characterized in it. To eliminate complications due to the mutation, we constructed a version of the missing wild-type parent strain and developed methods to transfer mutations between PAO1 and the new strain. The methods are likely to be applicable to other isolates of P. aeruginosa as well.


Assuntos
Mutagênese Insercional/métodos , Pseudomonas aeruginosa/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Elementos de DNA Transponíveis , Regulação Bacteriana da Expressão Gênica , Mutação , Pseudomonas aeruginosa/metabolismo , Transformação Bacteriana
5.
PLoS Pathog ; 15(3): e1007511, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30893371

RESUMO

While much is known about acute infection pathogenesis, the understanding of chronic infections has lagged. Here we sought to identify the genes and functions that mediate fitness of the pathogen Pseudomonas aeruginosa in chronic wound infections, and to better understand the selective environment in wounds. We found that clinical isolates from chronic human wounds were frequently defective in virulence functions and biofilm formation, and that many virulence and biofilm formation genes were not required for bacterial fitness in experimental mouse wounds. In contrast, genes involved in anaerobic growth, some metabolic and energy pathways, and membrane integrity were critical. Consistent with these findings, the fitness characteristics of some wound impaired-mutants could be represented by anaerobic, oxidative, and membrane-stress conditions ex vivo, and more comprehensively by high-density bacterial growth conditions, in the absence of a host. These data shed light on the bacterial functions needed in chronic wound infections, the nature of stresses applied to bacteria at chronic infection sites, and suggest therapeutic targets that might compromise wound infection pathogenesis.


Assuntos
Proliferação de Células/fisiologia , Pseudomonas aeruginosa/crescimento & desenvolvimento , Cicatrização/fisiologia , Adulto , Animais , Bactérias/crescimento & desenvolvimento , Infecções Bacterianas/metabolismo , Biofilmes/crescimento & desenvolvimento , Modelos Animais de Doenças , Feminino , Aptidão Genética , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos , Masculino , Camundongos , Infecções por Pseudomonas , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidade , Virulência/fisiologia , Infecção dos Ferimentos/metabolismo , Infecção dos Ferimentos/microbiologia
6.
J Proteome Res ; 18(6): 2601-2612, 2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-31060355

RESUMO

Chronic airway infection with P. aeruginosa (PA) is a hallmark of cystic fibrosis (CF) disease. The mechanisms producing PA persistence in CF therapies remain poorly understood. To gain insight on PA physiology in patient airways and better understand how in vivo bacterial functioning differs from in vitro conditions, we investigated the in vivo proteomes of PA in 35 sputum samples from 11 CF patients. We developed a novel bacterial-enrichment method that relies on differential centrifugation and detergent treatment to enrich for bacteria to improve identification of PA proteome with CF sputum samples. Using two nonredundant peptides as a cutoff, a total of 1304 PA proteins were identified directly from CF sputum samples. The in vivo PA proteomes were compared with the proteomes of ex vivo-grown PA populations from the same patient sample. Label-free quantitation and proteome comparison revealed the in vivo up-regulation of siderophore TonB-dependent receptors, remodeling in central carbon metabolism including glyoxylate cycle and lactate utilization, and alginate overproduction. Knowledge of these in vivo proteome differences or others derived using the presented methodology could lead to future treatment strategies aimed at altering PA physiology in vivo to compromise infectivity or improve antibiotic efficacy.


Assuntos
Fibrose Cística/diagnóstico , Proteoma/genética , Infecções por Pseudomonas/diagnóstico , Pseudomonas aeruginosa/isolamento & purificação , Adulto , Antibacterianos/uso terapêutico , Proteínas de Bactérias/genética , Carbono/metabolismo , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Fibrose Cística/microbiologia , Feminino , Glioxilatos/metabolismo , Humanos , Ácido Láctico/metabolismo , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/genética , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/patogenicidade , Escarro/microbiologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-31285231

RESUMO

Inhaled aztreonam is increasingly used for chronic Pseudomonas aeruginosa suppression in patients with cystic fibrosis (CF), but the potential for that organism to evolve aztreonam resistance remains incompletely explored. Here, we performed genomic analysis of clonally related pre- and posttreatment CF clinical isolate pairs to identify genes that are under positive selection during aztreonam therapy in vivo We identified 16 frequently mutated genes associated with aztreonam resistance, the most prevalent being ftsI and ampC, and 13 of which increased aztreonam resistance when introduced as single gene transposon mutants. Several previously implicated aztreonam resistance genes were found to be under positive selection in clinical isolates even in the absence of inhaled aztreonam exposure, indicating that other selective pressures in the cystic fibrosis airway can promote aztreonam resistance. Given its potential to confer plasmid-mediated resistance, we further characterized mutant ampC alleles and performed artificial evolution of ampC for maximal activity against aztreonam. We found that naturally occurring ampC mutants conferred variably increased resistance to aztreonam (2- to 64-fold) and other ß-lactam agents but that its maximal evolutionary capacity for hydrolyzing aztreonam was considerably higher (512- to 1,024-fold increases) and was achieved while maintaining or increasing resistance to other drugs. These studies implicate novel chromosomal aztreonam resistance determinants while highlighting that different mutations are favored during selection in vivo and in vitro, show that ampC has a high maximal potential to hydrolyze aztreonam, and provide an approach to disambiguate mutations promoting specific resistance phenotypes from those more generally increasing bacterial fitness in vivo.


Assuntos
Proteínas de Bactérias/genética , Fibrose Cística/tratamento farmacológico , Peptidoglicano Glicosiltransferase/genética , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/genética , Resistência beta-Lactâmica/genética , beta-Lactamases/genética , Administração por Inalação , Antibacterianos/metabolismo , Antibacterianos/uso terapêutico , Aztreonam/metabolismo , Aztreonam/uso terapêutico , Fibrose Cística/microbiologia , Fibrose Cística/patologia , Elementos de DNA Transponíveis , Expressão Gênica , Humanos , Mutação , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/isolamento & purificação , Seleção Genética
8.
Artigo em Inglês | MEDLINE | ID: mdl-29439964

RESUMO

Slow-growing bacteria are insensitive to killing by antibiotics, a trait known as antibiotic tolerance. In this study, we characterized the genetic basis of an unusually robust ß-lactam (meropenem) tolerance seen in Burkholderia species. We identified tolerance genes under three different slow-growth conditions by extensive transposon mutant sequencing (Tn-seq), followed by single mutant validation. There were three principal findings. First, mutations in a small number of genes reduced tolerance under multiple conditions. Most of the functions appeared to be specific to peptidoglycan synthesis and the response to its disruption by meropenem action rather than being associated with more general physiological processes. The top tolerance genes are involved in immunity toward a type VI toxin targeting peptidoglycan (BTH_I0069), peptidoglycan recycling (ldcA), periplasmic regulation by proteolysis (prc), and an envelope stress response (rpoE and degS). Second, most of the tolerance functions did not contribute to growth in the presence of meropenem (intrinsic resistance), indicating that the two traits are largely distinct. Third, orthologues of many of the top Burkholderia thailandensis tolerance genes were also important in Burkholderia pseudomallei Overall, these studies show that the determinants of meropenem tolerance differ considerably depending on cultivation conditions, but that there are a few shared functions with strong mutant phenotypes that are important in multiple Burkholderia species.


Assuntos
Burkholderia pseudomallei/efeitos dos fármacos , beta-Lactamas/farmacologia , Meropeném/farmacologia , Peptidoglicano/metabolismo
9.
Proc Natl Acad Sci U S A ; 112(16): 5189-94, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25848053

RESUMO

The essential functions of a bacterial pathogen reflect the most basic processes required for its viability and growth, and represent potential therapeutic targets. Most screens for essential genes have assayed a single condition--growth in a rich undefined medium--and thus have not distinguished genes that are generally essential from those that are specific to this particular condition. To help define these classes for Pseudomonas aeruginosa, we identified genes required for growth on six different media, including a medium made from cystic fibrosis patient sputum. The analysis used the Tn-seq circle method to achieve high genome coverage and analyzed more than 1,000,000 unique insertion positions (an average of one insertion every 6.0 bp). We identified 352 general and 199 condition-specific essential genes. A subset of assignments was verified in individual strains with regulated expression alleles. The profile of essential genes revealed that, compared with Escherichia coli, P. aeruginosa is highly vulnerable to mutations disrupting central carbon-energy metabolism and reactive oxygen defenses. These vulnerabilities may arise from the stripped-down architecture of the organism's carbohydrate utilization pathways and its reliance on respiration for energy generation. The essential function profile thus provides fundamental insights into P. aeruginosa physiology as well as identifying candidate targets for new antibacterial agents.


Assuntos
Pseudomonas aeruginosa/metabolismo , Carbono/metabolismo , Elementos de DNA Transponíveis/genética , Escherichia coli/genética , Genes Bacterianos , Genes Essenciais , Mutagênese Insercional/genética , Filogenia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento
10.
J Bacteriol ; 199(20)2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28760848

RESUMO

Klebsiella pneumoniae and other carbapenem-resistant members of the family Enterobacteriaceae are a major cause of hospital-acquired infections, yet the basis of their success as nosocomial pathogens is poorly understood. To help provide a foundation for genetic analysis of K. pneumoniae, we created an arrayed, sequence-defined transposon mutant library of an isolate from the 2011 outbreak of infections at the U.S. National Institutes of Health Clinical Center. The library is made up of 12,000 individually arrayed mutants of a carbapenemase deletion parent strain and provides coverage of 85% of the predicted genes. The library includes an average of 2.5 mutants per gene, with most insertion locations identified and confirmed in two independent rounds of Sanger sequencing. On the basis of an independent transposon sequencing assay, about half of the genes lacking representatives in this "two-allele" library are essential for growth on nutrient agar. To validate the use of the library for phenotyping, we screened candidate mutants for increased antibiotic sensitivity by using custom phenotypic microarray plates. This screening identified several mutations increasing sensitivity to ß-lactams (in acrB1, mcrB, ompR, phoP1, and slt1) and found that two-component regulator cpxAR mutations increased multiple sensitivities (to an aminoglycoside, a fluoroquinolone, and several ß-lactams). Strains making up the two-allele mutant library are available through a web-based request mechanism.IMPORTANCE K. pneumoniae and other carbapenem-resistant members of the family Enterobacteriaceae are recognized as a top public health threat by the Centers for Disease Control and Prevention. The analysis of these major nosocomial pathogens has been limited by the experimental resources available for studying them. The work presented here describes a sequence-defined mutant library of a K. pneumoniae strain (KPNIH1) that represents an attractive model for studies of this pathogen because it is a recent isolate of the major sequence type that causes infection, the epidemiology of the outbreak it caused is well characterized, and an annotated genome sequence is available. The ready availability of defined mutants deficient in nearly all of the nonessential genes of the model strain should facilitate the genetic dissection of complex traits like pathogenesis and antibiotic resistance.

11.
Mol Cell Proteomics ; 14(8): 2126-37, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26018413

RESUMO

Genetically susceptible bacteria become antibiotic tolerant during chronic infections, and the mechanisms responsible are poorly understood. One factor that may contribute to differential sensitivity in vitro and in vivo is differences in the time-dependent tobramycin concentration profile experienced by the bacteria. Here, we examine the proteome response induced by subinhibitory concentrations of tobramycin in Pseudomonas aeruginosa cells grown under planktonic conditions. These efforts revealed increased levels of heat shock proteins and proteases were present at higher dosage treatments (0.5 and 1 µg/ml), while less dramatic at 0.1 µg/ml dosage. In contrast, many metabolic enzymes were significantly induced by lower dosages (0.1 and 0.5 µg/ml) but not at 1 µg/ml dosage. Time course proteome analysis further revealed that the increase of heat shock proteins and proteases was most rapid from 15 min to 60 min, and the increased levels sustained till 6 h (last time point tested). Heat shock protein IbpA exhibited the greatest induction by tobramycin, up to 90-fold. Nevertheless, deletion of ibpA did not enhance sensitivity to tobramycin. It seemed possible that the absence of sensitization could be due to redundant functioning of IbpA with other proteins that protect cells from tobramycin. Indeed, inactivation of two heat shock chaperones/proteases in addition to ibpA in double mutants (ibpA/clpB, ibpA/PA0779 and ibpA/hslV) did increase tobramycin sensitivity. Collectively, these results demonstrate the time- and concentration-dependent nature of the P. aeruginosa proteome response to tobramycin and that proteome modulation and protein redundancy are protective mechanisms to help bacteria resist antibiotic treatments.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Proteoma/metabolismo , Pseudomonas aeruginosa/metabolismo , Tobramicina/farmacologia , Ontologia Genética , Testes de Sensibilidade Microbiana , Dobramento de Proteína/efeitos dos fármacos , Mapas de Interação de Proteínas/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/enzimologia , Reprodutibilidade dos Testes , Fatores de Tempo , Regulação para Cima/efeitos dos fármacos
12.
J Bacteriol ; 198(5): 867-76, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26712940

RESUMO

UNLABELLED: Rhodopseudomonas palustris is an alphaproteobacterium that has served as a model organism for studies of photophosphorylation, regulation of nitrogen fixation, production of hydrogen as a biofuel, and anaerobic degradation of aromatic compounds. This bacterium is able to transition between anaerobic photoautotrophic growth, anaerobic photoheterotrophic growth, and aerobic heterotrophic growth. As a starting point to explore the genetic basis for the metabolic versatility of R. palustris, we used transposon mutagenesis and Tn-seq to identify 552 genes as essential for viability in cells growing aerobically on semirich medium. Of these, 323 have essential gene homologs in the alphaproteobacterium Caulobacter crescentus, and 187 have essential gene homologs in Escherichia coli. There were 24 R. palustris genes that were essential for viability under aerobic growth conditions that have low sequence identity but are likely to be functionally homologous to essential E. coli genes. As expected, certain functional categories of essential genes were highly conserved among the three organisms, including translation, ribosome structure and biogenesis, secretion, and lipid metabolism. R. palustris cells divide by budding in which a sessile cell gives rise to a motile swarmer cell. Conserved cell cycle genes required for this developmental process were essential in both C. crescentus and R. palustris. Our results suggest that despite vast differences in lifestyles, members of the alphaproteobacteria have a common set of essential genes that is specific to this group and distinct from that of gammaproteobacteria like E. coli. IMPORTANCE: Essential genes in bacteria and other organisms are those absolutely required for viability. Rhodopseudomonas palustris has served as a model organism for studies of anaerobic aromatic compound degradation, hydrogen gas production, nitrogen fixation, and photosynthesis. We used the technique of Tn-seq to determine the essential genes of R. palustris grown under heterotrophic aerobic conditions. The transposon library generated in this study will be useful for future studies to identify R. palustris genes essential for viability under specialized growth conditions and also for survival under conditions of stress.


Assuntos
Regulação Bacteriana da Expressão Gênica/fisiologia , Genoma Bacteriano , Rodopseudomonas/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Elementos de DNA Transponíveis , DNA Bacteriano , Biblioteca Gênica , Mutação
13.
J Bacteriol ; 197(12): 2027-35, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25845845

RESUMO

UNLABELLED: Acinetobacter baumannii is a Gram-negative bacterial pathogen notorious for causing serious nosocomial infections that resist antibiotic therapy. Research to identify factors responsible for the pathogen's success has been limited by the resources available for genome-scale experimental studies. This report describes the development of several such resources for A. baumannii strain AB5075, a recently characterized wound isolate that is multidrug resistant and displays robust virulence in animal models. We report the completion and annotation of the genome sequence, the construction of a comprehensive ordered transposon mutant library, the extension of high-coverage transposon mutant pool sequencing (Tn-seq) to the strain, and the identification of the genes essential for growth on nutrient-rich agar. These resources should facilitate large-scale genetic analysis of virulence, resistance, and other clinically relevant traits that make A. baumannii a formidable public health threat. IMPORTANCE: Acinetobacter baumannii is one of six bacterial pathogens primarily responsible for antibiotic-resistant infections that have become the scourge of health care facilities worldwide. Eliminating such infections requires a deeper understanding of the factors that enable the pathogen to persist in hospital environments, establish infections, and resist antibiotics. We present a set of resources that should accelerate genome-scale genetic characterization of these traits for a reference isolate of A. baumannii that is highly virulent and representative of current outbreak strains.


Assuntos
Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/genética , Doenças Transmissíveis Emergentes/microbiologia , Genoma Bacteriano , Infecções por Acinetobacter/epidemiologia , Acinetobacter baumannii/classificação , Doenças Transmissíveis Emergentes/epidemiologia , Elementos de DNA Transponíveis/genética , DNA Bacteriano/genética , Biblioteca Gênica , Humanos , Mutação , Plasmídeos
14.
J Bacteriol ; 194(23): 6387-9, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22984262

RESUMO

Mutant hunts using comprehensive sequence-defined libraries make it possible to identify virtually all of the nonessential functions required for different bacterial processes. However, the success of such screening depends on the accuracy of mutant identification in the mutant library used. To provide a high-quality library for Pseudomonas aeruginosa PAO1, we created a sequence-verified collection of 9,437 transposon mutants that provides genome coverage and includes two mutants for most genes. Mutants were cherry-picked from a larger library, colony-purified, and resequenced both individually using Sanger sequencing and in a pool using Tn-seq. About 8% of the insertion assignments were corrected, and in the final library nearly 93% of the transposon locations were confirmed by at least one of the resequencing procedures. The extensive sequence verification and inclusion of more than one mutant for most genes should help minimize missed or erroneous genotype-phenotype assignments in studies using the new library.


Assuntos
Elementos de DNA Transponíveis , Biblioteca Gênica , Genética Microbiana/métodos , Mutagênese Insercional/métodos , Pseudomonas aeruginosa/genética , Alelos , Análise de Sequência de DNA
15.
Appl Environ Microbiol ; 78(16): 5926-8, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22660718

RESUMO

We exploited the natural histidine auxotrophy of Francisella species to develop hisD (encodes histidinol dehydrogenase) as a positive selection marker. A shuttle plasmid (pBR103) carrying Escherichia coli hisD and designed for cloning of PCR fragments replicated in both attenuated and highly virulent Francisella strains. During this work, we formulated a simplified defined growth medium for Francisella novicida.


Assuntos
Francisella/crescimento & desenvolvimento , Francisella/genética , Genética Microbiana/métodos , Seleção Genética , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Meios de Cultura/química , DNA Bacteriano/química , DNA Bacteriano/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Francisella/enzimologia , Francisella/metabolismo , Engenharia Genética/métodos , Vetores Genéticos , Histidina/metabolismo , Dados de Sequência Molecular , Plasmídeos , Análise de Sequência de DNA
16.
Proc Natl Acad Sci U S A ; 106(34): 14570-5, 2009 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-19706543

RESUMO

This report describes the identification and analysis of a 2-component regulator of Pseudomonas aeruginosa that is a potential aminoglycoside antibiotic combination therapy target. The regulator, AmgRS, was identified in a screen of a comprehensive, defined transposon mutant library for functions whose inactivation increased tobramycin sensitivity. AmgRS mutations enhanced aminoglycoside action against bacteria grown planktonically and in antibiotic tolerant biofilms, against genetically resistant clinical isolates, and in lethal infections of mice. Drugs targeting AmgRS would thus be expected to enhance the clinical efficacy of aminoglycosides. Unexpectedly, the loss of AmgRS reduced virulence in the absence of antibiotics, indicating that its inactivation could protect against infection directly as well as by enhancing aminoglycoside action. Transcription profiling and phenotypic analysis suggested that AmgRS controls an adaptive response to membrane stress, which can be caused by aminoglycoside-induced translational misreading. These results help validate AmgRS as a potential antibiotic combination target for P. aeruginosa and indicate that fundamental stress responses may be a valuable general source of such targets.


Assuntos
Antibacterianos/farmacologia , Mutação , Pseudomonas aeruginosa/efeitos dos fármacos , Tobramicina/farmacologia , Aminoglicosídeos/farmacologia , Animais , Elementos de DNA Transponíveis/genética , Farmacorresistência Bacteriana/genética , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos/genética , Camundongos , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Mutagênese Insercional , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/prevenção & controle , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidade , Virulência/efeitos dos fármacos
17.
J Bacteriol ; 193(18): 4790-7, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21764915

RESUMO

We present genetic studies that help define the functional network underlying intrinsic aminoglycoside resistance in Pseudomonas aeruginosa. Our analysis shows that proteolysis, particularly that controlled by the membrane protease FtsH, is a major determinant of resistance. First, we examined the consequences of inactivating genes controlled by AmgRS, a two-component regulator required for intrinsic tobramycin resistance. Three of the gene products account for resistance: a modulator of FtsH protease (YccA), a membrane protease (HtpX), and a membrane protein of unknown function (PA5528). Second, we screened mutations inactivating 66 predicted proteases and related functions. Insertions inactivating two FtsH protease accessory factors (HflK and HflC) and a cytoplasmic protease (HslUV) increased tobramycin sensitivity. Finally, we generated an ftsH deletion mutation. The mutation dramatically increased aminoglycoside sensitivity. Many of the functions whose inactivation increased sensitivity appeared to act independently, since multiple mutations led to additive or synergistic effects. Up to 500-fold increases in tobramycin sensitivity were observed. Most of the mutations also were highly pleiotropic, increasing sensitivity to a membrane protein hybrid, several classes of antibiotics, alkaline pH, NaCl, and other compounds. We propose that the network of proteases provides robust protection from aminoglycosides and other substances through the elimination of membrane-disruptive mistranslation products.


Assuntos
Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Membrana Celular/enzimologia , Farmacorresistência Bacteriana , Peptídeo Hidrolases/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/enzimologia , Técnicas de Inativação de Genes , Testes de Sensibilidade Microbiana , Mutagênese Insercional , Peptídeo Hidrolases/genética , Pseudomonas aeruginosa/genética
18.
Cell Chem Biol ; 28(11): 1628-1637.e4, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34146491

RESUMO

Teredinibacter turnerae is an intracellular bacterial symbiont in the gills of wood-eating shipworms, where it is proposed to use antibiotics to defend itself and its animal host. Several biosynthetic gene clusters are conserved in T. turnerae and their host shipworms around the world, implying that they encode defensive compounds. Here, we describe turnercyclamycins, lipopeptide antibiotics encoded in the genomes of all sequenced T. turnerae strains. Turnercyclamycins are bactericidal against challenging Gram-negative pathogens, including colistin-resistant Acinetobacter baumannii. Phenotypic screening identified the outer membrane as the likely target. Turnercyclamycins and colistin operate by similar cellular, although not necessarily molecular, mechanisms, but turnercyclamycins kill colistin-resistant A. baumannii, potentially filling an urgent clinical need. Thus, by exploring environments that select for the properties we require, we harvested the fruits of evolution to discover compounds with potential to target unmet health needs. Investigating the symbionts of shipworms is a powerful example of this principle.


Assuntos
Antibacterianos/farmacologia , Descoberta de Drogas , Gammaproteobacteria/efeitos dos fármacos , Antibacterianos/química , Células Cultivadas , Colistina , Farmacorresistência Bacteriana/efeitos dos fármacos , Células HEK293 , Humanos , Testes de Sensibilidade Microbiana
19.
J Bacteriol ; 191(11): 3492-503, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19329647

RESUMO

Pseudomonas aeruginosa is recognized for its ability to colonize diverse habitats, ranging from soil to immunocompromised people. The formation of surface-associated communities called biofilms is one factor thought to enhance colonization and persistence in these diverse environments. Another factor is the ability of P. aeruginosa to diversify genetically, generating phenotypically distinct subpopulations. One manifestation of diversification is the appearance of colony morphology variants on solid medium. Both laboratory biofilm growth and chronic cystic fibrosis (CF) airway infections produce rugose small-colony variants (RSCVs) characterized by wrinkled, small colonies and an elevated capacity to form biofilms. Previous reports vary on the characteristics attributable to RSCVs. Here we report a detailed comparison of clonally related wild-type and RSCV strains isolated from both CF sputum and laboratory biofilm cultures. The clinical RSCV had many characteristics in common with biofilm RSCVs. Transcriptional profiling and Biolog phenotypic analysis revealed that RSCVs display increased expression of the pel and psl polysaccharide gene clusters, decreased expression of motility functions, and a defect in growth on some amino acid and tricarboxylic acid cycle intermediates as sole carbon sources. RSCVs also elicited a reduced chemokine response from polarized airway epithelium cells compared to wild-type strains. A common feature of all RSCVs analyzed in this study is increased levels of the intracellular signaling molecule cyclic di-GMP (c-di-GMP). To assess the global transcriptional effects of elevated c-di-GMP levels, we engineered an RSCV strain that had elevated c-di-GMP levels but did not autoaggregate. Our results showed that about 50 genes are differentially expressed in response to elevated intracellular c-di-GMP levels. Among these genes are the pel and psl genes, which are upregulated, and flagellum and pilus genes, which are downregulated. RSCV traits such as increased exopolysaccharide production leading to antibiotic tolerance, altered metabolism, and reduced immunogenicity may contribute to increased persistence in biofilms and in the airways of CF lungs.


Assuntos
Fibrose Cística/microbiologia , Pulmão/microbiologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Linhagem Celular Tumoral , Cromatografia em Camada Fina , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Teste de Complementação Genética , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Polissacarídeos Bacterianos/genética , Polissacarídeos Bacterianos/metabolismo , Infecções por Pseudomonas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
Infect Immun ; 77(1): 232-44, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18955478

RESUMO

Francisella tularensis is a gram-negative, highly infectious, aerosolizable facultative intracellular pathogen that causes the potentially life-threatening disease tularemia. To date there is no approved vaccine available, and little is known about the molecular mechanisms important for infection, survival, and dissemination at different times of infection. We report the first whole-genome screen using an inhalation mouse model to monitor infection in the lung and dissemination to the liver and spleen. We queried a comprehensive library of 2,998 sequence-defined transposon insertion mutants in Francisella novicida strain U112 using a microarray-based negative-selection screen. We were able to track the behavior of 1,029 annotated genes, equivalent to a detection rate of 75% and corresponding to approximately 57% of the entire F. novicida genome. As expected, most transposon mutants retained the ability to colonize, but 125 candidate virulence genes (12%) could not be detected in at least one of the three organs. They fell into a variety of functional categories, with one-third having no annotated function and a statistically significant enrichment of genes involved in transcription. Based on the observation that behavior during complex pool infections correlated with the degree of attenuation during single-strain infection we identified nine genes expected to strongly contribute to infection. These included two genes, those for ATP synthase C (FTN_1645) and thioredoxin (FTN_1415), that when mutated allowed increased host survival and conferred protection in vaccination experiments.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Francisella/genética , Francisella/patogenicidade , Tularemia/microbiologia , Fatores de Virulência/genética , Fatores de Virulência/fisiologia , Animais , Contagem de Colônia Microbiana , Elementos de DNA Transponíveis , Genes Bacterianos , Fígado/microbiologia , Pulmão/microbiologia , Camundongos , Análise em Microsséries , Mutagênese Insercional , Baço/microbiologia , Análise de Sobrevida , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA