RESUMO
Sensorineural hearing loss can be caused by lesions to the inner ear during development. Understanding the events and signaling pathways that drive inner ear formation is crucial for determining the possible causes of congenital hearing loss. We have analyzed the innervation and expression of SOX2, JAGGED1, ß-catenin (CTNNB1), and vitamin D receptor (VDR) in the inner ears of human conceptuses aged 5 to 10 weeks after fertilization (W) using immunohistochemistry. The prosensory domains of the human inner ear displayed SOX2 and JAGGED1 expression throughout the analyzed period, with SOX2 expression being more extensive in all the analyzed timepoints. Innervation of vestibular prosensory domains was present at 6 W and extensive at 10 W, while nerve fibers reached the base of the cochlear prosensory domain at 7-8 W. CTNNB1 and VDR expression was mostly membranous and present during all analyzed timepoints in the inner ear, being the strongest in the non-sensory epithelium. Their expression was stronger in the vestibular region compared to the cochlear duct. CTNNB1 and VDR expression displayed opposite expression trends during the analyzed period, but additional studies are needed to elucidate whether they interact during inner ear development.
Assuntos
Orelha Interna , Proteína Jagged-1 , Receptores de Calcitriol , Fatores de Transcrição SOXB1 , beta Catenina , Humanos , beta Catenina/metabolismo , Proteína Jagged-1/metabolismo , Proteína Jagged-1/genética , Orelha Interna/metabolismo , Orelha Interna/inervação , Orelha Interna/embriologia , Receptores de Calcitriol/metabolismo , Receptores de Calcitriol/genética , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição SOXB1/genética , Regulação da Expressão Gênica no Desenvolvimento , FemininoRESUMO
During human kidney development, cells of the proximal nephron gradually differentiate into podocytes and parietal epithelial cells (PECs). Podocytes are terminally differentiated cells that play a key role in both normal and pathological kidney function. Therefore, the potential of podocytes to regenerate or be replaced by other cell populations (PECs) is of great interest for the possible treatment of kidney diseases. In the present study, we analyzed the proliferation and differentiation capabilities of podocytes and PECs, changes in the expression pattern of nestin, and several early proteins including WNT4, Notch2, and Snail, as well as Ki-67, in tissues of developing, postnatal, and pathologically changed human kidneys by using immunohistochemistry and electron microscopy. Developing PECs showed a higher proliferation rate than podocytes, whereas nestin expression characterized only podocytes and pathologically changed kidneys. In the developing kidneys, WNT4 and Notch2 expression increased moderately in podocytes and strongly in PECs, whereas Snail increased only in PECs in the later fetal period. During human kidney development, WNT4, Notch2, and Snail are involved in early nephrogenesis control. In kidneys affected by congenital nephrotic syndrome of the Finnish type (CNF) and focal segmental glomerulosclerosis (FSGS), WNT4 decreased in both cell populations, whereas Notch2 decreased in FSGS. In contrast, Snail increased both in CNF and FSGS, whereas Notch2 increased only in CNF. Electron microscopy revealed cytoplasmic processes spanning the urinary space between the podocytes and PECs in developing and healthy postnatal kidneys, whereas the CNF and FSGS kidneys were characterized by numerous cellular bridges containing cells with strong expression of nestin and all analyzed proteins. Our results indicate that the mechanisms of gene control in nephrogenesis are reactivated under pathological conditions. These mechanisms could have a role in restoring glomerular integrity by potentially inducing the regeneration of podocytes from PECs.
Assuntos
Glomerulosclerose Segmentar e Focal , Nefropatias , Podócitos , Células Epiteliais/metabolismo , Glomerulosclerose Segmentar e Focal/metabolismo , Humanos , Rim/metabolismo , Nefropatias/metabolismo , Nestina/genética , Nestina/metabolismo , Podócitos/metabolismoRESUMO
The expression of 5-HT (serotonin) receptors (sr) was analyzed in the spinal cord and ganglia of 15 human conceptuses (5-10-weeks), and in the 9-week fetus with spina bifida. We used immunohistochemical method to detect sr-positive, apoptotic (caspase-3) and proliferating (Ki-67) cells, double immunofluorescence for co-localization with protein gene peptide (pgp) 9.5 and GFAP, as well as semiquantification and statistical measurements. Following the neurulation process, moderate (sr1 and sr2) and mild (sr3) expression characterized neuroblasts in the spinal cord and ganglia. During further development, sr1 expression gradually increased in the motoneurons, autonomic and sensory neurons, while sr2 and sr3 increased strongly in floor and roof plates. In the ganglia, sr3 expression increased during limited developmental period, while sr1 and sr2 increased throughout the investigated period. Co-expression of sr/pgp 9.5 characterized developing neurons, while sr/GFAP co-localized in the roof plate. In the spinal cord and ganglia of malformed fetus, weaker sr1 and sr2 and stronger sr3 expression accompanied morphological abnormalities. Anomalous roof plate morphology showed an excess of apoptotic and proliferating cells and increased sr3 expression. Our results indicate a human-species specific sr expression pattern, and the importance of sr1 in neuronal differentiation, and sr2 and sr3 in the control of the roof plate morphogenesis in normal and disturbed development.
Assuntos
Feto/metabolismo , Gânglios Espinais/metabolismo , Gânglios/metabolismo , Receptores de Serotonina/metabolismo , Medula Espinal/metabolismo , Disrafismo Espinal/metabolismo , Apoptose/fisiologia , Caspase 3/metabolismo , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Humanos , Antígeno Ki-67/metabolismo , Células Receptoras Sensoriais/metabolismo , Serotonina/metabolismoRESUMO
The spatiotemporal expression of α-tubulin, inversin and dishevelled-1 (DVL-1) proteins associated with the Wnt-signaling pathway, and primary cilia morphology were analyzed in developing kidneys (14th-38th developmental weeks), healthy postnatal (1.5- and 7-years old) and pathologically changed human kidneys, including multicystic dysplastic kidneys (MCDK), focal segmental glomerulosclerosis (FSGS) and nephrotic syndrome of the Finnish type (CNF). The analysis was performed by double immunofluorescence, electron microscopy, semiquantitative and statistical methods. Cytoplasmic co-expression of α-tubulin, inversin and DVL-1 was observed in the proximal convoluted tubules (pct), distal convoluted tubules (dct) and glomeruli (g) of analyzed tissues. During kidney development, the overall expression of α-tubulin, inversin and DVL-1 decreased, while in the postnatal period slightly increased. The highest expressions of α-tubulin and inversin characterized dct and g, while high DVL-1 characterized pct. α-tubulin, inversin and DVL-1 expression pattern in MCDK, FSGS and CNF kidneys significantly differed from the healthy control. Compared to healthy kidneys, pathologically changed kidneys had dysmorphic primary cilia. Different expression dynamics of α-tubulin, inversin and DVL-1 during kidney development could indicate that switch between the canonical and noncanonical Wnt-signaling is essential for normal kidney morphogenesis. In contrast, their disturbed expression in pathological kidneys might be associated with abnormal primary cilia, leading to chronic kidney diseases.
Assuntos
Cílios/metabolismo , Proteínas Desgrenhadas/metabolismo , Rim/embriologia , Rim/patologia , Fatores de Transcrição/metabolismo , Tubulina (Proteína)/metabolismo , Criança , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Glomerulosclerose Segmentar e Focal/metabolismo , Humanos , Lactente , Túbulos Renais/metabolismo , Rim Displásico Multicístico/metabolismo , Síndrome Nefrótica/metabolismo , Transdução de SinaisRESUMO
BACKGROUND: Eye development is a consequence of numerous epithelial-to-mesenchymal interactions between the prospective lens ectoderm, outpocketings of the forebrain forming optic vesicles, and surrounding mesenchyme. How different cell types forming eye structures differentiate from their precursors, and which factors coordinate complex human eye development remains largely unknown. Proper differentiation of photoreceptors is of special interest because of their involvement in the appearance of degenerative retinal diseases. METHODS: Here we analyze the spatiotemporal expression of neuronal markers nestin, protein gene product 9.5 (PGP9.5), and calcium binding protein (S100), proliferation marker (Ki-67), markers for cilia (alpha-tubulin), and cell stemness marker octamer-binding transcription factor 4 (Oct-4) in histological sections of 5-12 -week human eyes using immunohistochemical and immunofluorescence methods. RESULTS: While during the investigated developmental period nestin shows strong expression in all mesenchymal derivatives, lens, optic stalk and inner neuroblastic layer, PGP9.5 and S100 expression characterizes only neural derivatives (optic nerve and neural retina). PGP9.5 is co-localized with nestin and S100 in the differentiating cells of the inner neuroblastic layer. Initially strong proliferation in all parts of the developing eye gradually ceases, especially in the outer neuroblastic layer. Proliferating Ki-67 positive cells co-localize with nestin in the retina, lens, and choroid. Strong Oct-4 and alpha-tubulin immunoreactivity in the retina and optic nerve gradually decreases, while they co-localize in outer neuroblastic and nerve fiber layers. CONCLUSIONS: The described expression of investigated markers indicates their importance in eye growth and morphogenesis, while their spatially and temporally restricted pattern coincides with differentiation of initially immature cells into specific retinal cell lineages. Alterations in their spatiotemporal interplay might lead to disturbances of visual function.
Assuntos
Biomarcadores/metabolismo , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Proteínas do Olho/metabolismo , Olho/embriologia , Olho/metabolismo , Técnica Indireta de Fluorescência para Anticorpo , Idade Gestacional , Humanos , Recém-Nascido , Antígeno Ki-67/metabolismo , Morfogênese , Nestina/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Proteínas S100/metabolismo , Ubiquitina Tiolesterase/metabolismoRESUMO
Systemic sclerosis (SSc) is an autoimmune disease characterized by fibrosis of the skin and internal organs. Although its pathogenesis is not fully understood, connexins (Cxs) and pannexins (Panx) could be involved in the process of fibrosis. We analyzed the protein expression of Cx37, Cx40, Cx43, and Panx1 in the gastric mucosa of patients with SSc and healthy volunteers, using immunofluorescence staining. Protein levels of Cx37 were slightly increased, while the levels of Cx40 were significantly decreased in the lamina propria of the gastric mucosa of SSc patients compared to the controls. The changes were proportional to SSc severity, with the most prominent changes found in patients with severe diffuse cutaneous SSc. No differences in Cx43 or Panx1 levels were found between the analyzed groups of samples. The lack of changes in Cx43 expression, which has been previously associated with fibrosis, could be due to the weak expression of Cx43 in the gastric mucosa in general. Further studies on full-thickness gastric biopsies containing muscle layers and animal SSc models are needed to fully elucidate the role of Cxs and Panxs in SSc-associated fibrosis.
RESUMO
Carpal tunnel syndrome (CTS) and Dupuytren's disease (DD) are fibrotic conditions that affect the connective tissue of the hand and limit its functionality. The exact molecular mechanism underlying the fibrosis is unknown, and only some profibrotic factors have been investigated. In this cross-sectional study, we analyzed the expression of FGF signaling pathway molecules associated with fibrotic changes in the palmar fascia and the flexor retinaculum of 15 CTS patients and both clinically affected and unaffected palmar fascia of 15 DD patients, using immunofluorescence techniques. The expression of FGFR1, FGFR2, and CTGF in the blood vessel walls and surrounding connective tissue cells differed significantly between the analyzed groups, with changes in expression present even in clinically unremarkable tissues from DD patients. We also found altered expression of the analyzed factors, as well as TGF-ß1 and syndecan-1 in DD-associated sweat glands, possibly implicating their role in the pathophysiology of the disease. The increased expression of profibrotic factors in the clinically unaffected palmar fascia of DD patients may indicate that more extensive excision is needed during surgical treatment, while the profibrotic factors could be potential targets for developing pharmacological therapeutic strategies against DD-associated fibrosis.
RESUMO
Lichen sclerosus (LS) is a progressive skin disease that is characterized by chronic inflammation of either genital or extragenital skin, and it disproportionately affects women. We analyzed the distribution of nerve fibers, vanilloid receptors, cell proliferation, mast cells and macrophages in genital and extragenital LS samples, as well as in healthy skin, by using immunohistochemistry. The total amount of intraepidermal nerve fibers was lower in LS samples compared to healthy controls, while the total amount of subepidermal nerve fibers and calcitonin gene-related peptide (CGRP) positive fibers was higher in genital LS samples compared to both extragenital LS and healthy controls. Cell proliferation, macrophage and mast cell density were increased in LS samples compared to healthy controls. Genital LS had a higher macrophage density compared to the extragenital variant. Mast cell distribution significantly differed between genital and extragenital LS samples, even though their total mast cell densities were similar. These findings could explain the differences between pruritic symptoms of genital and extragenital LS and provide targets for the research of novel therapeutic strategies for LS management.
Assuntos
Líquen Escleroso e Atrófico , Humanos , Feminino , Líquen Escleroso e Atrófico/diagnóstico , Líquen Escleroso e Atrófico/terapia , Pele , Inflamação , Mastócitos , GenitáliaRESUMO
Despite high prevalence of patients with gastric disease in systemic sclerosis (SSc), its pathogenesis is still poorly understood. We immunohistochemically analysed biopsies of gastric mucosa (GM) in 5 controls and 15 patients with different forms of SSc: limited cutaneous (lc), diffuse cutaneous moderate (sys1) and severe (sys2). The number of positive cells was analysed by a Kruskall-Wallis test, P < 0.05 was considered statistically significant. Percentage of proliferating (Ki-67 positive) cells was highest in sys1 (3% in superficial and 4,6% in deeper parts of GM), which dropped to 1% in sys2. Percentage of α-smooth muscle actin (α-SMA) positive cells was 5% in controls, 9% in superficial GM, while in deeper GM rose from 7% to 19% in sys1 and sys2, thus indicating increased myofibroblast population. Caspase-3 positive apoptotic cells characterized 1,5-2% of controls, 8% of superficial and 6% of deeper GM cells in sys1. In sys2, apoptosis affected 50% of surface epithelial and gland cells and 30% of deeper glands, and correlated with increased fibrosis and decreased syndecan-1 expression. Our data demonstrate that sys1 is the most "active" proliferating form of SSc. Sys2 characterize collagen deposition, surface epithelium defects, extensive apoptosis and low proliferation, GM atrophy and loss of function.
Assuntos
Mucosa Gástrica/patologia , Escleroderma Sistêmico/diagnóstico , Actinas/metabolismo , Adulto , Idoso , Apoptose , Atrofia , Biópsia , Estudos de Casos e Controles , Caspase 3/metabolismo , Proliferação de Células , Colágeno/metabolismo , Feminino , Mucosa Gástrica/citologia , Mucosa Gástrica/metabolismo , Humanos , Antígeno Ki-67/metabolismo , Masculino , Pessoa de Meia-Idade , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Escleroderma Sistêmico/patologia , Índice de Gravidade de Doença , Sindecana-1/metabolismoRESUMO
AIM: Present study analyses the co-localisation of RIP5 with FGFR1, FGFR2 and HIP2 in the developing kidney, as RIP5 is a major determinant of urinary tract development, downstream of FGF-signaling. METHODS: Paraffin embedded human kidney tissues of 16 conceptuses between the 6th-22th developmental week were analysed using double-immunofluorescence method with RIP5/FGFR1/FGFR2 and HIP2 markers. Quantification of positive cells were performed using Kruskal-Wallis test. RESULTS: In the 6th week of kidney development RIP5 (89.6%) and HIP2 (39.6%) are strongly expressed in the metanephric mesenchyme. FGFR1 shows moderate/strong expression in the developing nephrons (87.3%) and collecting ducts (70.5%) (p < 0.05). RIP5/FGFR1 co-localized at the marginal zone and the ureteric bud with predominant FGFR1 expression. FGFR2 (26.1%) shows similar expression pattern as FGFR1 (70.5%) in the same kidney structures. RIP5/FGFR2 co-localized at the marginal zone and the collecting ducts (predominant expression of FGFR2). HIP2 is strongly expressed in collecting ducts (96.7%), and co-localized with RIP5. In 10th week, RIP5 expression decrease (74.2%), while the pattern of expression of RIP5 and FGFR1 in collecting ducts (33.4% and 91.9%) and developing nephrons (21.9% and 32.4%) (p < 0.05) is similar to that in the 6th developmental week. Ureter is moderately expressing RIP5 while FGFR1 is strongly expressed in the ureteric wall. FGFR2 is strongly expressed in the collecting ducts (84.3%) and ureter. HIP2 have 81.1% positive cells in the collecting duct. RIP5/FGFR1 co-localize in collecting ducts and Henley's loop. CONCLUSIONS: The expression pattern of RIP5, FGFR1, FGFR2 and HIP2 in the human kidney development might indicate their important roles in metanephric development and ureteric muscle layer differentiation through FGF signaling pathways.
Assuntos
Rim/embriologia , Rim/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/biossíntese , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/biossíntese , Proteína Serina-Treonina Quinases de Interação com Receptores/biossíntese , Enzimas de Conjugação de Ubiquitina/biossíntese , Imunofluorescência , HumanosRESUMO
The expression pattern of fibroblast growth factors FGF8 and FGF2 and their receptor FGFR1, transcription factors MSX-1 and MSX-2, as well as cell proliferation (Ki-67) and cell death associated caspase-3, p19 and RIP5 factors were analyzed in histological sections of eight 4th-9th-weeks developing human limbs by immunohistochemistry and semi-thin sectioning. Increasing expression of all analyzed factors (except FGF8) characterized both the multilayered human apical ectodermal ridge (AER), sub-ridge mesenchyme (progress zone) and chondrocytes in developing human limbs. While cytoplasmic co-expression of MSX-1 and MSX-2 was observed in both limb epithelium and mesenchyme, p19 displayed strong cytoplasmic expression in non-proliferating cells. Nuclear expression of Ki-67 proliferating cells, and partly of MSX-1 and MSX-2 was detected in the whole limb primordium. Strong expression of factors p19 and RIP5, both in the AER and mesenchyme of human developing limbs indicates their possible involvement in control of cell senescence and cell death. In contrast to animal studies, expression of FGFR1 in the surface ectoderm and p19 in the whole limb primordium might reflect interspecies differences in limb morphology. Expression of FGF2 and downstream RIP5 gene, and transcription factors Msx-1 and MSX-2 did not show human-specific changes in expression pattern. Based on their spatio-temporal expression during human limb development, our study indicates role of FGFs and Msx genes in stimulation of cell proliferation, limb outgrowth, digit elongation and separation, and additionally MSX-2 in control of vasculogenesis. The cascade of orchestrated gene expressions, including the analyzed developmental factors, jointly contribute to the complex human limb development.
Assuntos
Fator 2 de Crescimento de Fibroblastos/metabolismo , Fator 8 de Crescimento de Fibroblasto/metabolismo , Proteínas de Homeodomínio/metabolismo , Botões de Extremidades/metabolismo , Fator de Transcrição MSX1/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Receptores de Fatores de Crescimento/metabolismo , Estatmina/metabolismo , Apoptose , Proliferação de Células , Condrócitos/citologia , Fator 2 de Crescimento de Fibroblastos/genética , Imunofluorescência , Expressão Gênica , Humanos , Imuno-Histoquímica , Botões de Extremidades/crescimento & desenvolvimento , Proteína Serina-Treonina Quinases de Interação com Receptores/genéticaRESUMO
AIM: Our study investigates the differentiation of retinal stem cells towards different neuronal subtypes during the critical period of human eye development. METHODS: Expression of the neuronal marker neurofilament 200 (NF200), tyrosine hydroxilase (TH) and choline acetyltransferase (ChAT) was seen by immunofluorescence in the 5th-12th - week stage of development in the human eye. Data was analysed by Mann-Whitney, Kruskal-Wallis and Dunn's post hoc tests. RESULTS: NF200, TH and ChAT cells appeared in the 5th/6th week and gradually increased during further development. The proportion of TH positive areas were distributed similarly to NF200, with a higher proportion in the outer neuroblastic layer. The proportion of a ChAT positive surface was highest in the 5th/6th - week whilst from the 7th week onwards, its proportion became higher in the optic nerve and inner neuroblastic layers than in the outer layer, where a decrease of ChAT positive areas were seen. CONCLUSIONS: Our study indicates a high differentiation potential of early retinal cells, which decreased with the advancement of development. The observed great variety of retinal phenotypic expressions results from a large scale of influences, taking place at different developmental stages.
Assuntos
Diferenciação Celular , Neurônios/citologia , Organogênese , Retina/citologia , Retina/embriologia , Imunofluorescência , HumanosRESUMO
Involvement of proliferation and apoptosis in the human limb development was analyzed electronmicroscopically and immunohistochemically in histological sections of 8 human embryos, 4(th) -10(th) week old, using apoptotic (caspase-3, AIF, BAX), anti-apoptotic (Bcl-2) and proliferation (Ki-67) markers, and TUNEL method. The data were analyzed by Mann-Whitney test, Kruskal-Wallis and Dunn's post hoc test. Initially, developing human limbs consisted of mesenchymal core and surface ectoderm with apical ectodermal ridge (AER). During progression of development, strong proliferation activity gradually decreased in the mesenchyme (from 78% to 68%) and in the epithelium (from 62% to 42%), while in the differentiating finger cartilages proliferation was constantly low (26-7%). Apoptotic caspase-3 and AIF-positive cells characterized mesenchyme and AER at earliest stages, while during digit separation they appeared in interdigital mesenchyme as well. Strong Bcl-2 expression was observed in AER, subridge mesenchyme and phalanges, while BAX expression charaterized limb areas undergoing apoptosis. Ultrastructurally, proliferating cells showed mitotic figures, while apoptotic cells were characterized by nuclear fragmentation. Macrophages were observed around the apoptotic cells. We suggest that intense proliferation enables growth and elongation of human limb primordia, and differential growth of digits. Both caspase-3 and AIF-dependant pathways of cell death control the extent of AER and numer of cells in the subridge mesenchyme at earliest developmental stages, as well as process of digit separation at later stages of limb development. Spatio-temporal co-expresson of Bcl-2 and BAX indicates their role in suppression of apoptosis and selective stimulation of growth during human limb morphogenesis.
Assuntos
Apoptose , Extremidades/embriologia , Fator de Indução de Apoptose/metabolismo , Caspase 3/metabolismo , Proliferação de Células , Extremidades/anatomia & histologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Antígeno Ki-67/metabolismo , Botões de Extremidades/citologia , Botões de Extremidades/embriologia , MorfogêneseRESUMO
The immunohistochemical staining of matrix metalloproteinases (MMPs) and E-cadherin in tumor epithelial and stromal cells was analyzed in a group of solid, superficial spreading and cystic tumors and in a group of morpheaform and recurrent basal cell carcinomas (BCC) in order to determine whether any of these factors possibly contribute to tumor therapy resistance. Tumor tissues of 64 patients were obtained by complete excisional or curettage biopsy of BCC and these were immunohistochemically stained for MMP-1, MMP-2, MMP-9, MMP-13 and E-cadherin. In the morpheaform and recurrent BCC, MMP-9 expression significantly increased in the stroma, while E-cadherin expression was negative in epithelial cells. Odds ratio for development of morpheaform and recurrent BCC was 6.2 for positive MMP-1 immunostaining in epithelial tumor cells, 5.8 for positive MMP-9 immunostaining in tumor stroma, 3.2 for positive MMP-13 immunostaining in tumor stroma, and 4.5 for negative E-cadherin in epithelial tumor cells. Our results suggest that MMP-1 immunostaining in tumor cells, MMP-9 expression in stromal cells, and absence of E-cadherin expression are associated with morpheaform and recurrent BCC.