Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
J Appl Clin Med Phys ; 24(11): e14165, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37782250

RESUMO

Non-coplanar radiotherapy treatment techniques on C-arm linear accelerators have the potential to reduce dose to organs-at-risk in comparison with coplanar treatment techniques. Accurately predicting possible collisions between gantry, table and patient during treatment planning is needed to ensure patient safety. We offer a freely available collision prediction tool using Blender, a free and open-source 3D computer graphics software toolset. A geometric model of a C-arm linear accelerator including a library of patient models is created inside Blender. Based on the model, collision predictions can be used both to calculate collision-free zones and to check treatment plans for collisions. The tool is validated for two setups, once with and once without a full body phantom with the same table position. For this, each gantry-table angle combination with a 2° resolution is manually checked for collision interlocks at a TrueBeam system and compared to simulated collision predictions. For the collision check of a treatment plan, the tool outputs the minimal distance between the gantry, table and patient model and a video of the movement of the gantry and table, which is demonstrated for one use case. A graphical user interface allows user-friendly input of the table and patient specification for the collision prediction tool. The validation resulted in a true positive rate of 100%, which is the rate between the number of correctly predicted collision gantry-table combinations and the number of all measured collision gantry-table combinations, and a true negative rate of 89%, which is the ratio between the number of correctly predicted collision-free combinations and the number of all measured collision-free combinations. A collision prediction tool is successfully created and able to produce maps of collision-free zones and to test treatment plans for collisions including visualisation of the gantry and table movement.


Assuntos
Comportamento de Utilização de Ferramentas , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Software , Aceleradores de Partículas , Imagens de Fantasmas , Dosagem Radioterapêutica
2.
Strahlenther Onkol ; 196(5): 421-443, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32211939

RESUMO

This review details and discusses the technological quality requirements to ensure the desired quality for stereotactic radiotherapy using photon external beam radiotherapy as defined by the DEGRO Working Group Radiosurgery and Stereotactic Radiotherapy and the DGMP Working Group for Physics and Technology in Stereotactic Radiotherapy. The covered aspects of this review are 1) imaging for target volume definition, 2) patient positioning and target volume localization, 3) motion management, 4) collimation of the irradiation and beam directions, 5) dose calculation, 6) treatment unit accuracy, and 7) dedicated quality assurance measures. For each part, an expert review for current state-of-the-art techniques and their particular technological quality requirement to reach the necessary accuracy for stereotactic radiotherapy divided into intracranial stereotactic radiosurgery in one single fraction (SRS), intracranial fractionated stereotactic radiotherapy (FSRT), and extracranial stereotactic body radiotherapy (SBRT) is presented. All recommendations and suggestions for all mentioned aspects of stereotactic radiotherapy are formulated and related uncertainties and potential sources of error discussed. Additionally, further research and development needs in terms of insufficient data and unsolved problems for stereotactic radiotherapy are identified, which will serve as a basis for the future assignments of the DGMP Working Group for Physics and Technology in Stereotactic Radiotherapy. The review was group peer-reviewed, and consensus was obtained through multiple working group meetings.


Assuntos
Consenso , Garantia da Qualidade dos Cuidados de Saúde/normas , Radiocirurgia/normas , Alemanha , Doses de Radiação , Sociedades Médicas
3.
J Appl Clin Med Phys ; 19(1): 243-249, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29125234

RESUMO

Compared to a conventional linear accelerator, the Cyberknife (CK) is a unique system with respect to radiation protection shielding and the variety and number of non-coplanar beams are two key components regarding this aspect. In this work, a framework to assess the direction distribution and modulation factor (MF) of clinically applied treatment beams of a CyberKnife M6 is developed. Database filtering options allow studying the influence of different parameters such as collimator types, treatment sites or different bunker sizes. A distribution of monitor units (MU) is generated by projecting treatment beams onto the walls, floor and ceiling of the CyberKnife bunker. This distribution is found to be highly heterogeneous and depending, among other parameters, on the bunker size. For our bunker design, 10%-13% of the MUs are delivered to the right and left wall, each. The floor receives more than 64% of the applied MUs, while the wall behind the patient's head is not hit by primary treatment beams. Between 0% and 5% of the total MUs are delivered to the wall at the patient's feet. This number highly depends on the treatment site, e.g., for extracranial patients no beams hit that wall. Collimator choice was found to have minor influence on the distribution of MUs. On the other hand, the MF depends on the collimator type as well as on the treatment site. The MFs (delivered MU/prescribed dose) for all treatments, all MLC treatments, cranial and extracranial treatments are 8.3, 6.4, 7.7, and 9.9 MU/cGy, respectively. The developed framework allows assessing and monitoring important parameters regarding radiation protection of a CK-M6 using the actually applied treatment beams. Furthermore, it enables evaluating different clinical and constructional situations using the filtering options.


Assuntos
Neoplasias/radioterapia , Aceleradores de Partículas/instrumentação , Proteção Radiológica/métodos , Proteção Radiológica/normas , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/métodos , Humanos , Dosagem Radioterapêutica , Estudos Retrospectivos , Fatores de Tempo
4.
J Synchrotron Radiat ; 21(Pt 3): 613-22, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24763652

RESUMO

Phase-sensitive X-ray imaging shows a high sensitivity towards electron density variations, making it well suited for imaging of soft tissue matter. However, there are still open questions about the details of the image formation process. Here, a framework for numerical simulations of phase-sensitive X-ray imaging is presented, which takes both particle- and wave-like properties of X-rays into consideration. A split approach is presented where we combine a Monte Carlo method (MC) based sample part with a wave optics simulation based propagation part, leading to a framework that takes both particle- and wave-like properties into account. The framework can be adapted to different phase-sensitive imaging methods and has been validated through comparisons with experiments for grating interferometry and propagation-based imaging. The validation of the framework shows that the combination of wave optics and MC has been successfully implemented and yields good agreement between measurements and simulations. This demonstrates that the physical processes relevant for developing a deeper understanding of scattering in the context of phase-sensitive imaging are modelled in a sufficiently accurate manner. The framework can be used for the simulation of phase-sensitive X-ray imaging, for instance for the simulation of grating interferometry or propagation-based imaging.

5.
Cureus ; 16(9): e68753, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39371804

RESUMO

Neo-adjuvant chemoradiotherapy (CRT) and perioperative chemotherapy are different strategies for treating non-metastatic esophageal cancer (EC). The advantages of neo-adjuvant therapies are primarily seen in patients who achieve a pathologic complete response (pCR) and therefore show higher survival rates and better prognosis. In general, less than one-third of patients with EC experience pCR after neo-adjuvant therapies; however, patients with esophageal adenocarcinoma (AC) demonstrate lower rates of pCR compared to those with esophageal squamous cell carcinoma (SCC), respectively. Herein, we describe two cases of locally advanced esophageal AC treated with cone-beam computed tomography (CBCT)-based online adaptive radiotherapy (ART) on the ETHOS platform. Both patients received CRT with 50.4 Gy in 28 fractions, combined with weekly carboplatin and paclitaxel. For each fraction, we evaluated scheduled and adapted plans using dose-volume histogram (DVH) data, and patients were treated with the superior plan. We prioritized ensuring optimal coverage of the planning target volume (PTV) over limiting the dose to organs at risk (OARs) when selecting the superior treatment plan. In this instance, we present the translation of superior dosimetric data into clinical benefits, as evidenced by an excellent pathologic response.

6.
Phys Med Biol ; 69(18)2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39214138

RESUMO

Objective.Non-isocentric dynamic trajectory radiotherapy (DTRT) involves dynamic table translations in synchrony with intensity modulation and dynamic gantry, table, and/or collimator rotation. This work aims to develop and evaluate a novel dosimetrically motivated path determination technique for non-isocentric DTRT.Approach.The path determination considers all available beam directions, given on a user-specified grid of gantry angle, table angle, and longitudinal, vertical, and lateral table position. Additionally, the source-to-target distance of all beam directions can be extended by moving the table away from the gantry along the central beam axis to increase the collision-free space. The path determination uses a column generation algorithm to iteratively add beam directions to paths until a user-defined total path length is reached. A subsequent direct aperture optimization of the intensity modulation along the paths creates deliverable plans. Non-isocentric DTRT plans using the path determination and using a manual path setup were created for a craniospinal and a spinal irradiation case. Furthermore, VMAT, isocentric DTRT, and non-isocentric DTRT plans are created for a breast, head and neck (H&N), and esophagus case. Additionally, a HyperArc plan is created for the H&N case. The plans are compared in terms of the dosimetric treatment plan quality and estimated delivery time.Main results.For the craniospinal and spinal irradiation case, using path determination results in dose distributions with improved conformity but a slightly worse target homogeneity compared to manual path setup. The non-isocentric DTRT plans maintained target coverage while reducing the mean dose to organs-at-risk on average by 1.7 Gy (breast), 1.0 Gy (H&N), and 1.6 Gy (esophagus) compared to the VMAT plans and by 0.8 Gy (breast), 0.6 Gy (H&N), and 0.8 Gy (esophagus) compared to the isocentric DTRT plans.Significance.A general dosimetrically motivated path determination applicable to non-isocentric DTRT plans is successfully developed, further advancing the treatment planning for non-isocentric DTRT.


Assuntos
Radiometria , Planejamento da Radioterapia Assistida por Computador , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias de Cabeça e Pescoço/radioterapia , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos , Neoplasias da Mama/radioterapia , Algoritmos , Feminino
7.
Phys Med Biol ; 69(16)2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39079553

RESUMO

Objective.Dynamic trajectory radiotherapy (DTRT) and dynamic mixed-beam arc therapy (DYMBARC) exploit non-coplanarity and, for DYMBARC, simultaneously optimized photon and electron beams. Margin concepts to account for set-up uncertainties during delivery are ill-defined for electron fields. We develop robust optimization for DTRT&DYMBARC and compare dosimetric plan quality and robustness for both techniques and both optimization strategies for four cases.Approach.Cases for different treatment sites and clinical target volume (CTV) to planning target volume (PTV) margins,m, were investigated. Dynamic gantry-table-collimator photon paths were optimized to minimize PTV/organ-at-risk (OAR) overlap in beam's-eye-view and minimize potential photon multileaf collimator (MLC) travel. For DYMBARC plans, non-isocentric partial electron arcs or static fields with shortened source-to-surface distance (80 cm) were added. Direct aperture optimization (DAO) was used to simultaneously optimize MLC-based intensity modulation for both photon and electron beams yielding deliverable PTV-based DTRT&DYMBARC plans. Robust-optimized plans used the same paths/arcs/fields. DAO with stochastic programming was used for set-up uncertainties with equal weights in all translational directions and magnitudeδsuch thatm= 0.7δ. Robust analysis considered random errors in all directions with or without an additional systematic error in the worst 3D direction for the adjacent OARs.Main results.Electron contribution was 7%-41% of target dose depending on the case and optimization strategy for DYMBARC. All techniques achieved similar CTV coverage in the nominal (no error) scenario. OAR sparing was overall better in the DYMBARC plans than in the DTRT plans and DYMBARC plans were generally more robust to the considered uncertainties. OAR sparing was better in the PTV-based than in robust-optimized plans for OARs abutting or overlapping with the target volume, but more affected by uncertainties.Significance.Better plan robustness can be achieved with robust optimization than with margins. Combining electron arcs/fields with non-coplanar photon trajectories further improves robustness and OAR sparing.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Radioterapia de Intensidade Modulada/métodos , Dosagem Radioterapêutica , Órgãos em Risco/efeitos da radiação , Fótons/uso terapêutico , Radiometria/métodos , Elétrons/uso terapêutico
8.
Med Phys ; 51(2): 1326-1339, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38131614

RESUMO

BACKGROUND: Non-coplanar techniques have shown to improve the achievable dose distribution compared to standard coplanar techniques for multiple treatment sites but finding optimal beam directions is challenging. Dynamic collimator trajectory radiotherapy (colli-DTRT) is a new intensity modulated radiotherapy technique that uses non-coplanar partial arcs and dynamic collimator rotation. PURPOSE: To solve the beam angle optimization (BAO) problem for colli-DTRT and non-coplanar VMAT (NC-VMAT) by determining the table-angle and the gantry-angle ranges of the partial arcs through iterative 4π fluence map optimization (FMO) and beam direction elimination. METHODS: BAO considers all available beam directions sampled on a gantry-table map with the collimator angle aligned to the superior-inferior axis (colli-DTRT) or static (NC-VMAT). First, FMO is performed, and beam directions are scored based on their contributions to the objective function. The map is thresholded to remove the least contributing beam directions, and arc candidates are formed by adjacent beam directions with the same table angle. Next, FMO and arc candidate trimming, based on objective function penalty score, is performed iteratively until a desired total gantry angle range is reached. Direct aperture optimization on the final set of colli-DTRT or NC-VMAT arcs generates deliverable plans. colli-DTRT and NC-VMAT plans were created for seven clinically-motivated cases with targets in the head and neck (two cases), brain, esophagus, lung, breast, and prostate. colli-DTRT and NC-VMAT were compared to coplanar VMAT plans as well as to class-solution non-coplanar VMAT plans for the brain and head and neck cases. Dosimetric validation was performed for one colli-DTRT (head and neck) and one NC-VMAT (breast) plan using film measurements. RESULTS: Target coverage and conformity was similar for all techniques. colli-DTRT and NC-VMAT plans had improved dosimetric performance compared to coplanar VMAT for all treatment sites except prostate where all techniques were equivalent. For the head and neck and brain cases, mean dose reduction-in percentage of the prescription dose-to parallel organs was on average 0.7% (colli-DTRT), 0.8% (NC-VMAT) and 0.4% (class-solution) compared to VMAT. The reduction in D2% for the serial organs was on average 1.7% (colli-DTRT), 2.0% (NC-VMAT) and 0.9% (class-solution). For the esophagus, lung, and breast cases, mean dose reduction to parallel organs was on average 0.2% (colli-DTRT) and 0.3% (NC-VMAT) compared to VMAT. The reduction in D2% for the serial organs was on average 1.3% (colli-DTRT) and 0.9% (NC-VMAT). Estimated delivery times for colli-DTRT and NC-VMAT were below 4 min for a full gantry angle range of 720°, including transitions between arcs, except for the brain case where multiple arcs covered the whole table angle range. These times are in the same order as the class-solution for the head and neck and brain cases. Total optimization times were 25%-107% longer for colli-DTRT, including BAO, compared to VMAT. CONCLUSIONS: We successfully developed dosimetrically motivated BAO for colli-DTRT and NC-VMAT treatment planning. colli-DTRT and NC-VMAT are applicable to multiple treatment sites, including body sites, with beneficial or equivalent dosimetric performances compared to coplanar VMAT and reasonable delivery times.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Masculino , Encéfalo , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Rotação , Feminino
10.
Phys Imaging Radiat Oncol ; 30: 100586, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38808098

RESUMO

Background and purpose: Dynamic trajectory radiotherapy (DTRT) has been shown to improve healthy tissue sparing compared to volumetric arc therapy (VMAT). This study aimed to assess and compare the robustness of DTRT and VMAT treatment-plans for head and neck (H&N) cancer to patient-setup (PS) and machine-positioning uncertainties. Materials and methods: The robustness of DTRT and VMAT plans previously created for 46 H&N cases, prescribed 50-70 Gy to 95 % of the planning-target-volume, was assessed. For this purpose, dose distributions were recalculated using Monte Carlo, including uncertainties in PS (translation and rotation) and machine-positioning (gantry-, table-, collimator-rotation and multi-leaf collimator (MLC)). Plan robustness was evaluated by the uncertainties' impact on normal tissue complication probabilities (NTCP) for xerostomia and dysphagia and on dose-volume endpoints. Differences between DTRT and VMAT plan robustness were compared using Wilcoxon matched-pair signed-rank test (α = 5 %). Results: Average NTCP for moderate-to-severe xerostomia and grade ≥ II dysphagia was lower for DTRT than VMAT in the nominal scenario (0.5 %, p = 0.01; 2.1 %, p < 0.01) and for all investigated uncertainties, except MLC positioning, where the difference was not significant. Average differences compared to the nominal scenario were ≤ 3.5 Gy for rotational PS (≤ 3°) and machine-positioning (≤ 2°) uncertainties, <7 Gy for translational PS uncertainties (≤ 5 mm) and < 20 Gy for MLC-positioning uncertainties (≤ 5 mm). Conclusions: DTRT and VMAT plan robustness to the investigated uncertainties depended on uncertainty direction and location of the structure-of-interest to the target. NTCP remained on average lower for DTRT than VMAT even when considering uncertainties.

11.
Med Phys ; 50(11): 7104-7117, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37748175

RESUMO

BACKGROUND: To improve organ at risk (OAR) sparing, dynamic trajectory radiotherapy (DTRT) extends VMAT by dynamic table and collimator rotation during beam-on. However, comprehensive investigations regarding the impact of the gantry-table (GT) rotation gradient on the DTRT plan quality have not been conducted. PURPOSE: To investigate the impact of a user-defined GT rotation gradient on plan quality of DTRT plans in terms of dosimetric plan quality, dosimetric robustness, deliverability, and delivery time. METHODS: The dynamic trajectories of DTRT are described by GT and gantry-collimator paths. The GT path is determined by minimizing the overlap of OARs with planning target volume (PTV). This approach is extended to consider a GT rotation gradient by means of a maximum gradient of the path ( G m a x ${G}_{max}$ ) between two adjacent control points ( G = | Δ table angle / Δ gantry angle | $G = | \Delta {{\mathrm{table\ angle}}/\Delta {\mathrm{gantry\ angle}}} |$ ) and maximum absolute change of G ( Δ G m a x ${{\Delta}}{G}_{max}$ ). Four DTRT plans are created with different maximum G&∆G: G m a x ${G}_{max}$ & Δ G m a x ${{\Delta}}{G}_{max}$  = 0.5&0.125 (DTRT-1), 1&0.125 (DTRT-2), 3&0.125 (DTRT-3) and 3&1|(DTRT-4), including 3-4 dynamic trajectories, for three clinically motivated cases in the head and neck and brain region (A, B, and C). A reference VMAT plan for each case is created. For all plans, plan quality is assessed and compared. Dosimetric plan quality is evaluated by target coverage, conformity, and OAR sparing. Dosimetric robustness is evaluated against systematic and random patient-setup uncertainties between ± 3 mm $ \pm 3\ {\mathrm{mm}}$ in the lateral, longitudinal, and vertical directions, and machine uncertainties between ± 4 ∘ $ \pm 4^\circ \ $ in the dynamically rotating machine components (gantry, table, collimator rotation). Delivery time is recorded. Deliverability and delivery accuracy on a TrueBeam are assessed by logfile analysis for all plans and additionally verified by film measurements for one case. All dose calculations are Monte Carlo based. RESULTS: The extension of the DTRT planning process with user-defined G m a x & Δ G m a x ${G}_{max}\& {{\Delta}}{G}_{max}$ to investigate the impact of the GT rotation gradient on plan quality is successfully demonstrated. With increasing G m a x & Δ G m a x ${G}_{max}\& {{\Delta}}{G}_{max}$ , slight (case C, D m e a n , p a r o t i d l . ${D}_{mean,\ parotid\ l.}$ : up to|-1|Gy) and substantial (case A, D 0.03 c m 3 , o p t i c n e r v e r . ${D}_{0.03c{m}^3,\ optic\ nerve\ r.}$ : up to -9.3 Gy, case|B, D m e a n , b r a i n $\ {D}_{mean,\ brain}$ : up to -4.7|Gy) improvements in OAR sparing are observed compared to VMAT, while maintaining similar target coverage. All plans are delivered on the TrueBeam. Expected and actual machine position values recorded in the logfiles deviated by <0.2° for gantry, table and collimator rotation. The film measurements agreed by >96% (2%|global/2 mm Gamma passing rate) with the dose calculation. With increasing G m a x & Δ G m a x ${G}_{max}\& {{\Delta}}{G}_{max}$ , delivery time is prolonged by <2 min/trajectory (DTRT-4) compared to VMAT and DTRT-1. The DTRT plans for case A and B and the VMAT plan for case C plan reveal the best dosimetric robustness for the considered uncertainties. CONCLUSION: The impact of the GT rotation gradient on DTRT plan quality is comprehensively investigated for three cases in the head and neck and brain region. Increasing freedom in this gradient improves dosimetric plan quality at the cost of increased delivery time for the investigated cases. No clear dependency of GT rotation gradient on dosimetric robustness is observed.


Assuntos
Radioterapia de Intensidade Modulada , Humanos , Dosagem Radioterapêutica , Rotação , Planejamento da Radioterapia Assistida por Computador , Radiometria
12.
Med Phys ; 50(10): 6535-6542, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37338935

RESUMO

BACKGROUND: Dynamic trajectory radiotherapy (DTRT) extends state-of-the-art volumetric modulated arc therapy (VMAT) by dynamic table and collimator rotations during beam-on. The effects of intrafraction motion during DTRT delivery are unknown, especially regarding the possible interplay between patient and machine motion with additional dynamic axes. PURPOSE: To experimentally assess the technical feasibility and quantify the mechanical and dosimetric accuracy of respiratory gating during DTRT delivery. METHODS: A DTRT and VMAT plan are created for a clinically motivated lung cancer case and delivered to a dosimetric motion phantom (MP) placed on the table of a TrueBeam system using Developer Mode. The MP reproduces four different 3D motion traces. Gating is triggered using an external marker block, placed on the MP. Mechanical accuracy and delivery time of the VMAT and DTRT deliveries with and without gating are extracted from the logfiles. Dosimetric performance is assessed by means of gamma evaluation (3% global/2 mm, 10% threshold). RESULTS: The DTRT and VMAT plans are successfully delivered with and without gating for all motion traces. Mechanical accuracy is similar for all experiments with deviations <0.14° (gantry angle), <0.15° (table angle), <0.09° (collimator angle) and <0.08 mm (MLC leaf positions). For DTRT (VMAT), delivery times are 1.6-2.3 (1.6- 2.5) times longer with than without gating for all motion traces except one, where DTRT (VMAT) delivery is 5.0 (3.6) times longer due to a substantial uncorrected baseline drift affecting only DTRT delivery. Gamma passing rates with (without) gating for DTRT/VMAT were ≥96.7%/98.5% (≤88.3%/84.8%). For one VMAT arc without gating it was 99.6%. CONCLUSION: Gating is successfully applied during DTRT delivery on a TrueBeam system for the first time. Mechanical accuracy is similar for VMAT and DTRT deliveries with and without gating. Gating substantially improved dosimetric performance for DTRT and VMAT.


Assuntos
Neoplasias Pulmonares , Radioterapia de Intensidade Modulada , Humanos , Estudos de Viabilidade , Radiometria , Pulmão , Neoplasias Pulmonares/radioterapia , Planejamento da Radioterapia Assistida por Computador , Dosagem Radioterapêutica
13.
Cancers (Basel) ; 15(17)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37686501

RESUMO

External beam radiation therapy requires a sophisticated and laborious planning procedure. To improve the efficiency and quality of this procedure, machine-learning models that predict these dose distributions were introduced. The most recent dose prediction models are based on deep-learning architectures called 3D U-Nets that give good approximations of the dose in 3D almost instantly. Our purpose was to train such a 3D dose prediction model for glioblastoma VMAT treatment and test its robustness and sensitivity for the purpose of quality assurance of automatic contouring. From a cohort of 125 glioblastoma (GBM) patients, VMAT plans were created according to a clinical protocol. The initial model was trained on a cascaded 3D U-Net. A total of 60 cases were used for training, 15 for validation and 20 for testing. The prediction model was tested for sensitivity to dose changes when subject to realistic contour variations. Additionally, the model was tested for robustness by exposing it to a worst-case test set containing out-of-distribution cases. The initially trained prediction model had a dose score of 0.94 Gy and a mean DVH (dose volume histograms) score for all structures of 1.95 Gy. In terms of sensitivity, the model was able to predict the dose changes that occurred due to the contour variations with a mean error of 1.38 Gy. We obtained a 3D VMAT dose prediction model for GBM with limited data, providing good sensitivity to realistic contour variations. We tested and improved the model's robustness by targeted updates to the training set, making it a useful technique for introducing dose awareness in the contouring evaluation and quality assurance process.

14.
Phys Med Biol ; 68(21)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37816376

RESUMO

Objective. Electron arcs in mixed-beam radiotherapy (Arc-MBRT) consisting of intensity-modulated electron arcs with dynamic gantry rotation potentially reduce the delivery time compared to mixed-beam radiotherapy containing electron beams with static gantry angle (Static-MBRT). This study aims to develop and investigate a treatment planning process (TPP) for photon multileaf collimator (pMLC) based Arc-MBRT.Approach. An existing TPP for Static-MBRT plans is extended to integrate electron arcs with a dynamic gantry rotation and intensity modulation using a sliding window technique. The TPP consists of a manual setup of electron arcs, and either static photon beams or photon arcs, shortening of the source-to-surface distance for the electron arcs, initial intensity modulation optimization, selection of a user-defined number of electron beam energies based on dose contribution to the target volume and finally, simultaneous photon and electron intensity modulation optimization followed by full Monte Carlo dose calculation. Arc-MBRT plans, Static-MBRT plans, and photon-only plans were created and compared for four breast cases. Dosimetric validation of two Arc-MBRT plans was performed using film measurements.Main results. The generated Arc-MBRT plans are dosimetrically similar to the Static-MBRT plans while outperforming the photon-only plans. The mean heart dose is reduced by 32% on average in the MBRT plans compared to the photon-only plans. The estimated delivery times of the Arc-MBRT plans are similar to the photon-only plans but less than half the time of the Static-MBRT plans. Measured and calculated dose distributions agree with a gamma passing rate of over 98% (3% global, 2 mm) for both delivered Arc-MBRT plans.Significance. A TPP for Arc-MBRT is successfully developed and Arc-MBRT plans showed the potential to improve the dosimetric plan quality similar as Static-MBRT while maintaining short delivery times of photon-only treatments. This further facilitates integration of pMLC-based MBRT into clinical practice.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Elétrons , Radioterapia de Intensidade Modulada/métodos , Fótons/uso terapêutico
15.
Sci Rep ; 12(1): 2485, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35169138

RESUMO

Traditional simulation techniques such as wave optics methods and Monte Carlo (MC) particle transport cannot model both interference and inelastic scattering phenomena within one framework. Based on the rules of quantum mechanics to calculate probabilities, we propose a new semi-classical MC algorithm for efficient and simultaneous modeling of scattering and interference processes. The similarities to MC particle transport allow the implementation as a flexible c++ object oriented extension of EGSnrc-a well-established MC toolkit. In addition to previously proposed Huygens principle based transport through optics components, new variance reduction techniques for the transport through gratings are presented as transport options to achieve the required improvement in speed and memory costs necessary for an efficient exploration (system design-dose estimations) of the medical implementation of X-ray grating interferometry (GI), an emerging imaging technique currently subject of tremendous efforts towards clinical translation. The feasibility of simulation of interference effects is confirmed in four academic cases and an experimental table-top GI setup. Comparison with conventional MC transport show that deposited energy features of EGSnrc are conserved.

16.
Radiat Oncol ; 17(1): 170, 2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36273161

RESUMO

AIMS: To save time and have more consistent contours, fully automatic segmentation of targets and organs at risk (OAR) is a valuable asset in radiotherapy. Though current deep learning (DL) based models are on par with manual contouring, they are not perfect and typical errors, as false positives, occur frequently and unpredictably. While it is possible to solve this for OARs, it is far from straightforward for target structures. In order to tackle this problem, in this study, we analyzed the occurrence and the possible dose effects of automated delineation outliers. METHODS: First, a set of controlled experiments on synthetically generated outliers on the CT of a glioblastoma (GBM) patient was performed. We analyzed the dosimetric impact on outliers with different location, shape, absolute size and relative size to the main target, resulting in 61 simulated scenarios. Second, multiple segmentation models where trained on a U-Net network based on 80 training sets consisting of GBM cases with annotated gross tumor volume (GTV) and edema structures. On 20 test cases, 5 different trained models and a majority voting method were used to predict the GTV and edema. The amount of outliers on the predictions were determined, as well as their size and distance from the actual target. RESULTS: We found that plans containing outliers result in an increased dose to healthy brain tissue. The extent of the dose effect is dependent on the relative size, location and the distance to the main targets and involved OARs. Generally, the larger the absolute outlier volume and the distance to the target the higher the potential dose effect. For 120 predicted GTV and edema structures, we found 1887 outliers. After construction of the planning treatment volume (PTV), 137 outliers remained with a mean distance to the target of 38.5 ± 5.0 mm and a mean size of 1010.8 ± 95.6 mm3. We also found that majority voting of DL results is capable to reduce outliers. CONCLUSIONS: This study shows that there is a severe risk of false positive outliers in current DL predictions of target structures. Additionally, these errors will have an evident detrimental impact on the dose and therefore could affect treatment outcome.


Assuntos
Glioblastoma , Radioterapia de Intensidade Modulada , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Glioblastoma/radioterapia , Órgãos em Risco , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos
17.
Med Phys ; 49(7): 4780-4793, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35451087

RESUMO

BACKGROUND: Evaluating plan robustness is a key step in radiotherapy. PURPOSE: To develop a flexible Monte Carlo (MC)-based robustness calculation and evaluation tool to assess and quantify dosimetric robustness of intensity-modulated radiotherapy (IMRT) treatment plans by exploring the impact of systematic and random uncertainties resulting from patient setup, patient anatomy changes, and mechanical limitations of machine components. METHODS: The robustness tool consists of two parts: the first part includes automated MC dose calculation of multiple user-defined uncertainty scenarios to populate a robustness space. An uncertainty scenario is defined by a certain combination of uncertainties in patient setup, rigid intrafraction motion and in mechanical steering of the following machine components: angles of gantry, collimator, table-yaw, table-pitch, table-roll, translational positions of jaws, multileaf-collimator (MLC) banks, and single MLC leaves. The Swiss Monte Carlo Plan (SMCP) is integrated in this tool to serve as the backbone for the MC dose calculations incorporating the uncertainties. The calculated dose distributions serve as input for the second part of the tool, handling the quantitative evaluation of the dosimetric impact of the uncertainties. A graphical user interface (GUI) is developed to simultaneously evaluate the uncertainty scenarios according to user-specified conditions based on dose-volume histogram (DVH) parameters, fast and exact gamma analysis, and dose differences. Additionally, a robustness index (RI) is introduced with the aim to simultaneously evaluate and condense dosimetric robustness against multiple uncertainties into one number. The RI is defined as the ratio of scenarios passing the conditions on the dose distributions. Weighting of the scenarios in the robustness space is possible to consider their likelihood of occurrence. The robustness tool is applied on IMRT, a volumetric modulated arc therapy (VMAT), a dynamic trajectory radiotherapy (DTRT), and a dynamic mixed beam radiotherapy (DYMBER) plan for a brain case to evaluate the robustness to uncertainties of gantry-, table-, collimator angle, MLC, and intrafraction motion. Additionally, the robustness of the IMRT, VMAT, and DTRT plan against patient setup uncertainties are compared. The robustness tool is validated by Delta4 measurements for scenarios including all uncertainty types available. RESULTS: The robustness tool performs simultaneous calculation of uncertainty scenarios, and the GUI enables their fast evaluation. For all evaluated plans and uncertainties, the planning target volume (PTV) margin prevented major clinical target volume (CTV) coverage deterioration (maximum observed standard deviation of D 98 % CTV $D98{\% _{{\rm{CTV}}}}$ was 1.3 Gy). OARs close to the PTV experienced larger dosimetric deviations (maximum observed standard deviation of D 2 % chiasma $D2{\% _{{\rm{chiasma}}}}$ was 14.5 Gy). Robustness comparison by RI evaluation against patient setup uncertainties revealed better dosimetric robustness of the VMAT and DTRT plans as compared to the IMRT plan. Delta4 validation measurements agreed with calculations by >96% gamma-passing rate (3% global/2 mm). CONCLUSIONS: The robustness tool was successfully implemented. Calculation and evaluation of uncertainty scenarios with the robustness tool were demonstrated on a brain case. Effects of patient and machine-specific uncertainties and the combination thereof on the dose distribution are evaluated in a user-friendly GUI to quantitatively assess and compare treatment plans and their robustness.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Método de Monte Carlo , Radiometria/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Incerteza
18.
Radiat Oncol ; 17(1): 94, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35549961

RESUMO

BACKGROUND AND PURPOSE: To assess the feasibility of postoperative stereotactic body radiation therapy (SBRT) for patients with hybrid implants consisting of carbon fiber reinforced polyetheretherketone and titanium (CFP-T) using CyberKnife. MATERIALS AND METHODS: All essential steps within a radiation therapy (RT) workflow were evaluated. First, the contouring process of target volumes and organs at risk (OAR) was done for patients with CFP-T implants. Second, after RT-planning, the accuracy of the calculated dose distributions was tested in a slab phantom and an anthropomorphic phantom using film dosimetry. As a third step, the accuracy of the mandatory image guided radiation therapy (IGRT) including automatic matching was assessed using the anthropomorphic phantom. For this goal, a standard quality assurance (QA) test was modified to carry out its IGRT part in presence of CFP-T implants. RESULTS: Using CFP-T implants, target volumes could precisely delineated. There was no need for compromising the contours to overcome artifact obstacles. Differences between measured and calculated dose values were below 11% for the slab phantom, and at least 95% of the voxels were within 5% dose difference. The comparisons for the anthropomorphic phantom showed a gamma-passing rate (5%, 1 mm) of at least 97%. Additionally the test results with and without CFP-T implants were comparable. No issues concerning the IGRT were detected. The modified machine QA test resulted in a targeting error of 0.71 mm, which corresponds to the results of the unmodified standard tests. CONCLUSION: Dose calculation and delivery of postoperative spine SBRT is feasible in proximity of CFP-T implants using a CyberKnife system.


Assuntos
Radiocirurgia , Radioterapia de Intensidade Modulada , Procedimentos Cirúrgicos Robóticos , Carbono , Estudos de Viabilidade , Humanos , Imagens de Fantasmas , Radiocirurgia/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Titânio
19.
Radiat Oncol ; 17(1): 122, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35841098

RESUMO

BACKGROUND: Dynamic trajectory radiotherapy (DTRT) extends volumetric modulated arc therapy (VMAT) with dynamic table and collimator rotation during beam-on. The aim of the study is to establish DTRT path-finding strategies, demonstrate deliverability and dosimetric accuracy and compare DTRT to state-of-the-art VMAT for common head and neck (HN) cancer cases. METHODS: A publicly available library of seven HN cases was created on an anthropomorphic phantom with all relevant organs-at-risk (OARs) delineated. DTRT plans were generated with beam incidences minimizing fractional target/OAR volume overlap and compared to VMAT. Deliverability and dosimetric validation was carried out on the phantom. RESULTS: DTRT and VMAT had similar target coverage. For three locoregionally advanced oropharyngeal carcinomas and one adenoid cystic carcinoma, mean dose to the contralateral salivary glands, pharynx and oral cavity was reduced by 2.5, 1.7 and 3.1 Gy respectively on average with DTRT compared to VMAT. For a locally recurrent nasopharyngeal carcinoma, D0.03 cc to the ipsilateral optic nerve was above tolerance (54.0 Gy) for VMAT (54.8 Gy) but within tolerance for DTRT (53.3 Gy). For a laryngeal carcinoma, DTRT resulted in higher dose than VMAT to the pharynx and brachial plexus but lower dose to the upper oesophagus, thyroid gland and contralateral carotid artery. For a single vocal cord irradiation case, DTRT spared most OARs better than VMAT. All plans were delivered successfully on the phantom and dosimetric validation resulted in gamma passing rates of 93.9% and 95.8% (2%/2 mm criteria, 10% dose threshold). CONCLUSIONS: This study provides a proof of principle of DTRT for common HN cases with plans that were deliverable on a C-arm linac with high accuracy. The comparison with VMAT indicates substantial OAR sparing could be achieved.


Assuntos
Neoplasias de Cabeça e Pescoço , Neoplasias Nasofaríngeas , Radioterapia de Intensidade Modulada , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Recidiva Local de Neoplasia , Órgãos em Risco/efeitos da radiação , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos
20.
Trials ; 23(1): 906, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36303192

RESUMO

BACKGROUND: Surgery and radiotherapy are well-established standards of care for unilateral stage 0 and I early-stage glottic cancer (ESGC). Based on comparative studies and meta-analyses, functional and oncological outcomes after both treatment modalities are similar. Historically, radiotherapy (RT) has been performed by irradiation of the whole larynx. However, only the involved vocal cord is being treated with recently introduced hypofractionated concepts that result in 8 to 10-fold smaller target volumes. Retrospective data argues for an improvement in voice quality with non-inferior local control. Based on these findings, single vocal cord irradiation (SVCI) has been implemented as a routine approach in some institutions for ESGC in recent years. However, prospective data directly comparing SVCI with surgery is lacking. The aim of VoiceS is to fill this gap. METHODS: In this prospective randomized multi-center open-label phase III study with a superiority design, 34 patients with histopathologically confirmed, untreated, unilateral stage 0-I ESGC (unilateral cTis or cT1a) will be randomized to SVCI or transoral CO2-laser microsurgical cordectomy (TLM). Average difference in voice quality, measured by using the voice handicap index (VHI) will be modeled over four time points (6, 12, 18, and 24 months). Primary endpoint of this study will be the patient-reported subjective voice quality between 6 to 24 months after randomization. Secondary endpoints will include perceptual impression of the voice via roughness - breathiness - hoarseness (RBH) assessment at the above-mentioned time points. Additionally, quantitative characteristics of voice, loco-regional tumor control at 2 and 5 years, and treatment toxicity at 2 and 5 years based on CTCAE v.5.0 will be reported. DISCUSSION: To our knowledge, VoiceS is the first randomized phase III trial comparing SVCI with TLM. Results of this study may lead to improved decision-making in the treatment of ESGC. TRIAL REGISTRATION: ClinicalTrials.gov NCT04057209. Registered on 15 August 2019. Cantonal Ethics Committee KEK-BE 2019-01506.


Assuntos
Neoplasias Laríngeas , Terapia a Laser , Humanos , Neoplasias Laríngeas/radioterapia , Neoplasias Laríngeas/cirurgia , Neoplasias Laríngeas/patologia , Qualidade da Voz/efeitos da radiação , Prega Vocal/cirurgia , Prega Vocal/patologia , Prega Vocal/efeitos da radiação , Dióxido de Carbono , Estudos Retrospectivos , Estudos Prospectivos , Terapia a Laser/métodos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA