Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Nature ; 605(7910): 567-574, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35477760

RESUMO

Proteasomal degradation of ubiquitylated proteins is tightly regulated at multiple levels1-3. A primary regulatory checkpoint is the removal of ubiquitin chains from substrates by the deubiquitylating enzyme ubiquitin-specific protease 14 (USP14), which reversibly binds the proteasome and confers the ability to edit and reject substrates. How USP14 is activated and regulates proteasome function remain unknown4-7. Here we present high-resolution cryo-electron microscopy structures of human USP14 in complex with the 26S proteasome in 13 distinct conformational states captured during degradation of polyubiquitylated proteins. Time-resolved cryo-electron microscopy analysis of the conformational continuum revealed two parallel pathways of proteasome state transitions induced by USP14, and captured transient conversion of substrate-engaged intermediates into substrate-inhibited intermediates. On the substrate-engaged pathway, ubiquitin-dependent activation of USP14 allosterically reprograms the conformational landscape of the AAA-ATPase motor and stimulates opening of the core particle gate8-10, enabling observation of a near-complete cycle of asymmetric ATP hydrolysis around the ATPase ring during processive substrate unfolding. Dynamic USP14-ATPase interactions decouple the ATPase activity from RPN11-catalysed deubiquitylation11-13 and kinetically introduce three regulatory checkpoints on the proteasome, at the steps of ubiquitin recognition, substrate translocation initiation and ubiquitin chain recycling. These findings provide insights into the complete functional cycle of the USP14-regulated proteasome and establish mechanistic foundations for the discovery of USP14-targeted therapies.


Assuntos
Complexo de Endopeptidases do Proteassoma , Ubiquitina , Adenosina Trifosfatases/metabolismo , Microscopia Crioeletrônica , Humanos , Conformação Molecular , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Ubiquitina Tiolesterase/metabolismo
2.
Nature ; 565(7737): 49-55, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30479383

RESUMO

The proteasome is an ATP-dependent, 2.5-megadalton molecular machine that is responsible for selective protein degradation in eukaryotic cells. Here we present cryo-electron microscopy structures of the substrate-engaged human proteasome in seven conformational states at 2.8-3.6 Å resolution, captured during breakdown of a polyubiquitylated protein. These structures illuminate a spatiotemporal continuum of dynamic substrate-proteasome interactions from ubiquitin recognition to substrate translocation, during which ATP hydrolysis sequentially navigates through all six ATPases. There are three principal modes of coordinated hydrolysis, featuring hydrolytic events in two oppositely positioned ATPases, in two adjacent ATPases and in one ATPase at a time. These hydrolytic modes regulate deubiquitylation, initiation of translocation and processive unfolding of substrates, respectively. Hydrolysis of ATP powers a hinge-like motion in each ATPase that regulates its substrate interaction. Synchronization of ATP binding, ADP release and ATP hydrolysis in three adjacent ATPases drives rigid-body rotations of substrate-bound ATPases that are propagated unidirectionally in the ATPase ring and unfold the substrate.


Assuntos
Microscopia Crioeletrônica , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/ultraestrutura , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Holoenzimas/química , Holoenzimas/metabolismo , Holoenzimas/ultraestrutura , Humanos , Hidrólise , Modelos Moleculares , Complexo de Endopeptidases do Proteassoma/química , Conformação Proteica , Estrutura Quaternária de Proteína , Desdobramento de Proteína , Especificidade por Substrato , Ubiquitinação
3.
Nature ; 570(7761): 338-343, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31189953

RESUMO

The NLRP3 inflammasome can be activated by stimuli that include nigericin, uric acid crystals, amyloid-ß fibrils and extracellular ATP. The mitotic kinase NEK7 licenses the assembly and activation of the NLRP3 inflammasome in interphase. Here we report a cryo-electron microscopy structure of inactive human NLRP3 in complex with NEK7, at a resolution of 3.8 Å. The earring-shaped NLRP3 consists of curved leucine-rich-repeat and globular NACHT domains, and the C-terminal lobe of NEK7 nestles against both NLRP3 domains. Structural recognition between NLRP3 and NEK7 is confirmed by mutagenesis both in vitro and in cells. Modelling of an active NLRP3-NEK7 conformation based on the NLRC4 inflammasome predicts an additional contact between an NLRP3-bound NEK7 and a neighbouring NLRP3. Mutations to this interface abolish the ability of NEK7 or NLRP3 to rescue NLRP3 activation in NEK7-knockout or NLRP3-knockout cells. These data suggest that NEK7 bridges adjacent NLRP3 subunits with bipartite interactions to mediate the activation of the NLRP3 inflammasome.


Assuntos
Microscopia Crioeletrônica , Inflamassomos/metabolismo , Inflamassomos/ultraestrutura , Quinases Relacionadas a NIMA/metabolismo , Quinases Relacionadas a NIMA/ultraestrutura , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/ultraestrutura , Ligação Competitiva , Humanos , Inflamassomos/química , Inflamassomos/genética , Modelos Moleculares , Mutação , Quinases Relacionadas a NIMA/química , Quinases Relacionadas a NIMA/deficiência , Proteína 3 que Contém Domínio de Pirina da Família NLR/química , Proteína 3 que Contém Domínio de Pirina da Família NLR/deficiência , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Estrutura Quaternária de Proteína
4.
Mol Cell ; 67(2): 322-333.e6, 2017 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-28689658

RESUMO

The proteasome holoenzyme is activated by its regulatory particle (RP) consisting of two subcomplexes, the lid and the base. A key event in base assembly is the formation of a heterohexameric ring of AAA-ATPases, which is guided by at least four RP assembly chaperones in mammals: PAAF1, p28/gankyrin, p27/PSMD9, and S5b. Using cryogenic electron microscopy, we analyzed the non-AAA structure of the p28-bound human RP at 4.5 Å resolution and determined seven distinct conformations of the Rpn1-p28-AAA subcomplex within the p28-bound RP at subnanometer resolutions. Remarkably, the p28-bound AAA ring does not form a channel in the free RP and spontaneously samples multiple "open" and "closed" topologies at the Rpt2-Rpt6 and Rpt3-Rpt4 interfaces. Our analysis suggests that p28 assists the proteolytic core particle to select a specific conformation of the ATPase ring for RP engagement and is released in a shoehorn-like fashion in the last step of the chaperone-mediated proteasome assembly.


Assuntos
Chaperonas Moleculares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Microscopia Crioeletrônica , Células HEK293 , Humanos , Proteínas com Domínio LIM/metabolismo , Proteínas com Domínio LIM/ultraestrutura , Modelos Moleculares , Chaperonas Moleculares/ultraestrutura , Complexo de Endopeptidases do Proteassoma/ultraestrutura , Ligação Proteica , Estrutura Quaternária de Proteína , Subunidades Proteicas , Proteínas Proto-Oncogênicas/ultraestrutura , Relação Estrutura-Atividade , Fatores de Transcrição/metabolismo , Fatores de Transcrição/ultraestrutura , Transfecção
5.
J Virol ; 95(24): e0052921, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34549974

RESUMO

The functional human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimer [(gp120/gp41)3] is produced by cleavage of a conformationally flexible gp160 precursor. gp160 cleavage or the binding of BMS-806, an entry inhibitor, stabilizes the pretriggered, "closed" (state 1) conformation recognized by rarely elicited broadly neutralizing antibodies. Poorly neutralizing antibodies (pNAbs) elicited at high titers during natural infection recognize more "open" Env conformations (states 2 and 3) induced by binding the receptor, CD4. We found that BMS-806 treatment and cross-linking decreased the exposure of pNAb epitopes on cell surface gp160; however, after detergent solubilization, cross-linked and BMS-806-treated gp160 sampled non-state-1 conformations that could be recognized by pNAbs. Cryo-electron microscopy of the purified BMS-806-bound gp160 revealed two hitherto unknown asymmetric trimer conformations, providing insights into the allosteric coupling between trimer opening and structural variation in the gp41 HR1N region. The individual protomer structures in the asymmetric gp160 trimers resemble those of other genetically modified or antibody-bound cleaved HIV-1 Env trimers, which have been suggested to assume state-2-like conformations. Asymmetry of the uncleaved Env potentially exposes surfaces of the trimer to pNAbs. To evaluate the effect of stabilizing a state-1-like conformation of the membrane Env precursor, we treated cells expressing wild-type HIV-1 Env with BMS-806. BMS-806 treatment decreased both gp160 cleavage and the addition of complex glycans, implying that gp160 conformational flexibility contributes to the efficiency of these processes. Selective pressure to maintain flexibility in the precursor of functional Env allows the uncleaved Env to sample asymmetric conformations that potentially skew host antibody responses toward pNAbs. IMPORTANCE The envelope glycoprotein (Env) trimers on the surface of human immunodeficiency virus (HIV-1) mediate the entry of the virus into host cells and serve as targets for neutralizing antibodies. The functional Env trimer is produced by cleavage of the gp160 precursor in the infected cell. We found that the HIV-1 Env precursor is highly plastic, allowing it to assume different asymmetric shapes. This conformational plasticity is potentially important for Env cleavage and proper modification by sugars. Having a flexible, asymmetric Env precursor that can misdirect host antibody responses without compromising virus infectivity would be an advantage for a persistent virus like HIV-1.


Assuntos
Proteína gp120 do Envelope de HIV/imunologia , Proteína gp41 do Envelope de HIV/química , HIV-1/química , Animais , Anticorpos Neutralizantes/imunologia , Células CHO , Cricetulus , Microscopia Crioeletrônica/métodos , Infecções por HIV/virologia , HIV-1/imunologia , Humanos , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia
6.
Subcell Biochem ; 96: 1-151, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33252727

RESUMO

The 26S proteasome is the most complex ATP-dependent protease machinery, of ~2.5 MDa mass, ubiquitously found in all eukaryotes. It selectively degrades ubiquitin-conjugated proteins and plays fundamentally indispensable roles in regulating almost all major aspects of cellular activities. To serve as the sole terminal "processor" for myriad ubiquitylation pathways, the proteasome evolved exceptional adaptability in dynamically organizing a large network of proteins, including ubiquitin receptors, shuttle factors, deubiquitinases, AAA-ATPase unfoldases, and ubiquitin ligases, to enable substrate selectivity and processing efficiency and to achieve regulation precision of a vast diversity of substrates. The inner working of the 26S proteasome is among the most sophisticated, enigmatic mechanisms of enzyme machinery in eukaryotic cells. Recent breakthroughs in three-dimensional atomic-level visualization of the 26S proteasome dynamics during polyubiquitylated substrate degradation elucidated an extensively detailed picture of its functional mechanisms, owing to progressive methodological advances associated with cryogenic electron microscopy (cryo-EM). Multiple sites of ubiquitin binding in the proteasome revealed a canonical mode of ubiquitin-dependent substrate engagement. The proteasome conformation in the act of substrate deubiquitylation provided insights into how the deubiquitylating activity of RPN11 is enhanced in the holoenzyme and is coupled to substrate translocation. Intriguingly, three principal modes of coordinated ATP hydrolysis in the heterohexameric AAA-ATPase motor  were discovered to regulate intermediate functional steps of the proteasome, including ubiquitin-substrate engagement, deubiquitylation, initiation of substrate translocation and processive substrate degradation. The atomic dissection of the innermost working of the 26S proteasome opens up a new era in our understanding of the ubiquitin-proteasome system and has far-reaching implications in health and disease.


Assuntos
Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Humanos , Conformação Proteica , Ubiquitina/metabolismo , Ubiquitinação
7.
Int J Mol Sci ; 23(16)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36012133

RESUMO

The cellular functions are executed by biological macromolecular complexes in nonequilibrium dynamic processes, which exhibit a vast diversity of conformational states. Solving the conformational continuum of important biomolecular complexes at the atomic level is essential to understanding their functional mechanisms and guiding structure-based drug discovery. Here, we introduce a deep manifold learning framework, named AlphaCryo4D, which enables atomic-level cryogenic electron microscopy (cryo-EM) reconstructions that approximately visualize the conformational space of biomolecular complexes of interest. AlphaCryo4D integrates 3D deep residual learning with manifold embedding of pseudo-energy landscapes, which simultaneously improves 3D classification accuracy and reconstruction resolution via an energy-based particle-voting algorithm. In blind assessments using simulated heterogeneous datasets, AlphaCryo4D achieved 3D classification accuracy three times those of alternative methods and reconstructed continuous conformational changes of a 130-kDa protein at sub-3 Å resolution. By applying this approach to analyze several experimental datasets of the proteasome, ribosome and spliceosome, we demonstrate its potential generality in exploring hidden conformational space or transient states of macromolecular complexes that remain hitherto invisible. Integration of this approach with time-resolved cryo-EM further allows visualization of conformational continuum in a nonequilibrium regime at the atomic level, thus potentially enabling therapeutic discovery against highly dynamic biomolecular targets.


Assuntos
Proteínas , Ribossomos , Microscopia Crioeletrônica/métodos , Substâncias Macromoleculares , Conformação Molecular
8.
Proc Natl Acad Sci U S A ; 114(28): 7367-7372, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28652322

RESUMO

DNA-dependent protein kinase (DNA-PK) is a large protein complex central to the nonhomologous end joining (NHEJ) DNA-repair pathway. It comprises the DNA-PK catalytic subunit (DNA-PKcs) and the heterodimer of DNA-binding proteins Ku70 and Ku80. Here, we report the cryo-electron microscopy (cryo-EM) structures of human DNA-PKcs at 4.4-Å resolution and the DNA-PK holoenzyme at 5.8-Å resolution. The DNA-PKcs structure contains three distinct segments: the N-terminal region with an arm and a bridge, the circular cradle, and the head that includes the kinase domain. Two perpendicular apertures exist in the structure, which are sufficiently large for the passage of dsDNA. The DNA-PK holoenzyme cryo-EM map reveals density for the C-terminal globular domain of Ku80 that interacts with the arm of DNA-PKcs. The Ku80-binding site is adjacent to the previously identified density for the DNA-binding region of the Ku70/Ku80 complex, suggesting concerted DNA interaction by DNA-PKcs and the Ku complex.


Assuntos
Microscopia Crioeletrônica , Proteína Quinase Ativada por DNA/química , Proteínas Nucleares/química , Catálise , Domínio Catalítico , Cristalografia por Raios X , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteína Quinase Ativada por DNA/genética , Células HeLa , Humanos , Autoantígeno Ku/química , Proteínas Nucleares/genética , Ligação Proteica
9.
BMC Bioinformatics ; 20(1): 169, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30943890

RESUMO

BACKGROUND: The detection of weak signals and selection of single particles from low-contrast micrographs of frozen hydrated biomolecules by cryo-electron microscopy (cryo-EM) represents a major practical bottleneck in cryo-EM data analysis. Template-based particle picking by an objective function using fast local correlation (FLC) allows computational extraction of a large number of candidate particles from micrographs. Another independent objective function based on maximum likelihood estimates (MLE) can be used to align the images and verify the presence of a signal in the selected particles. Despite the widespread applications of the two objective functions, an optimal combination of their utilities has not been exploited. Here we propose a bi-objective function (BOF) approach that combines both FLC and MLE and explore the potential advantages and limitations of BOF in signal detection from cryo-EM data. RESULTS: The robustness of the BOF strategy in particle selection and verification was systematically examined with both simulated and experimental cryo-EM data. We investigated how the performance of the BOF approach is quantitatively affected by the signal-to-noise ratio (SNR) of cryo-EM data and by the choice of initialization for FLC and MLE. We quantitatively pinpointed the critical SNR (~ 0.005), at which the BOF approach starts losing its ability to select and verify particles reliably. We found that the use of a Gaussian model to initialize the MLE suppresses the adverse effects of reference dependency in the FLC function used for template-matching. CONCLUSION: The BOF approach, which combines two distinct objective functions, provides a sensitive way to verify particles for downstream cryo-EM structure analysis. Importantly, reference dependency of the FLC does not necessarily transfer to the MLE, enabling the robust detection of weak signals. Our insights into the numerical behavior of the BOF approach can be used to improve automation efficiency in the cryo-EM data processing pipeline for high-resolution structural determination.


Assuntos
Microscopia Crioeletrônica/métodos , Processamento de Imagem Assistida por Computador , Funções Verossimilhança , Razão Sinal-Ruído
10.
Chembiochem ; 20(19): 2422-2431, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30963675

RESUMO

Since first being reported in 2006, the DNA origami approach has attracted increasing attention due to programmable shapes, structural stability, biocompatibility, and fantastic addressability. Herein, we provide an account of recent developments of DNA origami as scaffolds for templating the selfassembly of distinct biocomponents, essentially proteins and lipids, into a diverse spectrum of integrated supramolecular architectures. First, the historical development of the DNA origami concept is briefly reviewed. Next, various applications of DNA origami constructs in controllable directed assembly of soluble proteins are discussed. The manipulation and self-assembly of lipid membranes and membrane proteins by using DNA origami as scaffolds are also addressed. Furthermore, recent progress in applying DNA origami in cryoelectron microscopy analysis is discussed. These advances collectively emphasize that the DNA origami approach is a highly versatile, fast evolving tool that may be integrated with lipids and proteins in a way that meets future challenges in molecular biology and nanomedicine.


Assuntos
DNA/química , Lipídeos/química , Nanoestruturas/química , Proteínas/química , Animais , Humanos
11.
Proc Natl Acad Sci U S A ; 113(46): 12991-12996, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27791164

RESUMO

The proteasome is the major engine of protein degradation in all eukaryotic cells. At the heart of this machine is a heterohexameric ring of AAA (ATPases associated with diverse cellular activities) proteins that unfolds ubiquitylated target proteins that are concurrently translocated into a proteolytic chamber and degraded into peptides. Using cryoelectron microscopy, we determined a near-atomic-resolution structure of the 2.5-MDa human proteasome in its ground state, as well as subnanometer-resolution structures of the holoenzyme in three alternative conformational states. The substrate-unfolding AAA-ATPase channel is narrowed by 10 inward-facing pore loops arranged into two helices that run in parallel with each other, one hydrophobic in character and the other highly charged. The gate of the core particle was unexpectedly found closed in the ground state and open in only one of the alternative states. Coordinated, stepwise conformational changes of the regulatory particle couple ATP hydrolysis to substrate translocation and regulate gating of the core particle, leading to processive degradation.


Assuntos
Complexo de Endopeptidases do Proteassoma/ultraestrutura , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Microscopia Crioeletrônica , Células HEK293 , Humanos , Modelos Moleculares , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Conformação Proteica
12.
J Virol ; 91(5)2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28003492

RESUMO

Interactions between the gp120 and gp41 subunits of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) trimer maintain the metastable unliganded form of the viral spike. Binding of gp120 to the receptor, CD4, changes the Env conformation to promote gp120 interaction with the second receptor, CCR5 or CXCR4. CD4 binding also induces the transformation of Env into the prehairpin intermediate, in which the gp41 heptad repeat 1 (HR1) coiled coil is assembled at the trimer axis. In nature, HIV-1 Envs must balance the requirements to maintain the noncovalent association of gp120 with gp41 and to evade the host antibody response with the need to respond to CD4 binding. Here we show that the gp41 HR1 region contributes to gp120 association with the unliganded Env trimer. Changes in particular amino acid residues in the gp41 HR1 region decreased the efficiency with which Env moved from the unliganded state. Thus, these gp41 changes decreased the sensitivity of HIV-1 to cold inactivation and ligands that require Env conformational changes to bind efficiently. Conversely, these gp41 changes increased HIV-1 sensitivity to small-molecule entry inhibitors that block Env conformational changes induced by CD4. Changes in particular gp41 HR1 amino acid residues can apparently affect the relative stability of the unliganded state and CD4-induced conformations. Thus, the gp41 HR1 region contributes to the association with gp120 and regulates Env transitions from the unliganded state to downstream conformations.IMPORTANCE The development of an efficient vaccine able to prevent HIV infection is a worldwide priority. Knowledge of the envelope glycoprotein structure and the conformational changes that occur after receptor engagement will help researchers to develop an immunogen able to elicit antibodies that block HIV-1 transmission. Here we identify residues in the HIV-1 transmembrane envelope glycoprotein that stabilize the unliganded state by modulating the transitions from the unliganded state to the CD4-bound state.


Assuntos
Proteína gp120 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/química , HIV-1/efeitos dos fármacos , Motivos de Aminoácidos , Animais , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Cães , Células HEK293 , HIV-1/fisiologia , Humanos , Piperazinas/química , Piperazinas/farmacologia
13.
Angew Chem Int Ed Engl ; 57(8): 2072-2076, 2018 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-29266648

RESUMO

Building upon DNA origami technology, we introduce a method to reconstitute a single membrane protein into a self-assembled DNA nanobarrel that scaffolds a nanodisc-like lipid environment. Compared with the membrane-scaffolding-protein nanodisc technique, our approach gives rise to defined stoichiometry, controlled sizes, as well as enhanced stability and homogeneity in membrane protein reconstitution. We further demonstrate potential applications of the DNA nanobarrels in the structural analysis of membrane proteins.


Assuntos
DNA/química , Lipídeos/química , Proteínas de Membrana/química , Nanoestruturas/química , Microscopia Crioeletrônica , Glucosídeos/química , Proteínas Hemolisinas/química , Proteínas Hemolisinas/metabolismo , Proteínas de Membrana/metabolismo , Microscopia Eletrônica de Transmissão
14.
BMC Bioinformatics ; 18(1): 348, 2017 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-28732461

RESUMO

BACKGROUND: Single-particle cryo-electron microscopy (cryo-EM) has become a mainstream tool for the structural determination of biological macromolecular complexes. However, high-resolution cryo-EM reconstruction often requires hundreds of thousands of single-particle images. Particle extraction from experimental micrographs thus can be laborious and presents a major practical bottleneck in cryo-EM structural determination. Existing computational methods for particle picking often use low-resolution templates for particle matching, making them susceptible to reference-dependent bias. It is critical to develop a highly efficient template-free method for the automatic recognition of particle images from cryo-EM micrographs. RESULTS: We developed a deep learning-based algorithmic framework, DeepEM, for single-particle recognition from noisy cryo-EM micrographs, enabling automated particle picking, selection and verification in an integrated fashion. The kernel of DeepEM is built upon a convolutional neural network (CNN) composed of eight layers, which can be recursively trained to be highly "knowledgeable". Our approach exhibits an improved performance and accuracy when tested on the standard KLH dataset. Application of DeepEM to several challenging experimental cryo-EM datasets demonstrated its ability to avoid the selection of un-wanted particles and non-particles even when true particles contain fewer features. CONCLUSIONS: The DeepEM methodology, derived from a deep CNN, allows automated particle extraction from raw cryo-EM micrographs in the absence of a template. It demonstrates an improved performance, objectivity and accuracy. Application of this novel method is expected to free the labor involved in single-particle verification, significantly improving the efficiency of cryo-EM data processing.


Assuntos
Microscopia Crioeletrônica/métodos , Redes Neurais de Computação , Algoritmos , Hemocianinas/química , Substâncias Macromoleculares/química , Razão Sinal-Ruído
15.
Virol J ; 14(1): 33, 2017 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-28209172

RESUMO

BACKGROUND: The human immunodeficiency virus (HIV-1) envelope glycoprotein (Env), a Type 1 transmembrane protein, assembles into a trimeric spike complex that mediates virus entry into host cells. The high potential energy of the metastable, unliganded Env trimer is maintained by multiple non-covalent contacts among the gp120 exterior and gp41 transmembrane Env subunits. Structural studies suggest that the gp41 transmembrane region forms a left-handed coiled coil that contributes to the Env trimer interprotomer contacts. Here we evaluate the contribution of the gp41 transmembrane region to the folding and stability of Env trimers. METHODS: Multiple polar/charged amino acid residues, which hypothetically disrupt the stop-transfer signal, were introduced in the proposed lipid-interactive face of the transmembrane coiled coil, allowing release of soluble cleavage-negative Envs containing the modified transmembrane region (TMmod). We also examined effects of cleavage, the cytoplasmic tail and a C-terminal fibritin trimerization (FT) motif on oligomerization, antigenicity and functionality of soluble and membrane-bound Envs. RESULTS: The introduction of polar/charged amino acids into the transmembrane region resulted in the secretion of soluble Envs from the cell. However, these TMmod Envs primarily formed dimers. By contrast, control cleavage-negative sgp140 Envs lacking the transmembrane region formed soluble trimers, dimers and monomers. TMmod and sgp140 trimers were stabilized by the addition of a C-terminal FT sequence, but still exhibited carbohydrate and antigenic signatures of a flexible ectodomain structure. On the other hand, detergent-solubilized cleaved and uncleaved Envs isolated from the membranes of expressing cells exhibited "tighter" ectodomain structures, based on carbohydrate modifications. These trimers were found to be unstable in detergent solutions, but could be stabilized by the addition of a C-terminal FT moiety. The C-terminal FT domain decreased Env cleavage and syncytium-forming ability by approximately three-fold; alteration of the FT trimerization interface restored Env cleavage and syncytium formation to near-wild-type levels. CONCLUSION: The modified transmembrane region was not conducive to trimerization of soluble Envs. However, for HIV-1 Env ectodomains that are minimally modified, membrane-anchored Envs exhibit the most native structures and can be stabilized by appropriately positioned FT domains.


Assuntos
Proteína gp120 do Envelope de HIV/metabolismo , Proteína gp41 do Envelope de HIV/metabolismo , Dobramento de Proteína , Multimerização Proteica , Substituição de Aminoácidos , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/genética , Proteína gp41 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/genética , Humanos , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Conformação Proteica
16.
J Virol ; 89(16): 8245-57, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26018173

RESUMO

UNLABELLED: The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) trimer, which consists of the gp120 and gp41 subunits, is the focus of multiple strategies for vaccine development. Extensive Env glycosylation provides HIV-1 with protection from the immune system, yet the glycans are also essential components of binding epitopes for numerous broadly neutralizing antibodies. Recent studies have shown that when Env is isolated from virions, its glycosylation profile differs significantly from that of soluble forms of Env (gp120 or gp140) predominantly used in vaccine discovery research. Here we show that exogenous membrane-anchored Envs, which can be produced in large quantities in mammalian cells, also display a virion-like glycan profile, where the glycoprotein is extensively decorated with high-mannose glycans. Additionally, because we characterized the glycosylation with a high-fidelity profiling method, glycopeptide analysis, an unprecedented level of molecular detail regarding membrane Env glycosylation and its heterogeneity is presented. Each glycosylation site was characterized individually, with about 500 glycoforms characterized per Env protein. While many of the sites contain exclusively high-mannose glycans, others retain complex glycans, resulting in a glycan profile that cannot currently be mimicked on soluble gp120 or gp140 preparations. These site-level studies are important for understanding antibody-glycan interactions on native Env trimers. Additionally, we report a newly observed O-linked glycosylation site, T606, and we show that the full O-linked glycosylation profile of membrane-associated Env is similar to that of soluble gp140. These findings provide new insight into Env glycosylation and clarify key molecular-level differences between membrane-anchored Env and soluble gp140. IMPORTANCE: A vaccine that protects against human immunodeficiency virus type 1 (HIV-1) infection should elicit antibodies that bind to the surface envelope glycoproteins on the membrane of the virus. The envelope glycoproteins have an extensive coat of carbohydrates (glycans), some of which are recognized by virus-neutralizing antibodies and some of which protect the virus from neutralizing antibodies. We found that the HIV-1 membrane envelope glycoproteins have a unique pattern of carbohydrates, with many high-mannose glycans and also, in some places, complex glycans. This pattern was very different from the carbohydrate profile seen for a more easily produced soluble version of the envelope glycoprotein. Our results provide a detailed characterization of the glycans on the natural membrane envelope glycoproteins of HIV-1, a carbohydrate profile that would be desirable to mimic with a vaccine.


Assuntos
Biopolímeros/metabolismo , Proteína gp120 do Envelope de HIV/metabolismo , HIV-1/metabolismo , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo , Sequência de Aminoácidos , Animais , Biopolímeros/química , Glicosilação , Proteína gp120 do Envelope de HIV/química , Humanos , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Solubilidade , Produtos do Gene env do Vírus da Imunodeficiência Humana/química
17.
Proc Natl Acad Sci U S A ; 110(30): 12438-43, 2013 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-23757493

RESUMO

The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) trimer, a membrane-fusing machine, mediates virus entry into host cells and is the sole virus-specific target for neutralizing antibodies. Binding the receptors, CD4 and CCR5/CXCR4, triggers Env conformational changes from the metastable unliganded state to the fusion-active state. We used cryo-electron microscopy to obtain a 6-Å structure of the membrane-bound, heavily glycosylated HIV-1 Env trimer in its uncleaved and unliganded state. The spatial organization of secondary structure elements reveals that the unliganded conformations of both glycoprotein (gp)120 and gp41 subunits differ from those induced by receptor binding. The gp120 trimer association domains, which contribute to interprotomer contacts in the unliganded Env trimer, undergo rearrangement upon CD4 binding. In the unliganded Env, intersubunit interactions maintain the gp41 ectodomain helical bundles in a "spring-loaded" conformation distinct from the extended helical coils of the fusion-active state. Quaternary structure regulates the virus-neutralizing potency of antibodies targeting the conserved CD4-binding site on gp120. The Env trimer architecture provides mechanistic insights into the metastability of the unliganded state, receptor-induced conformational changes, and quaternary structure-based strategies for immune evasion.


Assuntos
Biopolímeros/metabolismo , Proteína gp120 do Envelope de HIV/metabolismo , Proteína gp41 do Envelope de HIV/metabolismo , HIV-1/metabolismo , Biopolímeros/química , Antígenos CD4/metabolismo , Proteína gp120 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/química , Evasão da Resposta Imune , Modelos Moleculares
18.
J Virol ; 87(5): 2549-62, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23255784

RESUMO

The trimeric envelope glycoprotein (Env) of human immunodeficiency virus type 1 (HIV-1) mediates virus entry into host cells. CD4 engagement with the gp120 exterior envelope glycoprotein subunit represents the first step during HIV-1 entry. CD4-induced conformational changes in the gp120 inner domain involve three potentially flexible topological layers (layers 1, 2, and 3). Structural rearrangements between layer 1 and layer 2 have been shown to facilitate the transition of the envelope glycoprotein trimer from the unliganded to the CD4-bound state and to stabilize gp120-CD4 interaction. However, our understanding of CD4-induced conformational changes in the gp120 inner domain remains incomplete. Here, we report that a highly conserved element of the gp120 inner domain, layer 3, plays a pivot-like role in these allosteric changes. In the unliganded state, layer 3 modulates the association of gp120 with the Env trimer, probably by influencing the relationship of the gp120 inner and outer domains. Importantly, layer 3 governs the efficiency of the initial gp120 interaction with CD4, a function that can also be fulfilled by filling the Phe43 cavity. This work defines the functional importance of layer 3 and completes a picture detailing the role of the gp120 inner domain in CD4-induced conformational transitions in the HIV-1 Env trimer.


Assuntos
Antígenos CD4/metabolismo , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/metabolismo , HIV-1/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Cristalografia por Raios X , Cães , Células HEK293 , Proteína gp120 do Envelope de HIV/genética , HIV-1/genética , Humanos , Mutação , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Internalização do Vírus
19.
Nat Commun ; 15(1): 3789, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710693

RESUMO

The CUL3-RING E3 ubiquitin ligases (CRL3s) play an essential role in response to extracellular nutrition and stress stimuli. The ubiquitin ligase function of CRL3s is activated through dimerization. However, how and why such a dimeric assembly is required for its ligase activity remains elusive. Here, we report the cryo-EM structure of the dimeric CRL3KLHL22 complex and reveal a conserved N-terminal motif in CUL3 that contributes to the dimerization assembly and the E3 ligase activity of CRL3KLHL22. We show that deletion of the CUL3 N-terminal motif impairs dimeric assembly and the E3 ligase activity of both CRL3KLHL22 and several other CRL3s. In addition, we found that the dynamics of dimeric assembly of CRL3KLHL22 generates a variable ubiquitination zone, potentially facilitating substrate recognition and ubiquitination. These findings demonstrate that a CUL3 N-terminal motif participates in the assembly process and provide insights into the assembly and activation of CRL3s.


Assuntos
Motivos de Aminoácidos , Microscopia Crioeletrônica , Proteínas Culina , Receptores de Interleucina-17 , Ubiquitina-Proteína Ligases , Ubiquitinação , Proteínas Culina/metabolismo , Proteínas Culina/química , Proteínas Culina/genética , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Células HEK293 , Multimerização Proteica , Sequência Conservada , Ligação Proteica , Modelos Moleculares
20.
Commun Biol ; 6(1): 535, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37202420

RESUMO

During virus entry, the pretriggered human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimer initially transits into a default intermediate state (DIS) that remains structurally uncharacterized. Here, we present cryo-EM structures at near-atomic resolution of two cleaved full-length HIV-1 Env trimers purified from cell membranes in styrene-maleic acid lipid nanoparticles without antibodies or receptors. The cleaved Env trimers exhibited tighter subunit packing than uncleaved trimers. Cleaved and uncleaved Env trimers assumed remarkably consistent yet distinct asymmetric conformations, with one smaller and two larger opening angles. Breaking conformational symmetry is allosterically coupled with dynamic helical transformations of the gp41 N-terminal heptad repeat (HR1N) regions in two protomers and with trimer tilting in the membrane. The broken symmetry of the DIS potentially assists Env binding to two CD4 receptors-while resisting antibody binding-and promotes extension of the gp41 HR1 helical coiled-coil, which relocates the fusion peptide closer to the target cell membrane.


Assuntos
Proteína gp41 do Envelope de HIV , HIV-1 , Humanos , Proteína gp41 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/metabolismo , HIV-1/química , Conformação Proteica , Glicoproteínas , Estirenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA