Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
J Am Chem Soc ; 146(19): 13046-13054, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38710657

RESUMO

Common in biomacromolecules, kinetically trapped misfolded intermediates are often detrimental to the structures, properties, or functions of proteins or nucleic acids. Nature employs chaperone proteins but not nucleic acids to escort intermediates to correct conformations. Herein, we constructed a Jablonski-like diagram of a mechanochemical cycle in which individual DNA hairpins were mechanically unfolded to high-energy states, misfolded into kinetically trapped states, and catalytically relaxed back to ground-state hairpins by a DNA chaperone. The capacity of catalytic relaxation was demonstrated in a 1D DNA hairpin array mimicking nanoassembled materials. At ≥1 µM, the diffusive (or self-walking) DNA chaperone converted the entire array of misfolded intermediates to correct conformation in less than 15 s, which is essential to rapidly prepare homogeneous nanoassemblies. Such an efficient self-walking amplification increases the signal-to-noise ratio, facilitating catalytic relaxation to recognize a 1 fM DNA chaperone in 10 min, a detection limit comparable to the best biosensing strategies.


Assuntos
DNA , Chaperonas Moleculares , Conformação de Ácido Nucleico , DNA/química , Cinética , Chaperonas Moleculares/química , Catálise
2.
Small ; 20(35): e2400485, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38678502

RESUMO

8-oxoguanines (8-oxoG) in cells form compromised G-quadruplexes (GQs), which may vary GQ mediated gene regulations. By mimicking molecularly crowded cellular environment using 40% DMSO or sucrose, here it is found that oxidized human telomeric GQs have stabilities close to the wild-type (WT) GQs. Surprisingly, while WT GQs show negative formation cooperativity between a Pt(II) binder and molecularly crowded environment, positive cooperativity is observed for oxidized GQ formation. Single-molecule mechanical unfolding reveals that 8-oxoG sequence formed more diverse and flexible structures with faster folding/unfolding transition kinetics, which facilitates the Pt(II) ligand to bind the best-fit structures with positive cooperativity. These findings offer new understanding on structures and properties of oxidized G-rich species in crowded environments. They also provide insights into the design of better ligands to target oxidized G-rich structures formed under oxidative cell stress.


Assuntos
Quadruplex G , Oxirredução , Cinética , Humanos , Telômero/química , Telômero/metabolismo
3.
Nucleic Acids Res ; 50(2): 697-703, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35037040

RESUMO

Both ligand binding and nanocavity can increase the stability of a biomolecular structure. Using mechanical unfolding in optical tweezers, here we found that a DNA origami nanobowl drastically increased the stability of a human telomeric G-quadruplex bound with a pyridostatin (PDS) ligand. Such a stability change is equivalent to >4 orders of magnitude increase (upper limit) in binding affinity (Kd: 490 nM → 10 pM (lower limit)). Since confined space can assist the binding through a proximity effect between the ligand-receptor pair and a nanoconfinement effect that is mediated by water molecules, we named such a binding as mechanochemical binding. After minimizing the proximity effect by using PDS that can enter or leave the DNA nanobowl freely, we attributed the increased affinity to the nanoconfinement effect (22%) and the proximity effect (78%). This represents the first quantification to dissect the effects of proximity and nanoconfinement on binding events in nanocavities. We anticipate these DNA nanoassemblies can deliver both chemical (i.e. ligand) and mechanical (i.e. nanocavity) milieus to facilitate robust mechanochemical binding in various biological systems.


Assuntos
DNA/química , Ligantes , Modelos Teóricos , Nanoestruturas/química , Quadruplex G , Humanos , Modelos Moleculares , Conformação Molecular
4.
Nucleic Acids Res ; 50(13): 7247-7259, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35801856

RESUMO

G-quadruplexes (G4s) are well known non-canonical DNA secondary structures that can form in human cells. Most of the tools available to investigate G4-biology rely on small molecule ligands that stabilise these structures. However, the development of probes that disrupt G4s is equally important to study their biology. In this study, we investigated the disruption of G4s using Locked Nucleic Acids (LNA) as invader probes. We demonstrated that strategic positioning of LNA-modifications within short oligonucleotides (10 nts.) can significantly accelerate the rate of G4-disruption. Single-molecule experiments revealed that short LNA-probes can promote disruption of G4s with mechanical stability sufficient to stall polymerases. We corroborated this using a single-step extension assay, revealing that short LNA-probes can relieve replication dependent polymerase-stalling at G4 sites. We further demonstrated the potential of such LNA-based probes to study G4-biology in cells. By using a dual-luciferase assay, we found that short LNA probes can enhance the expression of c-KIT to levels similar to those observed when the c-KIT promoter is mutated to prevent the formation of the c-KIT1 G4. Collectively, our data suggest a potential use of rationally designed LNA-modified oligonucleotides as an accessible chemical-biology tool for disrupting individual G4s and interrogating their biological functions in cells.


Assuntos
Quadruplex G , Sondas de Oligonucleotídeos/química , Oligonucleotídeos/química , DNA/química , Humanos , Regiões Promotoras Genéticas
5.
J Am Chem Soc ; 145(31): 17143-17150, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37494702

RESUMO

Interaction between peptides and nucleic acids is a ubiquitous process that drives many cellular functions, such as replications, transcriptions, and translations. Recently, this interaction has been found in liquid-liquid phase separation (LLPS), a process responsible for the formation of newly discovered membraneless organelles with a variety of biological functions inside cells. In this work, we studied the molecular interaction between the poly-l-lysine (PLL) peptide and nucleic acids during the early stage of an LLPS process at the single-molecule level using optical tweezers. By monitoring the mechanical tension of individual nucleic acid templates upon PLL addition, we revealed a multistage LLPS process mediated by the long-range interactions between nucleic acids and polyelectrolytes. By varying different types (ssDNA, ssRNA, and dsDNA) and sequences (A-, T-, G-, or U-rich) of nucleic acids, we pieced together transition diagrams of the PLL-nucleic acid condensates from which we concluded that the propensity to form rigid nucleic acid-PLL complexes reduces the condensate formation during the LLPS process. We anticipate that these results are instrumental in understanding the transition mechanism of LLPS condensates, which allows new strategies to interfere with the biological functions of LLPS condensates inside cells.


Assuntos
Núcleo Celular , RNA , Polieletrólitos , Transição de Fase
6.
J Am Chem Soc ; 145(10): 5750-5758, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36795472

RESUMO

Artificial enzymes such as nanozymes and DNAzymes are economical and stable alternatives to natural enzymes. By coating Au nanoparticles (AuNPs) with a DNA corona (AuNP@DNA), we amalgamated nanozymes and DNAzymes into a new artificial enzyme with catalytic efficiency 5 times higher than AuNP nanozymes, 10 times higher than other nanozymes, and significantly greater than most of the DNAzymes on the same oxidation reaction. The AuNP@DNA demonstrates excellent specificity as its reactivity on a reduction reaction does not change with respect to pristine AuNP. Single-molecule fluorescence and force spectroscopies and density functional theory (DFT) simulations indicate a long-range oxidation reaction initiated by radical production on the AuNP surface, followed by radical transport to the DNA corona, where the binding and turnover of substrates take place. The AuNP@DNA is named coronazyme because of its natural enzyme mimicking capability through the well-orchestrated structures and synergetic functions. By incorporating different nanocores and corona materials beyond DNAs, we anticipate that the coronazymes represent generic enzyme mimics to carry out versatile reactions in harsh environments.


Assuntos
DNA Catalítico , Nanopartículas Metálicas , Nanopartículas Metálicas/química , Ouro/química , DNA/química , Oxirredução , Catálise
7.
Acc Chem Res ; 55(9): 1214-1225, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35420417

RESUMO

Single-molecule mechanochemical sensing (SMMS) is a novel biosensing technique using mechanical force as a signal transduction mechanism. In the mechanochemical sensing, the chemical binding of an analyte molecule to a sensing template is converted to mechanical signals, such as tensile force, of the template. Since mechanical force can be conveniently monitored by single-molecule tools, such as optical tweezers, magnetic tweezers, or Atomic Force Microscopy, mechanochemical sensing is often carried out at the single molecule level. In traditional format of ensemble sensing, sensitivity can be achieved via chemical or electrical amplifications, which are materials intensive and time-consuming. To address these problems, in 2011, we used the principle of mechanochemical coupling in a single molecular template to detect single nucleotide polymorphism (SNP) in DNA fragments. The single-molecule sensitivity in such SMMS strategy allows to removing complex amplification steps, drastically conserving materials and increasing temporal resolution in the sensing. By placing many probing units throughout a single-molecule sensing template, SMMS can have orders of magnitude better efficiency in the materials usage (i.e., high Atom Economy) with respect to the ensemble biosensing. The SMMS sensing probes also enable topochemical arrangement of different sensing units. By placing these units in a spatiotemporally addressable fashion, single-molecule topochemical sensors have been demonstrated in our lab to detect an expandable set of microRNA targets. Because of the stochastic behavior of single-molecule binding, however, it is challenging for the SMMS to accurately report analyte concentrations in a fixed time window. While multivariate analysis has been shown to rectify background noise due to stochastic nature of single-molecule probes, a template containing an array of sensing units has shown ensemble average behaviors to address the same problem. In this so-called ensemble single-molecule sensing, collective mechanical transitions of many sensing units occur in the SMMS sensing probes, which allows accurate quantification of analytes. For the SMMS to function as a viable sensing approach readily adopted by biosensing communities, the future of the SMMS technique relies on the reduction in the complexity and cost of instrumentation to report mechanical signals. In this account, we first explain the mechanism and main features of the SMMS. We then specify basic elements employed in SMMS. Using DNA as an exemplary SMMS template, we further summarize different types of SMMS which present multiplexing capability and increased throughput. Finally, recent efforts to develop simple and affordable high throughput methods for force generation and measurement are discussed in this Account for potential usage in the mechanochemical sensing.


Assuntos
Técnicas Biossensoriais , Técnicas Biossensoriais/métodos , DNA/química , Fenômenos Mecânicos , Microscopia de Força Atômica , Pinças Ópticas
8.
Anal Biochem ; 649: 114693, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35500657

RESUMO

Binding between a ligand and a receptor is a fundamental step in many natural or synthetic processes. In biosensing, a tight binding with a small dissociation constant (Kd) between the probe and analyte can lead to superior specificity and sensitivity. Owing to their capability of evaluating competitors, displacement assays have been used to estimate Kd at the ensemble average level. At the more sensitive single-molecule level, displacement assays are yet to be established. Here, we developed a single-molecule displacement assay (smDA) in an optical tweezers instrument and used this innovation to evaluate the binding of the L2H2-6OTD ligands to human telomeric DNA G-quadruplexes. After measuring Kd of linear and dendrimer L2H2-6OTD ligands, we found that dendrimer ligands have enhanced binding affinity to the G-quadruplexes due to their polyvalent geometry. This increased binding affinity enhanced inhibition of telomerase elongation on a telomere template in a Telomerase Repeated Amplification Protocol (TRAP). Our experiments demonstrate that the smDA approach can efficiently evaluate binding processes in chemical and biological processes.


Assuntos
Dendrímeros , Quadruplex G , Telomerase , Humanos , Ligantes , Telomerase/metabolismo , Telômero/metabolismo
9.
Langmuir ; 38(44): 13569-13576, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36305083

RESUMO

Noncovalent adsorption of biopolymers on the surface of gold nanoparticles (AuNPs) forms a corona phase that drastically diversify AuNP functions. However, mechanical stabilities of such corona phase are still obscure, hindering the application of biopolymer-coated AuNPs. Here, using optical tweezers, we have observed, for the first time, that DNA corona phase adsorbed on a 5 nm AuNP via two (dA)21 strands in proximity can withstand an average desorption force of 40 pN, which is higher than the stall force of DNA/RNA polymerases. This suggests a new role for AuNPs to modulate replications or transcriptions after binding to prevalent poly(dA) segments in eukaryotic genomes. We have also revealed that with increasing AuNP size (1.8-10 nm), DNA corona becomes harder to remove, likely due to the larger surfaces and flatter facets on bigger AuNPs. These findings provide guidance to design AuNP corona that can withstand harsh environments for biological and materials applications.


Assuntos
Nanopartículas Metálicas , Nanosferas , Coroa de Proteína , Ouro , DNA , Adsorção
10.
Biomacromolecules ; 23(11): 4795-4803, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36322676

RESUMO

Single-molecule methods offer high sensitivities with precisions superior to bulk assays. However, these methods are low in throughput and cannot repetitively interrogate the same cluster of molecular units. In this work, we investigate a tandem array of G-quadruplexes on a single-molecule DNA template with a throughput of at least two orders of magnitude higher than single-molecule force spectroscopy. During mechanical unfolding by optical tweezers, the array of G-quadruplexes experiences identical force, temperature, and ionic conditions, which not only reduce environmental noise but also render unfolding transitions indistinguishable among individual G-quadruplexes. The resultant ensemble behaviors are analyzed by scanning force diagrams, which reveals accurate F1/2 values, where 50% of G-quadruplexes are unfolded. Independent of the number of G-quadruplexes (n > 15) contained in a cluster, F1/2 can effectively evaluate G-quadruplex ligands in a new method called differential scanning forcemetry. When the same G-quadruplex cluster is subject to a series of constant forces in force-jump experiments, unfolding rate constants of G-quadruplexes can be effectively evaluated as a function of force. The high precision demonstrated in all of these measurements reflects the power of repetitive sampling on the same cluster of single-molecule entities under identical conditions. Since biomolecules such as DNA, RNA, and proteins can be conveniently incorporated in a tandem array, we anticipate that this ensemble assay on single-molecule entities (EASE) provides a generic means of ensemble force spectroscopy to amalgamate the accuracy of ensemble measurements with the precision of single-molecule methods.


Assuntos
Quadruplex G , Análise Espectral , Pinças Ópticas , Nanotecnologia , DNA/química
11.
Chem Soc Rev ; 50(21): 12258, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34549206

RESUMO

Correction for 'DNA origami nano-mechanics' by Jiahao Ji et al., Chem. Soc. Rev., 2021, DOI: 10.1039/d1cs00250c.

12.
Chem Soc Rev ; 50(21): 11966-11978, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34499072

RESUMO

Invention of DNA origami has transformed the fabrication and application of biological nanomaterials. In this review, we discuss DNA origami nanoassemblies according to their four fundamental mechanical properties in response to external forces: elasticity, pliability, plasticity and stability. While elasticity and pliability refer to reversible changes in structures and associated properties, plasticity shows irreversible variation in topologies. The irreversible property is also inherent in the disintegration of DNA nanoassemblies, which is manifested by its mechanical stability. Disparate DNA origami devices in the past decade have exploited the mechanical regimes of pliability, elasticity, and plasticity, among which plasticity has shown its dominating potential in biomechanical and physiochemical applications. On the other hand, the mechanical stability of the DNA origami has been used to understand the mechanics of the assembly and disassembly of DNA nano-devices. At the end of this review, we discuss the challenges and future development of DNA origami nanoassemblies, again, from these fundamental mechanical perspectives.


Assuntos
DNA , Nanoestruturas , Conformação de Ácido Nucleico
13.
Angew Chem Int Ed Engl ; 61(23): e202113156, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35320624

RESUMO

In Tau protein condensates formed by the Liquid-Liquid Phase Separation (LLPS) process, liquid-to-solid transitions lead to the formation of fibrils implicated in Alzheimer's disease. Here, by tracking two contacting Tau-rich droplets using a simple and nonintrusive video microscopy, we found that the halftime of the liquid-to-solid transition in the Tau condensate is affected by the Hofmeister series according to the solvation energy of anions. After dissecting functional groups of physiologically relevant small molecules using a multivariate approach, we found that charged groups facilitate the liquid-to-solid transition in a manner similar to the Hofmeister effect, whereas hydrophobic alkyl chains and aromatic rings inhibit the transition. Our results not only elucidate the driving force of the liquid-to-solid transition in Tau condensates, but also provide guidelines to design small molecules to modulate this important transition for many biological functions for the first time.


Assuntos
Doença de Alzheimer , Proteínas tau , Doença de Alzheimer/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Proteínas tau/metabolismo
14.
Nat Mater ; 19(9): 1012-1018, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32661383

RESUMO

The diversity of DNA duplex structures is limited by a binary pair of hydrogen-bonded motifs. Here we show that poly(thymine) self-associates into antiparallel, right-handed duplexes in the presence of melamine, a small molecule that presents a triplicate set of the hydrogen-bonding face of adenine. X-ray crystallography shows that in the complex two poly(thymine) strands wrap around a helical column of melamine, which hydrogen bonds to thymine residues on two of its three faces. The mechanical strength of the thymine-melamine-thymine triplet surpasses that of adenine-thymine base pairs, which enables a sensitive detection of melamine at 3 pM. The poly(thymine)-melamine duplex is orthogonal to native DNA base pairing and can undergo strand displacement without the need for overhangs. Its incorporation into two-dimensional grids and hybrid DNA-small-molecule polymers highlights the poly(thymine)-melamine duplex as an additional tool for DNA nanotechnology.


Assuntos
DNA/química , Nanoestruturas/química , Timina/química , Triazinas/química , Ligação de Hidrogênio
15.
Bioconjug Chem ; 32(2): 311-317, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33475341

RESUMO

Cell motions such as migration and change in cellular morphology are essential activities for multicellular organism in response to environmental stimuli. These activities are a result of coordinated clustering/declustering of integrin molecules at the cell membrane. Here, we prepared DNA origami nanosprings to modulate cell motions by targeting the clustering of integrin molecules. Each nanospring was modified with arginyl-glycyl-aspartic acid (RGD) domains with a spacing such that when the nanospring is coiled, the RGD ligands trigger the clustering of integrin molecules, which changes cell motions. The coiling or uncoiling of the nanospring is controlled, respectively, by the formation or dissolution of an i-motif structure between neighboring piers in the DNA origami nanodevice. At slightly acidic pH (<6.5), the folding of the i-motif leads to the coiling of the nanospring, which inhibits the motion of HeLa cells. At neutrality (pH 7.4), the unfolding of the i-motif allows cells to resume mechanical movement as the nanospring becomes uncoiled. We anticipate that this pH-responsive DNA nanoassembly is valuable to inhibit the migration of metastatic cancer cells in acidic extracellular environment. Such a chemo-mechanical modulation provides a new mechanism for cells to mechanically respond to endogenous chemical cues.


Assuntos
Movimento Celular , DNA/química , Nanoestruturas/química , Células HeLa , Humanos , Concentração de Íons de Hidrogênio
16.
Nucleic Acids Res ; 47(7): 3295-3305, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30820532

RESUMO

To modulate biological functions, G-quadruplexes in genome are often non-specifically targeted by small molecules. Here, specificity is increased by targeting both G-quadruplex and its flanking duplex DNA in a naturally occurring dsDNA-ssDNA telomere interface using polyamide (PA) and pyridostatin (PDS) conjugates (PA-PDS). We innovated a single-molecule assay in which dissociation constant (Kd) of the conjugate can be separately evaluated from the binding of either PA or PDS. We found Kd of 0.8 nM for PA-PDS, which is much lower than PDS (Kd ∼ 450 nM) or PA (Kd ∼ 35 nM). Functional assays further indicated that the PA-PDS conjugate stopped the replication of a DNA polymerase more efficiently than PA or PDS. Our results not only established a new method to dissect multivalent binding into actions of individual monovalent components, they also demonstrated a strong and specific G-quadruplex targeting strategy by conjugating highly specific duplex-binding molecules with potent quadruplex ligands.


Assuntos
Aminoquinolinas/química , Nylons/química , Ácidos Picolínicos/química , Telômero/química , Sequência de Bases , DNA/síntese química , DNA/química , DNA/metabolismo , Humanos , Especificidade por Substrato , Telômero/metabolismo
17.
Proc Natl Acad Sci U S A ; 115(38): 9539-9544, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30181280

RESUMO

Due to the small size of a nanoconfinement, the property of water contained inside is rather challenging to probe. Herein, we measured the amount of water molecules released during the folding of individual G-quadruplex and i-motif structures, from which water activities are estimated in the DNA nanocages prepared by 5 × 5 to 7 × 7 helix bundles (cross-sections, 9 × 9 to 15 × 15 nm). We found water activities decrease with reducing cage size. In the 9 × 9-nm cage, water activity was reduced beyond the reach of regular cosolutes such as polyethylene glycol (PEG). With this set of nanocages, we were able to retrieve the change in water molecules throughout the folding trajectory of G-quadruplex or i-motif. We found that water molecules absorbed from the unfolded to the transition states are much fewer than those lost from the transition to the folded states. The overall loss of water therefore drives the folding of G-quadruplex or i-motif in nanocages with reduced water activities.


Assuntos
DNA/química , Quadruplex G , Motivos de Nucleotídeos , Água/química , Modelos Químicos , Nanoestruturas/química , Polietilenoglicóis/química
18.
Biochemistry ; 59(37): 3438-3446, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32833433

RESUMO

Although allosteric binding of small molecules is commonplace in protein structures, it is rather rare in DNA species such as G-quadruplexes. By using CD melting, here, we found binding of the small-molecule ligands PDS and L2H2-6OTD to the telomeric DNA G-quadruplex was cooperative. Mass spectrometry indicated a 1:1:1 ratio in the ternary binding complex of the telomeric G-quadruplex, PDS, and L2H2-6OTD. Compared to the binding of each individual ligand to the G-quadruplex, single-molecule mechanical unfolding assays revealed a significantly decreased dissociation constant when one ligand is evaluated in the presence of another. This demonstrates that cooperative binding of PDS and L2H2-6OTD to the G-quadruplex is allosteric, which is also supported by the mass spectra data that indicated the ejection of coordinated sodium ions upon binding of the heteroligands to the G-quadruplex. The unprecedented observation of the allosteric ligand binding to higher-ordered structures of DNA may help to design more effective ligands to target non-B DNA species involved in many critical cellular processes.


Assuntos
Aminoquinolinas/metabolismo , Quadruplex G , Oxazóis/metabolismo , Ácidos Picolínicos/metabolismo , Telômero/química , Telômero/metabolismo , Sítio Alostérico , Sítios de Ligação , Humanos , Ligantes , Modelos Moleculares
19.
J Am Chem Soc ; 142(22): 10042-10049, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32383870

RESUMO

For proteins and DNA secondary structures such as G-quadruplexes and i-motifs, nanoconfinement can facilitate their folding and increase structural stabilities. However, the properties of the physiologically prevalent B-DNA duplex have not been elucidated inside the nanocavity. Using a 17-bp DNA duplex in the form of a hairpin stem, here, we probed folding and unfolding transitions of the hairpin DNA duplex inside a DNA origami nanocavity. Compared to the free solution, the DNA hairpin inside the nanocage with a 15 × 15 nm cross section showed a drastic decrease in mechanical (20 → 9 pN) and thermodynamic (25 → 6 kcal/mol) stabilities. Free energy profiles revealed that the activation energy of unzipping the hairpin DNA duplex decreased dramatically (28 → 8 kcal/mol), whereas the transition state moved closer to the unfolded state inside the nanocage. All of these indicate that nanoconfinement weakens the stability of the hairpin DNA duplex to an unexpected extent. In a DNA hairpin made of a stem that contains complementary telomeric G-quadruplex (GQ) and i-motif (iM) forming sequences, formation of the Hoogsteen base pairs underlining the GQ or iM is preferred over the Watson-Crick base pairs in the DNA hairpin. These results shed light on the behavior of DNA in nanochannels, nanopores, or nanopockets of various natural or synthetic machineries. It also elucidates an alternative pathway to populate noncanonical DNA over B-DNA in the cellular environment where the nanocavity is abundant.


Assuntos
DNA/química , Nanopartículas/química , Quadruplex G , Conformação de Ácido Nucleico
20.
Anal Chem ; 92(19): 13126-13133, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32829637

RESUMO

While single-molecule sensing has offered ultimate mass sensitivity at the precision of individual molecules, it requires a longer time to detect analytes at lower concentrations when analyte binding to single-molecule probes becomes diffusion-limited. Here, we solved this accuracy problem in the concentration sensitivity determination by using single-molecule DNA homopolymers, in which up to 473 identical sensing elements (DNA hairpins) were introduced by rolling circle amplification. Surprisingly, the DNA homopolymers containing as few as 10 tandem hairpins displayed ensemble unfolding/refolding transitions, which were exploited to recognize microRNAs (miRNAs) that populated unfolded hairpins. Within 20 min, the femtomolar detection limit for miRNAs was observed, 6 orders of magnitude better than standalone hairpins. By incorporating different hairpin probes in an alternating DNA copolymer, multiplex recognition of different miRNAs was demonstrated. These DNA co-polymers represent new materials for innovative sensing strategies that combine the single-molecule precision with the accuracy of ensemble assays to determine concentration sensitivities.


Assuntos
DNA/química , MicroRNAs/sangue , Polímeros/química , Técnicas Biossensoriais , Humanos , Técnicas Analíticas Microfluídicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA