Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Parasitology ; : 1-17, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38623697

RESUMO

Ticks are composed of 3 extant families (Argasidae, Ixodidae and Nuttalliellidae) and 2 extinct families (Deinocrotonidae and Khimairidae). The Nuttalliellidae possess one extant species (Nuttalliella namaqua) limited to the Afrotropic region. A basal relationship to the hard and soft tick families and its limited distribution suggested an origin for ticks in the Afrotropics. The Deinocrotonidae has been found in Burmese amber from Myanmar and Iberian amber from Spain, suggesting a wider distribution of the lineage composed of Deinocrotonidae and Nuttalliellidae. The current study describes 8 fossils from mid-Cretaceous (ca. 100 Ma) Burmese amber: 2 Deinocroton species (Deinocroton bicornis sp. nov.; Deinocroton lacrimus sp. nov.), 5 Nuttalliella species (Nuttalliella gratae sp. nov., Nuttalliella tuberculata sp. nov., Nuttalliella placaventrala sp. nov., Nuttalliella odyssea sp. nov., Nuttalliella tropicasylvae sp. nov.) and a new genus and species (Legionaris nov. gen., Legionaris robustus sp. nov.). The argument is advanced that Deinocroton do not warrant its own family, but forms part of the Nuttalliellidae comprising 3 genera, Deinocroton, Legionaris nov. gen. and Nuttalliella). Affinities of Burmese tick fossils to the Australasian region, specifically related to rifting of the Burma terrane from northern Australia ~150 million years ago, suggest that Nuttalliella had a much wider distribution than its current limited distribution. The distribution of Nuttalliella likely stretched from Africa over Antarctica and much of Australia, suggesting that extant members of this family may still be found in Australia. Considerations for the geographic origins of ticks conclude that an Afrotropic origin can as yet not be discarded.

2.
Parasitology ; : 1-10, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38586995

RESUMO

Two major families exist in ticks, the Argasidae and Ixodidae. The Argasidae comprise 2 sub-families, Argasinae and Ornithodorinae. The placement into subfamilies illuminate differences in morphological and molecular systematics and is important since it provides insight into evolutionary divergence within this family. It also identifies fundamental gaps in our understanding of argasid evolution that provide directions for future research. Molecular systematics based on mitochondrial genomics and 18S/28S ribosomal RNA confirmed the placement of various genera and subgenera into the Argasinae: Argas (including Argas and Persicargas), Navis, Ogadenus, Otobius lagophilus, Proknekalia, Secretargas and the Ornithodorinae: Alectorobius, Antricola (including Antricola and Parantricola), Carios, Chiropterargas, Nothoaspis, Ornithodoros (including Microargas, Ornamentum, Ornithodoros sensu strictu, Pavlovskyella), Otobius sensu strictu, Reticulinasus and Subparmatus. The position of Alveonasus remains controversial since traditional taxonomy placed it in the Ornithodorinae, while cladistic and limited molecular analysis placed it in the Argasinae. The current study aimed to resolve the systematic position of Alveonasus using mitochondrial genomic and 18S/28S ribosomal RNA systematics by sequencing the type species Alveonasus lahorensis from Pakistan. In addition, the mitochondrial genomes for Argas reflexus and Alectorobius kelleyi are reported from Germany and the USA, respectively. The systematic data unambiguously place Alveonasus in the Argasinae and also suggest that Alveonasus may be another paraphyletic genus.

3.
Parasitology ; : 1-9, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767137

RESUMO

Ixodid ticks are obligate blood-feeding arthropods and important vectors of pathogens. In Mallorca, almost no data on the tick fauna are available. Herein, we investigated ticks and tick-borne pathogens in ticks collected from dogs, a cat and humans in Mallorca as result of a citizen science project. A total of 91 ticks were received from German tourists and residents in Mallorca. Ticks were collected from March to October 2023 from dogs, cat and humans, morphologically and genetically identified and tested for pathogens by PCRs. Six tick species could be identified: Ixodes ricinus (n = 2), Ixodes ventalloi (n = 1), Hyalomma lusitanicum (n = 7), Hyalomma marginatum (n = 1), Rhipicephalus sanguineus s.l. (n = 71) and Rhipicephalus pusillus (n = 9). Rhipicephalus sanguineus s.l. adults were collected from dogs and four females from a cat and the 16S rDNA sequences identified it as Rh. sanguineus s.s. Hyalomma lusitanicum was collected from 1 human, 1 dog and 5 specimens were collected from the ground in the community of Santanyi, together with one H. marginatum male. This is the first report of Hyalomma marginatum in Mallorca. Both I. ricinus were collected from humans and I. ventalloi female was collected from a dog. All ticks tested negative for Anaplasma phagocytophilum, Coxiella spp., Francisella spp., and piroplasms. In 32/71 (45%) specimens of Rh. sanguineus s.s., Rickettsia spp. could be detected and in 18/32 (56.2%) sequenced tick DNAs R. massiliae was identified. Ixodes ventalloi female and both I. ricinus tested positive in the screening PCR, but the sequencing for the identification of the Rickettsia sp. failed.

4.
Med Vet Entomol ; 38(2): 189-204, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38469668

RESUMO

We used entire mitochondrial (mt) genome sequences (14.5-15 kbp) to resolve the phylogeny of the four main lineages of the Haematobothrion ticks: Alloceraea, Archaeocroton, Bothriocroton and Haemaphysalis. In our phylogenetic trees, Alloceraea was the sister to Archaeocroton sphenodonti, a tick of an archetypal reptile, the tuatara, from New Zealand, to the exclusion of the rest of the species of Haemaphysalis. The mt genomes of all four of the Alloceraea species that have been sequenced so far had a substantial insert, 132-312 bp, between the tRNA-Glu (E) gene and the nad1 gene in their mt genomes. This insert was not found in any of the other eight subgenera of Haemaphysalis. The mt genomes of 13 species of Haemaphysalis from NCBI GenBank were added to the most recent data set on Haemaphysalis and its close relatives to help resolve the phylogeny of Haemaphysalis, including five new subgenera of Haemaphysalis not previously considered by other authors: Allophysalis (structurally primitive), Aboimisalis (structurally primitive), Herpetobia (structurally intermediate), Ornithophysalis (structurally advanced) and Segalia (structurally advanced). We elevated Alloceraea Schulze, 1919 to the status of genus because Alloceraea Schulze, 1919 is phylogenetically distinct from the other subgenera of Haemaphysalis. Moreover, we propose that the subgenus Allophysalis is the sister to the rest of the Haemaphysalis (14 subgenera) and that the 'structurally primitive' subgenera Hoogstraal and Kim comprise early diverging lineages. Our matrices of the pairwise genetic difference (percent) of mt genomes and partial 16S rRNA sequences indicated that the mt genome sequence of Al. kitaokai (gb# OM368280) may not be Al. kitaokai Hoogstraal, 1969 but rather another species of Alloceraea. In a similar way, the mt genome sequence of H. (Herpetobia) nepalensis Hoogstraal, 1962 (gb# NC_064124) was only 2% genetically different to that of H. (Allophysalis) tibetensis Hoogstraal, 1965 (gb# OM368293): this indicates to us that they are the same species. Alloceraea cretacea may be better placed in a genus other than Alloceraea Schulze, 1919. Reptiles may have been the host to the most recent common ancestor of Archaeocroton and Alloceraea.


Assuntos
Genoma Mitocondrial , Ixodidae , Filogenia , Animais , Ixodidae/genética , Ixodidae/classificação
5.
Parasitology ; 150(2): 157-171, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36341553

RESUMO

Three examples of metastriate hard ticks (Ixodida: Ixodidae) with apparent affinities to modern Australasian genera are described from the mid-Cretaceous (ca. 100 Ma) Burmese amber of Myanmar. Two nymphs of Bothriocroton muelleri sp. nov. represent the oldest (and only) fossil record of this genus, living members of which are restricted to Australia and predominantly feed on monitor lizards, snakes and echidnas. A female of Archaeocroton kaufmani sp. nov. shares its basis capitulum shape with the tuatara tick Archaeocroton sphenodonti (Dumbleton, 1943), the only extant member of this genus and an endemic species for New Zealand. The presence of 2 Australasian genera in Burmese amber is consistent with a previous record of an Ixodes Latreille, 1795 tick from this deposit which resembles Australian members of this genus. They further support an emerging hypothesis that fauna of the amber forest, which may have been on an island at the time of deposition, was at least partly Gondwanan in origin. A revised evolutionary tree for Ixodida is presented compiling data from several new Burmese amber ticks described in the last few years.


Assuntos
Ixodes , Ixodidae , Animais , Humanos , Âmbar , População do Sudeste Asiático , Austrália , Fósseis
6.
J Biol Chem ; 297(1): 100865, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34118237

RESUMO

During feeding, a tick's mouthpart penetrates the host's skin and damages tissues and small blood vessels, triggering the extrinsic coagulation and lectin complement pathways. To elude these defense mechanisms, ticks secrete multiple anticoagulant proteins and complement system inhibitors in their saliva. Here, we characterized the inhibitory activities of the homologous tick salivary proteins tick salivary lectin pathway inhibitor, Salp14, and Salp9Pac from Ixodesscapularis in the coagulation cascade and the lectin complement pathway. All three proteins inhibited binding of mannan-binding lectin to the polysaccharide mannan, preventing the activation of the lectin complement pathway. In contrast, only Salp14 showed an appreciable effect on coagulation by prolonging the lag time of thrombin generation. We found that the anticoagulant properties of Salp14 are governed by its basic tail region, which resembles the C terminus of tissue factor pathway inhibitor alpha and blocks the assembly and/or activity of the prothrombinase complex in the same way. Moreover, the Salp14 protein tail contributes to the inhibition of the lectin complement pathway via interaction with mannan binding lectin-associated serine proteases. Furthermore, we identified BaSO4-adsorbing protein 1 isolated from the tick Ornithodoros savignyi as a distant homolog of tick salivary lectin pathway inhibitor/Salp14 proteins and showed that it inhibits the lectin complement pathway but not coagulation. The structure of BaSO4-adsorbing protein 1, solved here using NMR spectroscopy, indicated that this protein adopts a noncanonical epidermal growth factor domain-like structural fold, the first such report for tick salivary proteins. These data support a mechanism by which tick saliva proteins simultaneously inhibit both the host coagulation cascade and the lectin complement pathway.


Assuntos
Proteínas de Artrópodes/ultraestrutura , Interações Hospedeiro-Patógeno/genética , Lectinas/genética , Proteínas e Peptídeos Salivares/ultraestrutura , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Coagulação Sanguínea/genética , Vasos Sanguíneos/parasitologia , Vasos Sanguíneos/patologia , Lectina de Ligação a Manose da Via do Complemento/genética , Ixodes/patogenicidade , Ixodes/ultraestrutura , Lectinas/ultraestrutura , Espectroscopia de Ressonância Magnética , Conformação Proteica , Saliva/química , Saliva/metabolismo , Proteínas e Peptídeos Salivares/química , Proteínas e Peptídeos Salivares/genética , Trombina/genética , Carrapatos/genética , Carrapatos/patogenicidade
7.
Parasitol Res ; 121(5): 1527-1531, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35277752

RESUMO

The study reports the finding of a nymph attached to a German tourist during a holiday in South Africa. The nymph specimen was morphologically identified and confirmed by sequence analysis of the 16S rRNA and 12S rRNA genes. The nymph was identified as Rhipicephalus maculatus, a rare tick reported in humans. Screening using the pan-Rickettsia-PCR for infection gave a negative result.


Assuntos
Rhipicephalus , Rickettsia , Animais , Humanos , Ninfa , RNA Ribossômico 16S/genética , Rhipicephalus/genética , Rickettsia/genética , África do Sul
8.
Parasitol Res ; 121(10): 2887-2890, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35930045

RESUMO

The genus Haemaphysalis Koch, 1844 (Acari: Ixodidae) is the second-largest genus, with more than 170 described species that primarily parasitize mammals and birds (Guglielmone et al. 2014, Guglielmone et al. 2020). Haemaphysalis species are three-host ticks, mainly distributed in southern and southeastern Asia and tropical Africa (Guglielmone et al. 2014). The present study identified a tick, Haemaphysalis hoodi Warburton & Nuttall, 1909, collected from a human in Yaoundé, Cameroon. This tick species feed on birds in sub-Saharan Africa. To the best of our knowledge, this is the second record of H. hoodi from humans. In addition, 16S ribosomal RNA and cytochrome oxidase I sequences were generated for this species for the first time. Screening pan-Rickettsia-PCR infection gave a negative result.


Assuntos
Ixodidae , Infestações por Carrapato , Carrapatos , Animais , Aves , Camarões , Humanos , Ixodidae/genética , Mamíferos , Infestações por Carrapato/veterinária
9.
Genomics ; 113(2): 429-438, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33370583

RESUMO

Protozoan parasite isolation and purification are laborious and time-consuming processes required for high quality genomic DNA used in whole genome sequencing. The objective of this study was to capture whole Theileria parva genomes directly from cell cultures and blood samples using RNA baits. Cell culture material was bait captured or sequenced directly, while blood samples were all captured. Baits had variable success in capturing T. parva genomes from blood samples but were successful in cell cultures. Genome mapping uncovered extensive host contamination in blood samples compared to cell cultures. Captured cell cultures had over 81 fold coverage for the reference genome compared to 0-33 fold for blood samples. Results indicate that baits are specific to T. parva, are a good alternative to conventional methods and thus ideal for genomic studies. This study also reports the first whole genome sequencing of South African T. parva.


Assuntos
Genoma de Protozoário , Theileria parva/genética , Theileriose/parasitologia , Sequenciamento Completo do Genoma/veterinária , Animais , Búfalos , Bovinos , Células Cultivadas , Theileriose/sangue , Sequenciamento Completo do Genoma/métodos
10.
Int J Mol Sci ; 23(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36555254

RESUMO

Hard ticks feed for several days or weeks on their hosts and their saliva contains thousands of polypeptides belonging to dozens of families, as identified by salivary transcriptomes. Comparison of the coding sequences to protein databases helps to identify putative secreted proteins and their potential functions, directing and focusing future studies, usually done with recombinant proteins that are tested in different bioassays. However, many families of putative secreted peptides have a unique character, not providing significant matches to known sequences. The availability of the Alphafold2 program, which provides in silico predictions of the 3D polypeptide structure, coupled with the Dali program which uses the atomic coordinates of a structural model to search the Protein Data Bank (PDB) allows another layer of investigation to annotate and ascribe a functional role to proteins having so far being characterized as "unique". In this study, we analyzed the classification of tick salivary proteins under the light of the Alphafold2/Dali programs, detecting novel protein families and gaining new insights relating the structure and function of tick salivary proteins.


Assuntos
Ixodidae , Carrapatos , Animais , Carrapatos/genética , Carrapatos/metabolismo , Saliva/metabolismo , Ixodidae/metabolismo , Proteínas e Peptídeos Salivares/genética , Proteínas e Peptídeos Salivares/metabolismo , Transcriptoma , Proteínas de Artrópodes/metabolismo
11.
Mol Phylogenet Evol ; 162: 107178, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33892098

RESUMO

Rhipicephalus are a species-diverse genus of ticks, mainly distributed in the Afrotropics with some species in the Palearctic and Oriental regions. Current taxonomic consensus comprise nine informal species groups/lineages based on immature morphology. This work integrates biogeographic, ecological and molecular lines of evidence to better understand Rhipicephalus evolution. Phylogenetic analysis based on four genes (12S, 16S, 28S-D2 and COI) recovered five distinct clades with nine descendant clades that are generally congruent with current taxonomy, with some exceptions. Historical biogeography is inferred from molecular divergence times, ancestral distribution areas, host-use and climate niches of four phylogenetically significant bioclimatic variables (isothermality, annual, seasonal and diurnal temperature range). Novel hosts enabled host-linked dispersal events into new environments, and ticks exploited new hosts through nested predator-prey connections in food webs. Diversification was further induced by climate niche partitioning along gradients in temperature range during off-host periods. Ancestral climate niche estimates corroborated dispersal events by indicating hypothetical ancestors moved into environments with different annual and seasonal temperature ranges along latitudinal gradients. Host size for immature and adult life stages was important for dispersal and subsequent diversification rates. Clades that utilise large, mobile hosts (ungulates and carnivores) early in development have wider geographic ranges but slower diversification rates, and those utilising small, less mobile hosts (rodents, lagomorphs and afroinsectivores) early in development have smaller ranges but higher diversification rates. These findings suggest diversification is driven by a complex set of factors linked to both host-associations (host size, ranges and mobility) and climate niche partitioning along annual and seasonal temperature range gradients that vary with latitude. Moreover, competitive interactions can reinforce these processes and drive speciation. Off-host periods facilitate adaptive radiation by enabling host switches along nested predator-prey connections in food webs, but at the cost of environmental exposure that partitions niches among dispersing progenitors, disrupting geneflow and driving diversification. As such, the evolution and ecological niches of Rhipicephalus are characterised by trade-offs between on- and off-host periods, and these trade-offs interact with nested predator-prey connections in food webs, host-use at different life stages, as well as gradients in annual and seasonal temperature ranges to drive adaptive radiation and speciation.


Assuntos
Cadeia Alimentar , Especiação Genética , Especificidade de Hospedeiro , Filogenia , Rhipicephalus/classificação , Rhipicephalus/genética , Temperatura , Animais , Ecossistema , Feminino , Masculino
12.
Parasitology ; 147(2): 213-224, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31566155

RESUMO

Tick-borne diseases caused by Theileria are of economic importance in domestic and wildlife ruminants. The majority of Theileria infects a limited number of host species, supporting the concept of host specificity. However, some Theileria seem to be generalists challenging the host specificity paradigm, such as Theileria sp. (sable) reported from various vertebrate hosts, including African buffalo, cattle, dogs and different antelope species. We tested the hypothesis that T. sp. (sable) uses Bovidae as hosts in general using a real-time polymerase chain reaction assay specific for T. sp. (sable) and a closely related genotype: T. sp. (sable-like). Various antelope species from the Tragelaphini (black wildebeest, blesbuck, blue wildebeest, gemsbuck, sable and waterbuck) tested positive for either T. sp. (sable) or T. sp. (sable-like). However, no African buffalo (n = 238) or cattle (n = 428) sampled in the current study tested positive, suggesting that these latter species are not carrier hosts. The results were confirmed using next-generation sequencing which also indicated at least 13 new genotypes or species found in various antelope and giraffes. Genotypes were found in single host species or in evolutionarily related hosts, suggesting that host specificity in Theileria may be a lineage specific phenomenon likely associated with tick-host-parasite co-evolution.


Assuntos
Ruminantes/parasitologia , Theileria/genética , Theileriose/diagnóstico , Theileriose/parasitologia , Animais , Antílopes/parasitologia , Girafas/parasitologia , Especificidade de Hospedeiro , RNA Ribossômico 18S/genética , Reação em Cadeia da Polimerase em Tempo Real , Sensibilidade e Especificidade
15.
Parasitology ; 141(3): 411-24, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24229841

RESUMO

Strict control measures apply to movement of buffalo in South Africa including testing for Theileria parva, the causative agent of Corridor disease in cattle. The official test is a real-time hybridization PCR assay that amplifies the 18S rRNA V4 hyper-variable region of T. parva, T. sp. (buffalo) and T. sp. (bougasvlei). Mixed infections with the latter organisms affect diagnostic sensitivity due to PCR suppression. While the incidence of mixed infections in the Corridor disease endemic region of South Africa is significant, little information is available on the specific distribution and prevalence of T. sp. (buffalo) and T. sp. (bougasvlei). Specific real-time PCR assays were developed and a total of 1211 samples known to harbour these parasites were screened. Both parasites are widely distributed in southern Africa and the incidence of mixed infections with T. parva within the endemic region is similar (∼25-50%). However, a significant discrepancy exists in regard to mixed infections of T. sp. (buffalo) and T. sp. (bougasvlei) (∼10%). Evidence for speciation between T. sp. (buffalo) and T. sp. (bougasvlei) is supported by phylogenetic analysis of the COI gene, and their designation as different species. This suggests mutual exclusion of parasites and the possibility of hybrid sterility in cases of mixed infections.


Assuntos
Búfalos/parasitologia , Doenças dos Bovinos/epidemiologia , Theileria/fisiologia , Theileriose/epidemiologia , Animais , Bovinos , Doenças dos Bovinos/parasitologia , Coinfecção , DNA de Protozoário/química , DNA de Protozoário/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Demografia , Complexo IV da Cadeia de Transporte de Elétrons/genética , Especiação Genética , Especificidade de Hospedeiro , Incidência , Parasitemia/veterinária , Filogenia , Proteínas de Protozoários/genética , Sensibilidade e Especificidade , África do Sul/epidemiologia , Theileria/classificação , Theileria/genética , Theileria/isolamento & purificação , Theileria parva/classificação , Theileria parva/genética , Theileria parva/isolamento & purificação , Theileria parva/fisiologia , Theileriose/parasitologia
16.
Exp Appl Acarol ; 62(2): 233-40, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24057095

RESUMO

Nuttalliella namaqua has been described as a "living fossil" and the closest extant species to the ancestral tick lineage. It was previously proposed that the Nuttalliella lineage parasitized reptile-like mammals in the Permian and had to switch hosts several times due to mass or host lineage extinctions. Extant hosts include girdled lizards and murid rodents. The current study extends knowledge on the extant host range of N. namaqua using gut meal analysis of field collected specimens. Nymphs and females can parasitize a variety of reptiles that includes skinks, geckos and girdled lizards. Blood-meal from a hyrax was also detected in a specimen suggesting that N. namaqua could parasitize a broader range of mammals than the previously suggested murid rodents. Rather than being host specific, N. namaqua is proposed to be a generalist and the ability to switch and parasitize multiple hosts allowed it to survive multiple mass and host lineage extinctions.


Assuntos
Especificidade de Hospedeiro , Lagartos/parasitologia , Carrapatos/fisiologia , Animais , Feminino , Ninfa/fisiologia
17.
Ticks Tick Borne Dis ; 15(6): 102361, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38880004

RESUMO

The genus Amblyomma contains the highest percentage of reptile-associated ticks, and comprises approximately nine subgenera. One of these subgenera is Adenopleura, which also encompasses Amblyomma javanense, and its type species Amblyomma compressum. This study describes a new Amblyomma species associated with Bengal monitor lizards (Varanus bengalensis) based on morphology and its mitogenome in Khyber Pakhtunkhwa, Pakistan. Reptiles belonging to different genera were examined for Amblyomma ticks and only the monitor lizard was infested with ticks in the District Bajaur. Collected Amblyomma cf. javanense ticks were analyzed and formally described as a new species. Overall, 57 A. cf. javanense ticks were collected on monitor lizards (4/27) with a 15% prevalence of infestation, 2.1 mean abundance, and 14.3 mean intensity. Ticks comprised males (n = 23, 40%), females (n = 14, 25%) and nymphs (n = 20, 35%), while no larvae were found. BLAST analysis of A. cf. javanense sequences showed the following maximum identities; 98.25% with undetermined Amblyomma species based on 12S rRNA, 96.07% with A. javanense based on 16S rRNA, 99.56% and 90.95% with an Amblyomma sp. and A. javanense, respectively, based on ITS2. Moreover, the mitochondrial genome of A. cf. javanense showed maximum identities of 80.75%, 80.48% and 79.42% with Amblyomma testudinarium, A. javanense, and Amblyomma sp., respectively. The phylogenetic analysis of A. cf. javanense revealed that its 12S rRNA and 16S rRNA are closely related to an Amblyomma sp. and A. javanense, respectively, from Sri Lanka, its ITS2 is closely related to A. javanense from China and an Amblyomma sp. from Sri Lanka, and its mitogenome is closely related to A. javanense and Amblyomma sp. from China. The pairwise distance analysis resulted in divergence of 0-1.71% (12S rRNA), 0-17.5% (16S rRNA), 0-9.1% (ITS2) and 0-20.5% (mitochondrial genome). We also contributed the full-length mitochondrial genome sequence of A. compressum and showed that this species does not share a most recent common ancestor with A. javanense. As the subgenus Adenopleura is paraphyletic, this study could help to understand the systematics and phylogeny of this taxon.

18.
Parasit Vectors ; 17(1): 139, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500136

RESUMO

BACKGROUND: Amblyomma is the third most diversified genus of Ixodidae that is distributed across the Indomalayan, Afrotropical, Australasian (IAA), Nearctic and Neotropical biogeographic ecoregions, reaching in the Neotropic its highest diversity. There have been hints in previously published phylogenetic trees from mitochondrial genome, nuclear rRNA, from combinations of both and morphology that the Australasian Amblyomma or the Australasian Amblyomma plus the Amblyomma species from the southern cone of South America, might be sister-group to the Amblyomma of the rest of the world. However, a stable phylogenetic framework of Amblyomma for a better understanding of the biogeographic patterns underpinning its diversification is lacking. METHODS: We used genomic techniques to sequence complete and nearly complete mitochondrial genomes -ca. 15 kbp- as well as the nuclear ribosomal cluster -ca. 8 kbp- for 17 Amblyomma ticks in order to study the phylogeny and biogeographic pattern of the genus Amblyomma, with particular emphasis on the Neotropical region. The new genomic information generated here together with genomic information available on 43 ticks (22 other Amblyomma species and 21 other hard ticks-as outgroup-) were used to perform probabilistic methods of phylogenetic and biogeographic inferences and time-tree estimation using biogeographic dates. RESULTS: In the present paper, we present the strongest evidence yet that Australasian Amblyomma may indeed be the sister-group to the Amblyomma of the rest of the world (species that occur mainly in the Neotropical and Afrotropical zoogeographic regions). Our results showed that all Amblyomma subgenera (Cernyomma, Anastosiella, Xiphiastor, Adenopleura, Aponomma and Dermiomma) are not monophyletic, except for Walkeriana and Amblyomma. Likewise, our best biogeographic scenario supports the origin of Amblyomma and its posterior diversification in the southern hemisphere at 47.8 and 36.8 Mya, respectively. This diversification could be associated with the end of the connection of Australasia and Neotropical ecoregions by the Antarctic land bridge. Also, the biogeographic analyses let us see the colonization patterns of some neotropical Amblyomma species to the Nearctic. CONCLUSIONS: We found strong evidence that the main theater of diversification of Amblyomma was the southern hemisphere, potentially driven by the Antarctic Bridge's intermittent connection in the late Eocene. In addition, the subgeneric classification of Amblyomma lacks evolutionary support. Future studies using denser taxonomic sampling may lead to new findings on the phylogenetic relationships and biogeographic history of Amblyomma genus.


Assuntos
Genoma Mitocondrial , Ixodidae , Carrapatos , Animais , Ixodidae/genética , Filogenia , Amblyomma
19.
Vet Parasitol Reg Stud Reports ; 47: 100963, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38199701

RESUMO

Theileria parva are intracellular protozoal parasites responsible for three disease syndromes in cattle, namely East Coast fever (ECF), Corridor disease (CD) and Zimbabwean theileriosis. The increase in reports of CD outbreaks in recent years has raised questions about the probability of adaptation of buffalo-derived T. parva strains in cattle herds adjacent to game reserves. A cross-sectional study was conducted from March 2016 to December 2018 to investigate the extent of occurrence of T. parva infections in cattle in the CD-controlled area of KwaZulu-Natal Province. Blood samples were collected from 1137 cattle from 14 herds and analysed by quantitative real-time PCR (qPCR) and indirect fluorescent antibody test (IFAT) to determine the prevalence of T. parva. A total of 484 samples from 4 of the 14 herds were further tested on qPCR for the presence of T. taurotragi infections. The data were analysed using descriptive statistics and a chi-square test was used to assess association between variables. The overall prevalence of T. parva was 1.3% (95%CI:1-2%) and 19.9% (95%CI:17-22%) on qPCR and IFAT, respectively. The qPCR positive samples were detected in March and May while IFAT positive samples were detected in all seasons sampled, with higher numbers during summer months. The Pearson Chi-squared test showed that T. parva prevalence rates based on both qPCR and IFAT were positively associated with herds with previous history of CD outbreaks (χ2 = 8.594, p = 0.003; χ2 = 69.513, p < 0.001, respectively). The overall prevalence of T. taurotragi was 39.4% (95% CI: 35-44%) with the herd-level prevalence ranging between 35.0% and 43.4%. Possible cross-reaction of T. parva IFAT to T. taurotragi was detected on few samples, however, there was no significant association between T. taurotragi infections and IFAT positivity (χ2 = 0.829, p = 0.363). Results from this study demonstrated the extent of occurrence of subclinical carriers and the level of exposure to T. parva infections in cattle populations at a livestock/game interface area of KwaZulu-Natal Province. The molecular and seroprevalence rates were low when compared with other areas where cattle-adapted T. parva infections are endemic. The adaptation of buffalo-derived T. parva in cattle population resulting in cattle-cattle transmissions seem to be unlikely under the current epidemiological state.


Assuntos
Bison , Doenças dos Bovinos , Theileria parva , Theileriose , Animais , Bovinos , Búfalos , Theileriose/epidemiologia , Gado , África do Sul/epidemiologia , Estudos Transversais , Prevalência , Estudos Soroepidemiológicos , Doenças dos Bovinos/epidemiologia
20.
Zootaxa ; 5410(1): 91-111, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38480255

RESUMO

We describe a new genus Cryptocroton n. gen. for Amblyomma papuanum Hirst, 1914, a tick of North Queensland, Australia, and Papua New Guinea.


Assuntos
Carrapatos , Animais , Queensland , Amblyomma , Papua Nova Guiné , Austrália
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA