Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Langmuir ; 37(37): 11153-11169, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34514802

RESUMO

Nonaqueous phase liquids (NAPL, e.g., hydrocarbons and chlorinated compounds) are common groundwater pollutants. Electrokinetic remediation of NAPLs uses electric fields to draw them toward electrodes and remove them from groundwater. The treatment requires NAPL mobility. Emulsification increases mobility, but at a risk for downstream receptors. We propose using alkaline aqueous solutions of zein and graphene nanoparticles (GNP) to form conductive materials, which could also act as barriers to control NAPL migration. Alkaline zein-GNP solutions can be injected in the polluted soil and solidified by neutralizing the pH (e.g., with glacial acetic acid, GAA). Shear rheology experiments showed that zein-GNP composites were cohesive, and voltammetry showed that GNP increased electrical conductivity of zein-based materials by 3.5 times. Gas chromatography-mass spectroscopy (GC-MS) demonstrated that the electrokinetic treatment of model sandy aquifers yielded >60% and ∼47% removal of emulsified toluene in freshwater and in salt solutions, respectively (with 30 min treatment using a 10 V differential voltage between a zein-GNP and an aluminum electrode. NaCl was used as model salt contaminant. The conductivity of surfactant solutions was lower in saline water than in freshwater, explaining differences in toluene removal. Toluene-water emulsions were stabilized using the natural surfactants lecithin and saponin. These surfactants acted synergistically in stabilizing emulsions in either freshwater or salt solutions. Lecithin and saponin likely interacted at toluene-water interfaces, as indicated by the morphology, interfacial tension and compressional rigidity of toluene-water interfaces with both components (relative to interfaces of either lecithin or saponin alone). The compressional behavior of interfacial films was well-described by the Marczak model. Electrokinetic treatment of saturated model sandy aquifers also decreased the turbidity of emulsions of water and either tricholoroethylene (TCE, by ∼41%) or diesel (by ∼75%), in the presence of a bacterial biosurfactant. This decrease was used as semiquantitative indicator of NAPL removal from water.


Assuntos
Grafite , Poluentes Químicos da Água , Zeína , Hidrocarbonetos , Tensoativos , Poluentes Químicos da Água/análise
2.
Langmuir ; 36(6): 1484-1495, 2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-31944124

RESUMO

A novel sorbent material consisting of a gel made from canola oil and water, emulsified with lecithin, was used to remove two model solvents from water. Sorption capacity was quantified through small-scale batch experiments. The structure and the mechanical properties of the gel were compared with and without added solvent to assess their cohesiveness upon removing contaminants from water. Confocal microscopy showed that the initial gel consisted of water droplets clustered in a canola oil continuous phase. The G' of the gels increased with solvent absorption to a maximum at 33% (v/v) hexane or 24% (v/v) toluene. Larger absorbed volumes led to decreases in G' of the gel. G' for solvent mixtures of 50% toluene and 50% hexane was intermediate between G' measured for the same volumes of pure solvents. Confocal microscopy suggests that the decrease of G' upon addition of large solvent volumes was due to a simple dilution effect. It is hypothesized that the initial increase in storage modulus was caused by changes in the structure of the lecithin films formed at the oil-water interfaces. This hypothesis was evaluated through measurements of interfacial tension, visualization of the interface with optical microscopy, force measurements of a single droplet under compression using a cantilevered-capillary force apparatus, compressional isotherm measurements conducted using a Langmuir trough. The cantilevered-capillary force apparatus and Langmuir trough experiments demonstrated that lecithin films at the canola oil-water interface were rigidified by toluene and hexane addition.

3.
Soft Matter ; 16(2): 289-306, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31840722

RESUMO

The reasons for the increased world-wide incidence of obesity, type-2 diabetes, and cardiovascular disease include sedentary lifestyles and poor food choices. Regulatory agencies in several countries now require companies to add unattractive front of package labels to their products where salt, sugar and fat (or saturated fat) levels are prominently displayed. After the demise of partially hydrogenated fats, saturated fat has become the new target. Consumption of saturated fat over polyunsaturated oil has been clearly shown to increase cholesterol levels in humans. However, saturated fats provide the functionality required in many food products. To complicate matters, concerns over sustainability, veganism, genetically modified organisms, animal welfare, as well as religious beliefs, severely limit our sources of saturated fat. In this review we will discuss recent advances in our understanding of the nano and mesoscale structure of fats, responsible for their physical functionality and contrast it to that of fat mimetics. Fat mimetics include polymeric networks of ethylcellulose, emulsion-templated networks of proteins and polysaccharides, colloidal and self-assembled fibrillar networks of polar lipid crystals, as well as solid o/w emulsions of oil trapped within crystallized lamellar mesophases. Clean label and economic considerations will also be touched upon.


Assuntos
Gorduras/química , Gorduras/metabolismo , Animais , Biomimética , Humanos
4.
Molecules ; 25(23)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33265970

RESUMO

It is proposed that "crystal memory", observed in a discontinuous solid-liquid phase transition of saturated triacylglycerol (TAG) molecules, is due to the coexistence of solid TAG crystalline phases and a liquid TAG phase, in a superheated metastable regime. Such a coexistence has been detected. Solid crystals can act as heterogeneous nuclei onto which molecules can condense as the temperature is lowered. We outlined a mathematical model, with a single phase transition, that shows how the time-temperature observations can be explained, makes predictions, and relates them to recent experimental data. A modified Vogel-Fulcher-Tammann (VFT) equation is used to predict time-temperature relations for the observation of "crystal memory" and to show boundaries beyond which "crystal memory" is not observed. A plot of the lifetime of a metastable state versus temperature, using the modified VFT equation, agrees with recent time-temperature data. The model can be falsified through its predictions: the model possesses a critical point and we outline a procedure describing how it could be observed by changing the hydrocarbon chain length. We make predictions about how thermodynamic functions will change as the critical point is reached and as the system enters a crossover regime. The model predicts that the phenomenon of "crystal memory" will not be observed unless the system is cooled from a superheated metastable regime associated with a discontinuous phase transition.


Assuntos
Cristais Líquidos/química , Modelos Moleculares , Transição de Fase , Termodinâmica , Triglicerídeos/química , Temperatura
5.
Compr Rev Food Sci Food Saf ; 19(6): 2994-3030, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33337056

RESUMO

The development of lipid-based delivery systems has attracted much attention over the last years and a wide variety of strategies and formulations are currently available to encapsulate, protect, and target delivery of bioactive and functional lipophilic constituents within the food and pharmaceutical industries. Waxes are crystalline lipid material, consisting of a complex mixture of long-chain fatty acids and fatty alcohols, hydrocarbons, aldehydes, and ketones and show great promises as constituents of carrier systems. Most of waxes are classified under food-grade category and show high availability at a low cost. This review article has provided a comprehensive summary of research on major carriers containing wax as one of the main constituents, including solid lipid nanoparticles, nanostructured lipid carriers, oleogels, and Pickering emulsions, with a focus on their food applications. The physical and chemical nature of natural waxes are described in the first while the second part deals with the structure, formulation, main methods of preparation, characterization, and finally utilization of each type of wax-based delivery system for specific food applications.


Assuntos
Sistemas de Liberação de Medicamentos , Ceras/química , Emulsões/química , Lipídeos/química , Nanoestruturas , Compostos Orgânicos/química
6.
J Environ Sci (China) ; 90: 98-109, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32081345

RESUMO

Reversible double water in oil in water (W/O/W) emulsions were developed to contain subsurface hydrocarbon spills during their remediation using surfactant flushing. Double emulsions were prepared by emulsifying CaCl2 solutions in canola oil, and subsequently by emulsifying the W/O emulsions in aqueous sodium alginate solutions. The formation of double emulsions was confirmed with confocal and optical microscopy. The double emulsions reversed and gelled when mixed with the surfactants sodium dodecyl sulfate (SDS) and cocamidopropyl betaine (CPB). Gels can act as 'emulsion locks' to prevent spreading of the hydrocarbon plume from the areas treated with surfactant flushing, as shown in sand column tests. Shear rheology was used to quantify the viscoelastic moduli increase (gelation) upon mixing the double emulsion with SDS and CPB. SDS was more effective than CPB in gelling the double emulsions. CPB and SDS could adsorb at the interface between water and model hydrocarbons (toluene and motor oil), lowering the interfacial tension and rigidifying the interface (as shown with a Langmuir trough). Bottle tests and optical microscopy showed that SDS and CPB produced W/O and O/W emulsions, with either toluene or motor oil and water. The emulsification of motor oil and toluene in water with SDS and CPB facilitated their flow through sand columns and their recovery. Toluene recovery from sand columns was quantitated using Gas-Chromatography Mass-Spectroscopy (GC-MS). The data show that SDS and CPB can be used both for surfactant flushing and to trigger the gelation of 'emulsion locks'. Ethanol also gelled the emulsions at 100 mL/L.


Assuntos
Hidrocarbonetos , Tensoativos , Água , Emulsões , Dodecilsulfato de Sódio
7.
J Am Chem Soc ; 140(39): 12405-12414, 2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30178998

RESUMO

A molecular interpretation of the eutectic behavior of a binary mixture of tristearin (SSS) and tripalmitin (PPP) triglycerides was formulated using computer simulations and experimental techniques (calorimetry and X-ray scattering). A eutectic composition was identified using both experimental and computer simulation techniques at a composition of 70% PPP and 30% SSS, in agreement with previous findings in the literature. The decrease in the melting temperature at the eutectic composition can be ascribed to an interplay between enthalpic and entropic effects. In particular, a lower global melting enthalpy at the eutectic composition was detected here, caused by a less efficient packing of the triglycerides in the crystal. On the other hand, a higher crystalline disorder is reflected in a lower change in the entropy of melting. The simultaneous decrease in global enthalpy and entropy has a contrasting effect on the melting temperature, with a slight melting point depression found in both experiment and simulations, resulting from a combination of enthalpic and entropic factors. Computer simulations showed, in fact, that the eutectic effect can be ascribed to the reduction of crystalline order when SSS molecules are incorporated into the PPP crystal structure. This decrease of the crystalline order is due to the protrusion of SSS end-chains (last three carbons of each alkyl chain) into the interlamellar space between adjacent lamella. These end-chains disturb the orderly stacking of the lamella, as evidenced by low-density regions in the interlamellar space. Thus, the greater disorder of the last atoms of the SSS alkyl chains is consequently due to the greater conformational freedom. At molecular level, in fact, the conformational freedom of terminal atoms of SSS surrounded by shorter PPP molecules is larger than the conformational freedom of longer SSS in the neighborhood of short PPP.

8.
Crit Rev Food Sci Nutr ; 58(14): 2398-2415, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28471278

RESUMO

Fats are ubiquitous in biological membranes, foods, and many other commercial products. In these, they play essential roles in biological, nutritional, and physical functions. In this review, we focus on physical mechanical functions. The rheology of fats arises from the crystal network, which displays hierarchical structural levels from the molecular to the mesoscopic. Under linear deformations, the crystal network behaves as a viscoelastic solid with elasticity dictated by particle concentration and microstructural features as represented in fractal rheo-mechanical models. Under nonlinear deformations, the crystal network yields, showing a variety of nonlinear phenomena, i.e., softening, stiffening, thixotropy. These features largely contribute to functionality or performance as essentially all processing and end-uses of fatty materials involve large nonlinear deformations. Early work on rheology of fats gave hints of their nonlinear mechanical behavior, although in many cases the measured properties were empirical. In contrast, recent efforts from our group measured fundamental rheological functions using large amplitude oscillatory shear rheology. We demonstrate the ability of this technique to discern among the bulk functionality of bakery fats (all-purpose and lamination shortenings) based on well-defined rheological signatures that also relate to the fat structure. This technique has the potential to provide similar insights on other fatty systems and novel ideas for reformulation and design of alternative lipid-structuring materials.


Assuntos
Gorduras/química , Reologia , Fenômenos Químicos , Culinária , Cristalização , Elasticidade , Tecnologia de Alimentos , Fenômenos Mecânicos , Estrutura Molecular , Viscosidade
9.
J Nutr ; 147(6): 1138-1144, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28490674

RESUMO

Background: Dietary fats elicit various physiological responses, with the physical form of fat reported to alter fat digestion and absorption.Objectives: The primary aims were to compare the effects of dietary fat in 2 physical forms (liquid and oleogel) and 2 degrees of saturation (saturated and polyunsaturated) on postprandial energy expenditure (EE) and substrate oxidation, glycemia, and appetite.Methods: The study was a randomized, controlled crossover trial. Sixteen normal-weight, healthy Chinese men completed the study [mean ± SD age: 28 ± 6 y; body mass index (in kg/m2): 22.9 ± 3.1]. After an overnight fast, participants had their body weight measured and entered an indirect whole-room calorimeter (WRC). After baseline measurements, participants consumed orange juice and rice porridge alone (control), with 22.25 g coconut oil or sunflower oil or with 25 g coconut oleogel or sunflower oleogel in random order with a 5-d washout period between treatments. EE, substrate oxidation, capillary blood glucose, and appetite were measured over 195 min in a WRC. Participants completed a meal challenge to assess appetite. Test meals effects were compared by using repeated-measures ANOVA.Results: Fat saturation did not affect all study outcomes significantly. When data were pooled based on the physical form of dietary fat, EE did not differ. However, significantly higher carbohydrate oxidation (P = 0.03) and a trend of lower fat oxidation (P = 0.07) were found after the liquid oil than after the oleogel or control treatments. Postprandial capillary glucose was also significantly lower after the liquid oil than after the oleogel or control treatments (P < 0.001). Appetite was not affected by the physical form and the saturation of dietary fats.Conclusions: The saturation of dietary fat did not affect postprandial glucose, EE, substrate oxidation, or appetite. However, oleogel prevented the glycemic-lowering and fat-oxidation effects induced by liquid oil in Chinese men. Future work on oleogel should focus on cardiometabolic risk factors. This study was registered at clinicaltrials.gov as NCT02702726.


Assuntos
Glicemia/metabolismo , Metabolismo dos Carboidratos , Dieta , Gorduras na Dieta/administração & dosagem , Metabolismo Energético , Metabolismo dos Lipídeos , Período Pós-Prandial , Adulto , Apetite , Povo Asiático , Calorimetria Indireta , Estudos Cross-Over , Gorduras na Dieta/farmacologia , Gorduras Insaturadas na Dieta/administração & dosagem , Gorduras Insaturadas na Dieta/farmacologia , Géis , Humanos , Masculino , Refeições , Valores de Referência , Adulto Jovem
10.
J Cosmet Sci ; 68(2): 159-172, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29619940

RESUMO

A petroleum-free skin cream was developed using food-grade ingredients. The rheological and sensorial properties of this petroleum-free skin cream were compared to a commercially available petroleum-based skin cream. Specifically, large-amplitude oscillatory shear (LAOS) characterization of the two skin creams was performed. The petroleum-free skin cream showed similar linear and nonlinear viscoelastic rheological properties, comparable skin hydration functions, and consumer acceptance as the commercially available skin cream. A schematic diagram aiming to correlate the physical and sensorial properties of skin cream was also proposed at the end of the work. Results of this work could provide the cosmetic industry necessary information for the development of alternatives for petroleum-based skin creams.


Assuntos
Petróleo/análise , Creme para a Pele/química , Comportamento do Consumidor , Humanos , Reologia , Sensação
11.
Langmuir ; 32(48): 12833-12841, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27809551

RESUMO

Changes in solvent chemistry influenced kinetics of both nucleation and crystallization of 12-hydroxyoctadecenoic, as determined using differential scanning calorimetry and applying a modified Avrami model to the calorimetric data. Altering solvent properties influenced solvent-gelator compatibility, which in turn altered the chemical potential of the system at the onset of crystallization, the kinetics of gelation, and the resulting 12HOA crystal fiber length. The chemical potential at the onset of crystallization was linearly correlated to both the hydrogen-bonding Hansen solubility parameter and the solvent-gelator vectorial distance in Hansen space, Ra. Our work suggests that solvent properties can be modulated to affect the solubility of 12HOA, which in turn influences the kinetics of crystallization and the self-assembly of this organogelator into supramolecular crystalline structures. Therefore, modulation of solvent properties during organogelation can be used to control fiber length and thus engineer the physical properties of the gel.

13.
Food Res Int ; 184: 114259, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609239

RESUMO

The potential to produce protein-structured vegan yogurts with legumes was explored to offer an alternative to conventional polysaccharide-based varieties. Glucono-δ-lactone (GDL) was employed as a slow acidifying agent and was investigated for its ability to generate cold-set, yogurt-like gels using soy and lentil milks made using minimal processing steps. Soy (5.3 % protein) and lentil (6.1 % protein) milks were successfully gelled by GDL at concentrations of 0.5 % and 1 % w/w. Soy and lentil milks experienced similar acidification profiles and demonstrated good fits with double-exponential decay models. The physical properties of these legume gels were evaluated and compared to a commercial stirred dairy yogurt. Penetration tests were carried out on intact gels, then repeated after stirring. All intact soy samples demonstrated significantly stronger gel structures compared to the commercial yogurt, and most experienced greater amounts of brittleness. Results showed that the stirring of gels caused a notable decrease in firmness and brittleness in the soy gels, making them more similar to the control. Power-law modelling of viscosity curves demonstrated that all samples experienced non-Newtonian flow behavior (n < 0.29). Susceptibility to syneresis was measured by the degree of liquid loss following centrifugation. The optimization of protein type and GDL concentration to replicate the physical properties of dairy-based yogurts can enhance their consumer acceptance and provide a more customizable and controlled approach alternative to traditional fermentation methods.


Assuntos
Fabaceae , Gluconatos , Lactonas , Lens (Planta) , Animais , Leite , Iogurte , Verduras , Géis
14.
Food Res Int ; 189: 114579, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38876599

RESUMO

Utilizing waxes to gel oils presents a viable approach for diminishing trans and saturated fat levels in commercial fats such as margarines. This technique ensures that oleogels mimic traditional fats in terms of rheological properties, oil-binding capacity, and overall structure. Our study employed cooling-shear rates to finely adjust physical characteristics, evaluating rheology via SAOS-LAOS, oil retention, and crystal structure of wax oleogels, compared against commercial margarines as benchmarks. Findings indicate that wax oleogels, under specific cooling/shear conditions, exhibit softer yet more ductile-like behavior, akin to margarine, while retaining oil effectively. This similarity is evidenced through Lissajous curves and plastic dissipation ratio during yielding, reflecting a ductile yielding response characterized by square-like Lissajous curves and a plastic dissipation ratio index approximating one. Although these crystallization conditions influence the mechanical properties of wax oleogels, they do not alter oil losses or wax characteristics.


Assuntos
Margarina , Compostos Orgânicos , Reologia , Ceras , Ceras/química , Compostos Orgânicos/química , Margarina/análise , Cristalização
15.
Curr Res Food Sci ; 8: 100682, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38304001

RESUMO

This study aimed to increase the physical stability of native sunflower oleosomes to expand their range of applications in food. The first objective was to increase the stability and functionality of oleosomes to lower pH since most food products require a pH of 5.5 or lower for microbial stability. Native sunflower oleosomes had a pI of 6.2. One particularly effective strategy for long-term stabilization, both physical and microbial, was the addition of 40% (w/w) glycerol to the oleosomes plus homogenization, which decreased the pI to 5.3 as well as decreasing oleosome size, narrowing the size distribution and increasing colloidal stability. Interfacial engineering of oleosomes by coating them with lecithin and the polysaccharides xanthan and gellan, effectively increased stability, and lowered their pI to 3.0 for lecithin and lower than 3.0 for xanthan. Coating oleosomes also caused a greater absolute value of the ζ-potential; for example, this amount was shifted to -20 mV at pH 4.0 for xanthan and to -28 mV at pH 4.0 for lecithin, which provides electrostatic stabilization. Polysaccharides also provide steric stabilization, which is superior. A significant increase in the diameter of coated oleosomes was observed with lecithin, xanthan and gellan. The oleosome sample with 40% glycerol showed high storage stability at 4 °C (over three months). The addition of glycerol also decreased the water activity of the oleosome suspension to 0.85, which could prevent microbial growth.

16.
Food Res Int ; 174(Pt 1): 113651, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37986489

RESUMO

Substituting animal-based fats with plant-based fats of similar stability and functionality has always posed a significant challenge for the food industry. Enzymatic glycerolysis products are systems formed by converting native triacylglycerols in liquid oils into monoacylglycerols and diacylglycerols, mainly studied in the last few years for their unique structural ability. This study aims to modify and scale up the glycerolysis process of different plant oils, e.g., shea olein, palm olein, tigernut, peanut, cottonseed, and rice bran oils, with the goal of producing animal fat mimetics. The reactions were conducted at 65 °C, with a plant oil:glycerol molar ratio of 1:1, and without the addition of water, using a lab-scale reactor to convert up to 2 kg of oil into solid fat. Product characteristics were comparable at both laboratory and pilot plant scales, supporting the commercial viability of the process. Oil systems containing higher levels of both saturated and monounsaturated fatty acids, such as shea olein and palm olein, displayed higher solid fat content at elevated temperatures and broader melting profiles with significantly higher melting points. Comparison of the thermal softening behavior and mechanical properties of these systems with those of pork, beef, and lamb fat showed their high potential to replace adipose fat in the new generation of plant-based meat analogs.


Assuntos
Ácidos Graxos Monoinsaturados , Óleos de Plantas , Bovinos , Animais , Ovinos , Óleos de Plantas/química , Triglicerídeos , Diglicerídeos , Monoglicerídeos
17.
Curr Res Food Sci ; 6: 100465, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36891546

RESUMO

This study aimed to increase the physical stability of native sunflower oleosomes to expand their range of applications in food. The first objective was to increase the stability and functionality of oleosomes to lower pH since most food products require a pH of 5.5 or lower for microbial stability. Native sunflower oleosomes had a pI of 6.2. One particularly effective strategy for long-term stabilization, both physical and microbial, was the addition of 40% (w/w) glycerol to the oleosomes plus homogenization, which decreased the pI to 5.3 as well as decreasing oleosome size, narrowing the size distribution and increasing colloidal stability. Interfacial engineering of oleosomes by coating them with lecithin and the polysaccharides xanthan and gellan, effectively increased stability, and lowered their pI to 3.0 for lecithin and lower than 3.0 for xanthan. Coating oleosomes also caused a greater absolute value of the ζ-potential; for example, this amount was shifted to -20 mV at pH 4.0 for xanthan and to -28 mV at pH 4.0 for lecithin, which provides electrostatic stabilization. Polysaccharides also provide steric stabilization, which is superior. A significant increase in the diameter of coated oleosomes was observed with lecithin, xanthan and gellan. The oleosome sample with 40% glycerol showed high storage stability at 4 °C (over three months). The addition of glycerol also decreased the water activity of the oleosome suspension to 0.85, which could prevent microbial growth.

19.
Langmuir ; 28(46): 16207-17, 2012 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-23046015

RESUMO

The effects of processing using a scraped surface heat exchanger (SSHE) before and after adding unsaturated monoglyceride (UM) on blends of fully hydrogenated soybean oil (FHSO) and soybean oil (SO) were studied. Mixtures of 40:60 and 45:55 FHSO:SO were melted at 80 °C for 30 min and crystallized statically or in the SSHE (shear rate of 25 s(-1)) at a cooling rate of 9 °C/min. Upon shearing and UM addition, polymorphic transformations toward more (ß) or less (ß') stable forms were governed by the combination between system concentration, composition, and crystallization conditions, as determined by differential scanning calorimetry and powder X-ray diffraction. Nuclear magnetic resonance was used to measure the solid fat content (SFC) development which showed to increase with processing conditions due to the high nucleation rate induced. Processing conditions greatly affected the nano- and microcrystalline structures which were characterized by polarized light microscopy (PLM), cryogenic transmission electron microscopy (Cryo- TEM), and Scherrer analysis of the powder X-ray diffraction data. Crystallization under shear promoted the longitudinal growth of the nanoplatelets; nevertheless, meso structural elements showed a decrease in their dimensions under the same crystallization conditions. The relative oil loss determined gravimetrically was inversely related to the elastic modulus and yield stress of the sheared fat blends, and values were closer to the desirable usability ranges for bakery applications. Our results suggest that fully hydrogenated fats can be functionalized by crystallization in a SSHE and/or by judicious addition of an unsaturated emulsifier.


Assuntos
Emulsificantes/química , Óleo de Soja/química , Microscopia Crioeletrônica , Cristalização , Módulo de Elasticidade , Gorduras/química , Hidrogenação , Microscopia Eletrônica de Transmissão , Monoglicerídeos , Difração de Raios X
20.
Curr Res Food Sci ; 5: 892-903, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36686367

RESUMO

Rapid swelling, high amylopectin starches including Thermally Inhibited (TI), Chemically Modified (CM), and Granular Cold- Swelling (GCS) were assessed for their supporting matrix forming potential and properties. Starches displayed identical calorimetric profiles with no endothermic events, and completely amorphous structure as judged by powder X-ray diffraction. However, they each provided different textural attributes. The starches were combined with pea protein isolate at a total concentration of 47%w/w (d.b.) to create a proteinacious supporting matrix. The starch protein matrix was then tested in a non-cold-set dough state as well as in a cold-set state after storage for 24h at 5oC. In the non-cold-set state, hardness increased with the addition of protein. CM was the softest dough and was difficult to work with, while TI and GCS were harder, with TI having the greatest resilience. Once cold-set, the textural properties changed, and GCS was not able to form a solid structure, instead remaining a viscoelastic dough. The hardness and storage modulus (G') of TI and CM displayed a negative correlation with the addition of protein due to matrix disruption. However, the combination of TI starch and pea protein at a ratio of 70% starch and 30% protein in the dry fraction displayed a synergistic effect, with increased resilience, chewiness, and ductility. FTIR of TI starch and protein at the same 70:30 ratio provided further evidence for the existence of an interaction between pea protein and TI starch. The results support the use of TI rapid swelling starch and pea protein isolate as a supporting matrix for application in meat analogue systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA