Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
BMC Plant Biol ; 24(1): 468, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811873

RESUMO

BACKGROUND: The cuticular wax serves as a primary barrier that protects plants from environmental stresses. The Eceriferum (CER) gene family is associated with wax production and stress resistance. RESULTS: In a genome-wide identification study, a total of 52 members of the CER family were discovered in four Gossypium species: G. arboreum, G. barbadense, G. raimondii, and G. hirsutum. There were variations in the physicochemical characteristics of the Gossypium CER (GCER) proteins. Evolutionary analysis classified the identified GCERs into five groups, with purifying selection emerging as the primary evolutionary force. Gene structure analysis revealed that the number of conserved motifs ranged from 1 to 15, and the number of exons varied from 3 to 13. Closely related GCERs exhibited similar conserved motifs and gene structures. Analyses of chromosomal positions, selection pressure, and collinearity revealed numerous fragment duplications in the GCER genes. Additionally, nine putative ghr-miRNAs targeting seven G. hirsutum CER (GhCER) genes were identified. Among them, three miRNAs, including ghr-miR394, ghr-miR414d, and ghr-miR414f, targeted GhCER09A, representing the most targeted gene. The prediction of transcription factors (TFs) and the visualization of the regulatory TF network revealed interactions with GhCER genes involving ERF, MYB, Dof, bHLH, and bZIP. Analysis of cis-regulatory elements suggests potential associations between the CER gene family of cotton and responses to abiotic stress, light, and other biological processes. Enrichment analysis demonstrated a robust correlation between GhCER genes and pathways associated with cutin biosynthesis, fatty acid biosynthesis, wax production, and stress response. Localization analysis showed that most GCER proteins are localized in the plasma membrane. Transcriptome and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) expression assessments demonstrated that several GhCER genes, including GhCER15D, GhCER04A, GhCER06A, and GhCER12D, exhibited elevated expression levels in response to water deficiency stress compared to control conditions. The functional identification through virus-induced gene silencing (VIGS) highlighted the pivotal role of the GhCER04A gene in enhancing drought resistance by promoting increased tissue water retention. CONCLUSIONS: This investigation not only provides valuable evidence but also offers novel insights that contribute to a deeper understanding of the roles of GhCER genes in cotton, their role in adaptation to drought and other abiotic stress and their potential applications for cotton improvement.


Assuntos
Secas , Gossypium , Família Multigênica , Proteínas de Plantas , Gossypium/genética , Gossypium/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , Genes de Plantas , Filogenia , Adaptação Fisiológica/genética , Ceras/metabolismo , MicroRNAs/genética
2.
Mamm Genome ; 35(2): 201-227, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38520527

RESUMO

Preserving genetic diversity is pivotal for enhancing genetic improvement and facilitating adaptive responses to selection. This study focuses on identifying key genetic variants, including single nucleotide polymorphisms (SNPs), insertion/deletion polymorphisms (INDELs), and copy number variants (CNVs), while exploring the genomic evolutionary connectedness among seven Iranian horses representing five indigenous breeds: Caspian, Turkemen, DareShuri, Kurdish, and Asil. Using whole-genome resequencing, we generated 2.7 Gb of sequence data, with raw reads ranging from 1.2 Gb for Caspian horses to 0.38 Gb for Turkoman horses. Post-filtering, approximately 1.9 Gb of reads remained, with ~ 1.5 Gb successfully mapped to the horse reference genome (EquCab3.0), achieving mapping rates between 76.4% (Caspian) and 98.35% (Turkoman). We identified 2,909,816 SNPs in Caspian horses, constituting around 0.1% of the genome. Notably, 71% of these SNPs were situated in intergenic regions, while 8.5 and 6.8% were located upstream and downstream, respectively. A comparative analysis of SNPs between Iranian and non-Iranian horse breeds showed that Caspian horses had the lowest number of shared SNPs with Turkoman horses. Instead, they showed a closer genetic relationship with DareShuri, Quarter, Arabian, Standardbred, and Asil breeds. Hierarchical clustering highlighted Caspian horses as a distinct cluster, underscoring their distinctive genomic signature. Caspian horses exhibit a unique genetic profile marked by an enrichment of private mutations in neurological genes, influencing sensory perception and awareness. This distinct genetic makeup shapes mating preferences and signifies a separate evolutionary trajectory. Additionally, significant non-synonymous single nucleotide polymorphisms (nsSNPs) in reproductive genes offer intervention opportunities for managing Caspian horses. These findings reveal the population genetic structure of Iranian horse breeds, contributing to the advancement of knowledge in areas such as conservation, performance traits, climate adaptation, reproduction, and resistance to diseases in equine science.


Assuntos
Variações do Número de Cópias de DNA , Genética Populacional , Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do Genoma , Animais , Cavalos/genética , Irã (Geográfico) , Genoma , Cruzamento , Mutação INDEL
3.
Anim Biotechnol ; 34(8): 3495-3506, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36633454

RESUMO

This study aimed to compare growth performance between Moghani sheep and crossbred lambs resulting from crossbreeding between Moghani pure breed ewes and the lines of rams e.g., Texel Tamlet, Texel Dalzell, Booroola Merino, and Booroola Romney. The first visible phenotypic characteristic was the presence of lean tail in all F1 crossbred lambs, whereas Moghani pure sheep is a well-known large fat-tailed breed. Moreover, the first generation of backcross (BC1) lambs from mating four types of F1 crossbred rams with Moghani pure ewes revealed lean-tailed to short fat-tailed. Comparative results showed that the F1 crossbred lambs had significantly (p < 0.0001) greater birth weight (BW) than the Moghani pure breed lambs. Despite no significant differences observed between Moghani pure breed sheep and its F1 crossbred lambs for body weight at pre-weaning, but F1 crossbred lambs achieved significantly (p < 0.0001) greater body weight after weaning compared to Moghani sheep. The growth performance of BC1 lambs was outperformed than F1 crossbred and Moghani sheep. These results encourage the continuation of the Moghani sheep crossbreeding programs to improve overall lamb growth, particularly post-weaning and to benefit from a better reproductive efficiency by elimination or reduction of the fat tail.


Assuntos
Reprodução , Carneiro Doméstico , Ovinos/genética , Animais , Feminino , Masculino , Reprodução/genética , Carneiro Doméstico/genética , Hibridização Genética , Estações do Ano , Peso Corporal/genética , Cruzamentos Genéticos
4.
Anim Genet ; 53(6): 723-739, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36184760

RESUMO

Sheep is a major contributor to global food production among livestock and one of the great sources of red meat for human consumption. Several QTL and numerous genes with major and minor effects have been identified in association with the muscle characteristics in sheep breeds worldwide. Understanding the genetic background of growth and carcass-related traits in sheep is a major factor in increasing muscle growth, muscle hypertrophy and, eventually, meat production. This review concisely shows how major signaling pathways control skeletal muscle growth. Herein we aimed to discuss and summarize different research findings on genomic regions related to carcass traits and meat production in sheep. Several causative mutations with major effects on different muscle-related traits have been reported in various sheep breeds. A general overview of the studies on main candidate genes showed that some alleles have major phenotypic effects in different breeds with commercial and farm level usability. However, numerous genes with minor effects were also reported regarding the polygenic nature of muscle-related traits. The knowledge of the candidate genes involved in growth traits and their effects provides valuable information for breeding and selection of muscularity traits.


Assuntos
Carne Vermelha , Humanos , Ovinos/genética , Animais , Fenótipo , Carne , Músculos , Genoma
5.
PLoS One ; 19(4): e0301629, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38573987

RESUMO

In our ongoing project, which focuses on the introgression of Booroola/FecB gene and the myostatin (MSTN) gene into purebred Moghani sheep, we assessed the performance of second-generation Moghani crossbreds such as second crossbreds (F2) and initial backcross generation (BC1). These crossbreds were generated through different mating systems, including in-breeding, outcrossing, first paternal backcrossing (PBC1), and first maternal backcrossing (MBC1). Notably, F2 strains exhibited lean tail, woolly fleece and a higher percentage of white coat color compared to BC1. The impact of mating systems and birth types on pre-weaning survival rates was found to be statistically significant (P < 0.0001), with singleton offspring resulting from paternal backcross showing a particularly substantial effect. The F2 crossbred lambs carrying the Booroola gene did not show a statistically significant difference in survivability compared to those carrying the MSTN gene, implying the Booroola prolificacy gene had no significant impact on survival outcomes. However, the occurrence of multiple births had a significant negative impact on lamb survival (P < 0.0001). The PBC1 sheep strains, specifically Texel Tamlet ram strains carrying the MSTN mutation, exhibited superior growth rates compared to others (P < 0.05). Interestingly, the MSTN mutation in the homozygous variant genotype significantly impacts growth rate before weaning compared to other genotypes and pure Moghani sheep (P < 0.05). In conclusion, this study objectively underscores the pivotal role of genetic factors, specifically through strategic mating systems like paternal backcrossing, in enhancing desired traits and growth rates in Moghani sheep, thereby contributing valuable insights to the field of sheep breeding programs.


Assuntos
Reprodução , Carneiro Doméstico , Gravidez , Feminino , Ovinos/genética , Animais , Masculino , Reprodução/genética , Carneiro Doméstico/genética , Genótipo , Mutação , Gravidez Múltipla
6.
PeerJ ; 12: e17462, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827302

RESUMO

Cytokinin oxidase/dehydrogenase (CKX), responsible for irreversible cytokinin degradation, also controls plant growth and development and response to abiotic stress. While the CKX gene has been studied in other plants extensively, its function in cotton is still unknown. Therefore, a genome-wide study to identify the CKX gene family in the four cotton species was conducted using transcriptomics, quantitative real-time PCR (qRT-PCR) and bioinformatics. As a result, in G. hirsutum and G. barbadense (the tetraploid cotton species), 87 and 96 CKX genes respectively and 62 genes each in G. arboreum and G. raimondii, were identified. Based on the evolutionary studies, the cotton CKX gene family has been divided into five distinct subfamilies. It was observed that CKX genes in cotton have conserved sequence logos and gene family expansion was due to segmental duplication or whole genome duplication (WGD). Collinearity and multiple synteny studies showed an expansion of gene families during evolution and purifying selection pressure has been exerted. G. hirsutum CKX genes displayed multiple exons/introns, uneven chromosomal distribution, conserved protein motifs, and cis-elements related to growth and stress in their promoter regions. Cis-elements related to resistance, physiological metabolism and hormonal regulation were identified within the promoter regions of the CKX genes. Expression analysis under different stress conditions (cold, heat, drought and salt) revealed different expression patterns in the different tissues. Through virus-induced gene silencing (VIGS), the GhCKX34A gene was found to improve cold resistance by modulating antioxidant-related activity. Since GhCKX29A is highly expressed during fibre development, we hypothesize that the increased expression of GhCKX29A in fibres has significant effects on fibre elongation. Consequently, these results contribute to our understanding of the involvement of GhCKXs in both fibre development and response to abiotic stress.


Assuntos
Regulação da Expressão Gênica de Plantas , Gossypium , Oxirredutases , Estresse Fisiológico , Gossypium/genética , Estresse Fisiológico/genética , Oxirredutases/genética , Oxirredutases/metabolismo , Fibra de Algodão , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Família Multigênica , Filogenia , Genoma de Planta/genética
7.
J Proteome Res ; 12(2): 785-95, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23244174

RESUMO

Infection of Mexican lime trees (Citrus aurantifolia L.) with the specialized bacterium "CandidatusPhytoplasma aurantifolia" causes witches' broom disease. Witches' broom disease has the potential to cause significant economic losses throughout western Asia and North Africa. We used label-free quantitative shotgun proteomics to study changes in the proteome of Mexican lime trees in response to infection by "Ca. Phytoplasma aurantifolia". Of 990 proteins present in five replicates of healthy and infected plants, the abundances of 448 proteins changed significantly in response to phytoplasma infection. Of these, 274 proteins were less abundant in infected plants than in healthy plants, and 174 proteins were more abundant in infected plants than in healthy plants. These 448 proteins were involved in stress response, metabolism, growth and development, signal transduction, photosynthesis, cell cycle, and cell wall organization. Our results suggest that proteomic changes in response to infection by phytoplasmas might support phytoplasma nutrition by promoting alterations in the host's sugar metabolism, cell wall biosynthesis, and expression of defense-related proteins. Regulation of defense-related pathways suggests that defense compounds are induced in interactions with susceptible as well as resistant hosts, with the main differences between the two interactions being the speed and intensity of the response.


Assuntos
Citrus aurantiifolia/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Proteínas de Plantas/metabolismo , Proteoma/análise , Ciclo Celular/genética , Parede Celular/química , Parede Celular/metabolismo , Citrus aurantiifolia/metabolismo , Citrus aurantiifolia/microbiologia , Interações Hospedeiro-Patógeno , Fotossíntese/genética , Phytoplasma/metabolismo , Phytoplasma/patogenicidade , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteoma/genética , Proteoma/metabolismo , Transdução de Sinais/genética , Estresse Fisiológico/genética
8.
PLoS One ; 18(7): e0287777, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37471390

RESUMO

Salmo caspius Kessler, 1877 is one of the most commercially important species of Salmonidae in the southern basin of the Caspian Sea. The occurrence of its wild populations has undergone sever reduction during the last years. In spite of the yearly restocking activity, still no progress on the recovery of its wild population has been observed. Hence, the present study was done in order to assess the efficiency of the current restocking activity in the southern Caspian basin in term of genetic diversity. DNA extracts of 32 S. caspius from four different groups were screened using 62621 genome-wide single nucleotide polymorphisms (SNP). The overal genetic diversity and Fst values were 0.18 and 0.08, respectively. Considering the observed admixture pattern and the positive values for inbreeding coeficient it seems that S. caspius suffers from its small effective population size. In order to obtain the maximum performance, alonside with expanding the size of brood stocks, rehabilitation of the habitats and spawning rivers of this nationally endangered species is of great importance.


Assuntos
Salmo salar , Truta , Animais , Truta/genética , Mar Cáspio , Densidade Demográfica
9.
J Bacteriol ; 194(16): 4431, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22843574

RESUMO

Ureibacillus thermosphaericus strain Thermo-BF is an aerobic, thermophilic bacillus which has been characterized to biosynthesize gold nanoparticles. Here we present the draft genome sequence of Ureibacillus thermosphaericus strain Thermo-BF which consists of a 2,864,162-bp chromosome. This is the first report of a shotgun sequenced draft genome of a species in the Ureibacillus genus.


Assuntos
DNA Bacteriano/química , DNA Bacteriano/genética , Genoma Bacteriano , Planococáceas/genética , Análise de Sequência de DNA , Anaerobiose , Cromossomos Bacterianos , Fontes Termais/microbiologia , Irã (Geográfico) , Dados de Sequência Molecular , Planococáceas/isolamento & purificação , Planococáceas/fisiologia
10.
Am J Bot ; 99(9): e340-3, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22935359

RESUMO

PREMISE OF THE STUDY: Twelve novel polymorphic microsatellite loci were developed and characterized from a repeat-enriched genomic library of Crocus sativus to study population and conservation genetics of this economically and medically important species. METHODS AND RESULTS: The microsatellite loci were isolated using a modified Fast Isolation by AFLP of Sequences COntaining repeats (FIASCO) method. The average number of alleles per locus was 2.6. The observed and expected heterozygosities varied from 0.07 to 0.92 and 0.1 to 0.58, respectively. Polymorphic information content value ranged from 0.09 to 0.55 with an average of 0.34. Four out of twelve loci showed significant departures from Hardy-Weinberg equilibrium. CONCLUSIONS: The microsatellite markers reported here will be useful for evaluating genetic diversity and will likely serve as an ideal resource for use in marker-assisted breeding programs, germplasm analysis, and varietal identification.


Assuntos
Crocus/genética , DNA de Plantas/genética , DNA de Plantas/isolamento & purificação , Repetições de Microssatélites/genética , Polimorfismo Genético , Primers do DNA/genética , Loci Gênicos/genética , Dados de Sequência Molecular
11.
BMC Microbiol ; 11: 1, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21194490

RESUMO

BACKGROUND: "Candidatus Phytoplasma aurantifolia", is the causative agent of witches' broom disease in Mexican lime trees (Citrus aurantifolia L.), and is responsible for major losses of Mexican lime trees in Southern Iran and Oman. The pathogen is strictly biotrophic, and thus is completely dependent on living host cells for its survival. The molecular basis of compatibility and disease development in this system is poorly understood. Therefore, we have applied a cDNA- amplified fragment length polymorphism (AFLP) approach to analyze gene expression in Mexican lime trees infected by "Ca. Phytoplasma aurantifolia". RESULTS: We carried out cDNA-AFLP analysis on grafted infected Mexican lime trees of the susceptible cultivar at the representative symptoms stage. Selective amplifications with 43 primer combinations allowed the visualisation of 55 transcript-derived fragments that were expressed differentially between infected and non-infected leaves. We sequenced 51 fragments, 36 of which were identified as lime tree transcripts after homology searching. Of the 36 genes, 70.5% were down-regulated during infection and could be classified into various functional groups. We showed that Mexican lime tree genes that were homologous to known resistance genes tended to be repressed in response to infection. These included the genes for modifier of snc1 and autophagy protein 5. Furthermore, down-regulation of genes involved in metabolism, transcription, transport and cytoskeleton was observed, which included the genes for formin, importin ß 3, transducin, L-asparaginase, glycerophosphoryl diester phosphodiesterase, and RNA polymerase ß. In contrast, genes that encoded a proline-rich protein, ubiquitin-protein ligase, phosphatidyl glycerol specific phospholipase C-like, and serine/threonine-protein kinase were up-regulated during the infection. CONCLUSION: The present study identifies a number of candidate genes that might be involved in the interaction of Mexican lime trees with "Candidatus Phytoplasma aurantifolia". These results should help to elucidate the molecular basis of the infection process and to identify genes that could be targeted to increase plant resistance and inhibit the growth and reproduction of the pathogen.


Assuntos
Citrus aurantiifolia/genética , Citrus aurantiifolia/microbiologia , Phytoplasma/isolamento & purificação , Doenças das Plantas/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Primers do DNA , DNA de Plantas/análise , DNA Ribossômico/genética , Regulação para Baixo , Regulação da Expressão Gênica de Plantas , Genes de RNAr , Interações Hospedeiro-Patógeno , Irã (Geográfico) , Fosfatidilgliceróis/genética , Doenças das Plantas/microbiologia , RNA de Plantas/análise , RNA Ribossômico 16S/genética , Homologia de Sequência , Ubiquitina-Proteína Ligases/genética , Regulação para Cima
12.
Curr Microbiol ; 63(2): 107-14, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21604099

RESUMO

Legume roots in nature are usually colonized with rhizobia and different arbuscular mycorrhizal fungi (AMF) species. Light microscopy that visualizes the presence of AMF in roots is not able to differentiate the ratio of each AMF species in the root and nodule tissues in mixed fungal inoculation. The purpose of this study was to characterize the dominant species of mycorrhiza in roots and nodules of plants co-inoculated with mycorrhizal fungi and rhizobial strains. Glomus intraradices (GI), Glomus mosseae (GM), their mix (GI + GM), and six Mesorhizobium ciceri strains were used to inoculate chickpea. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to assess occupancy of these fungal species in roots and nodules. Results showed that GI molecular ratio and relative density were higher than GM in both roots and nodules. These differences in molecular ratio and density between GI and GM in nodules were three folds higher than roots. The results suggested that M. ciceri strains have different effects on nodulation and mycorrhizal colonization pattern. Plants with bacterial S3 and S1 strains produced the highest root nodulation and higher fungal density in both the roots and nodules.


Assuntos
Alphaproteobacteria/crescimento & desenvolvimento , Cicer/microbiologia , Glomeromycota/crescimento & desenvolvimento , Interações Microbianas , Raízes de Plantas/microbiologia , Alphaproteobacteria/genética , Alphaproteobacteria/isolamento & purificação , Contagem de Colônia Microbiana , DNA Bacteriano/genética , DNA Fúngico/genética , Glomeromycota/genética , Glomeromycota/isolamento & purificação , Reação em Cadeia da Polimerase
13.
Int J Mol Sci ; 11(5): 2010-6, 2010 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-20559498

RESUMO

Pomegranate (Punica granatum L.) has been cultivated from ancient times for its economic, ornamental and medicinal properties globally. Here, we report the isolation and characterization of 12 polymorphic microsatellite markers from a repeat-enriched genomic library of Punica granatum L. The genetic diversity of these loci was assessed in 60 genotypes of Punica granatum L. All loci were variable: the number of polymorphic alleles per locus ranged from two to five (average 2.9). The observed and expected heterozygosities ranged from 0.15 to 0.87 and 0.29 to 0.65, respectively. The polymorphic information content ranged from 0.26 to 0.61 (average: 0.43). To the best of our knowledge, this is the first time that polymorphic microsatellite markers have been reported for P. granatum L. These new markers should allow studies of the population structure and genetic diversity of pomegranate to be performed in the future.


Assuntos
Alelos , Loci Gênicos , Lythraceae/genética , Repetições de Microssatélites , Polimorfismo Genético , Biblioteca Genômica
14.
Genes Genomics ; 41(2): 223-231, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30378005

RESUMO

INTRODUCTION: Some studies in wheat showed that awns may have a useful effect on yield, especially under drought stress. Up to this time few researches has identified the awn length QTLs with different effect in salinity stress. OBJECTIVE: The primary objective of this study was to examine the additive (a) and the epistatic (aa) QTLs involve in wheat awns length in control and saline environments. METHODS: A F7 RIL population consisting of 319 sister lines, derived from a cross between wheat cultivars Roshan and Falat (seri82), and the two parents were grown in two environments (control and Saline) based on an alpha lattice design with two replications in each environment. At flowering, awn length was measured for each line. For QTL analysis, the linkage map of the ''Roshan × Falat'' population was used, which included 748 markers including 719 DArT, 29 simple sequenced repeats (SSRs). Additive and pleiotropic QTLs were identified. In order to reveal the relationship between the identified QTL for awns length and the role of the gene or genes that it expresses, the awns length locus location and characteristics of its related CDS, gene, UTRs, ORF, exons and Introns were studied using ensemble plant ( http://plants.ensembl.org/Triticum_aestivum ). Furthermore, the promoter analysis has been done using NSITE-PL. RESULTS: We identified 6 additive QTLs for awn length by QTL Cartographer program using single-environment phenotypical values. Also, we detected three additive and two epistatic QTLs for awn length by the QTLNetwork program using multi-environment phenotypical values. Our results showed that none of the additive and epistatic QTLs had interactions with environment. One of the additive QTLs located on chromosome 4A was co-located with QTLs for number of sterile spikelet per spike in both environment and number of seed per spike in control environment. COCLUSION: Studies of the locus linked to the awns length QTL revealed the role of awn and its chloroplasts in grain filing during abiotic stress could be enhanced by over expression of some genes like GTP-Binding proteins which are enriched in chloroplasts encoded by genes included wPt-5730 locus.


Assuntos
Cloroplastos/genética , Locos de Características Quantitativas , Estresse Salino , Sementes/genética , Triticum/genética , Epistasia Genética , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/crescimento & desenvolvimento
15.
J Insect Sci ; 8: 6, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-20345296

RESUMO

The carob moth, Ectomyelois ceratoniae (Zeller 1839) (Lepidoptera: Pyralidae) is the most important pest of pomegranate, Punica granatum L. (Myrtales: Ponicaceae), in Iran. In this study, 6 amplified fragment length polymorphism primer combinations were used to survey the genetic structure of the geographic and putative host-associated populations of this pest in Iran. An AMOVA was performed on test populations. Pairwise differences, Mantel test, multidimensional analysis, cluster analysis and migration rate were calculated for 5 geographic populations of E. ceratoniae sharing the same host, pomegranate. In another part of the study, 3 comparisons were performed on pairwise populations that were collected on different hosts (pomegranate, fig, pistachio and walnut) in same geographic regions. The results showed high within population variation (85.51% of total variation), however geographic populations differed significantly. The Mantel test did not show correlations between genetic and geographic distances. The probable factors that affect genetic distances are discussed. Multidimensional scaling analysis, migration rate and cluster analysis on geographic populations showed that the Arsanjan population was the most different from the others while the Saveh population was more similar to the Sabzevar population. The comparisons didn't show any host fidelity in test populations. It seems that the ability of E. ceratoniae to broaden its host range with no fidelity to hosts can decrease the efficiency of common control methods that are used on pomegranate. The results of this study suggest that in spite of the effects of geographic barriers, high within-population genetic variation, migration rate and gene flow can provide the opportunity for emerging new phenotypes or behaviors in pest populations, such as broadening host range, changing egg lying places, or changing over-wintering sites to adapt to difficult conditions such as those caused by intensive control methods.


Assuntos
Variação Genética , Interações Hospedeiro-Parasita/fisiologia , Magnoliopsida/parasitologia , Mariposas/fisiologia , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Animais , Análise por Conglomerados , Ficus/parasitologia , Irã (Geográfico) , Juglans/parasitologia , Lythraceae/parasitologia , Pistacia/parasitologia , Polimorfismo Genético/genética
16.
Mol Biosyst ; 13(11): 2289-2302, 2017 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-28872648

RESUMO

MicroRNAs (miRNAs) are small endogenous regulatory RNAs that are involved in a variety of biological processes related to proliferation, development, and response to biotic and abiotic stresses. miRNA profiles of rice (Oryza sativa L. cv. IR64.) leaves in a partial root zone drying (PRD) system were analysed using a high-throughput sequencing approach to identify miRNAs associated with drought signalling. The treatments performed in this study were as follows: well-watered ("wet" roots, WW), wherein both halves of the pot were watered daily; drought ("dry" roots, DD), wherein water was withheld from both halves of the pot; and well-watered/drought ("wet" and "dry" roots, WD), wherein one half of each pot was watered daily, the same as in WW, and water was withheld from the other part, the same as in DD. High-throughput sequencing enabled us to detect novel miRNAs and study the differential expression of known miRNAs. A total of 209 novel miRNAs were detected in this study. Differential miRNA profiling of the DD, WD and WW conditions showed differential expression of 159 miRNAs, among which 83, 44 and 32 miRNAs showed differential expression under both DD and WD conditions. The detection of putative targets of the differentially expressed miRNAs and investigation of their functions showed that most of these genes encode transcription factors involved in growth and development, leaf morphology, regulation of hormonal homeostasis, and stress response. The most important differences between the DD and WD conditions involved regulation of the levels of hormones such as auxin, cytokinin, abscisic acid, and jasmonic acid and also regulation of phosphor homeostasis. Overall, differentially expressed miRNAs under WD conditions were found to differ from those under DD conditions, with such differences playing a role in adaptation and inducing the normal condition. The mechanisms involved in regulating hormonal homeostasis and involved in energy production and consumption were found to be the most important regulatory pathways distinguishing the DD and WD conditions.


Assuntos
Adaptação Biológica , Secas , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Oryza/genética , Brotos de Planta/genética , Estresse Fisiológico/genética , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Reprodutibilidade dos Testes
17.
PLoS One ; 11(6): e0156814, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27276090

RESUMO

BACKGROUND: Drought stress is one of the most important abiotic stresses and the main constraint to rice agriculture. MicroRNA-mediated post-transcriptional gene regulation is one of the ways to establish drought stress tolerance in plants. MiRNAs are 20-24-nt regulatory RNAs that play an important role in regulating plant gene expression upon exposure to biotic and abiotic stresses. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we applied a partial root drying system as well as a complete root drying system to identify miRNAs involved in conditions of drought stress, drought signaling and wet signaling using high-throughput sequencing. To this end, we produced four small RNA libraries: (1) fully-watered (WW), (2) fully-droughted (WD), and split-root systems where (3) one-half was well watered (SpWW) and (4) the other half was water-deprived (SpWD). Our analysis revealed 10,671 and 783 unique known and novel miRNA reads in all libraries, respectively. We identified, 65 (52 known + 13 novel), 72 (61 known + 11 novel) and 51 (38 known + 13 novel) miRNAs that showed differential expression under conditions of drought stress, drought signaling and wet signaling, respectively. The results of quantitative real-time PCR showed expression patterns similar to the high-throughput sequencing results. Furthermore, our target prediction led to the identification of 244, 341 and 239 unique target genes for drought-stress-, drought-signaling- and wet-signaling-responsive miRNAs, respectively. CONCLUSIONS/SIGNIFICANCE: Our results suggest that miRNAs that are responsive under different conditions could play different roles in the regulation of abscisic acid signaling, calcium signaling, detoxification and lateral root formation.


Assuntos
Adaptação Fisiológica , MicroRNAs/metabolismo , Oryza/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , RNA de Plantas/metabolismo , Estresse Fisiológico/fisiologia
18.
PLoS One ; 10(7): e0130425, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26132073

RESUMO

Witches' broom disease of acid lime greatly affects the production of Mexican lime in Iran. It is caused by a phytoplasma (Candidatus Phytoplasma aurantifolia). However, the molecular mechanisms that underlie phytoplasma pathogenicity and the mode of interactions with host plants are largely unknown. Here, high-throughput transcriptome sequencing was conducted to explore gene expression signatures associated with phytoplasma infection in Mexican lime trees. We assembled 78,185 unique transcript sequences (unigenes) with an average length of 530 nt. Of these, 41,805 (53.4%) were annotated against the NCBI non-redundant (nr) protein database using a BLASTx search (e-value ≤ 1e-5). When the abundances of unigenes in healthy and infected plants were compared, 2,805 transcripts showed significant differences (false discovery rate ≤ 0.001 and log2 ratio ≥ 1.5). These differentially expressed genes (DEGs) were significantly enriched in 43 KEGG metabolic and regulatory pathways. The up-regulated DEGs were mainly categorized into pathways with possible implication in plant-pathogen interaction, including cell wall biogenesis and degradation, sucrose metabolism, secondary metabolism, hormone biosynthesis and signalling, amino acid and lipid metabolism, while down-regulated DEGs were predominantly enriched in ubiquitin proteolysis and oxidative phosphorylation pathways. Our analysis provides novel insight into the molecular pathways that are deregulated during the host-pathogen interaction in Mexican lime trees infected by phytoplasma. The findings can be valuable for unravelling the molecular mechanisms of plant-phytoplasma interactions and can pave the way for engineering lime trees with resistance to witches' broom disease.


Assuntos
Citrus aurantiifolia/genética , Phytoplasma/patogenicidade , Doenças das Plantas/genética , Transcriptoma , Citrus aurantiifolia/microbiologia , Redes Reguladoras de Genes , Doenças das Plantas/microbiologia
19.
Mol Biosyst ; 9(6): 1498-510, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23545942

RESUMO

Piriformospora indica is a root-interacting mutualistic fungus capable of enhancing plant growth, increasing plant resistance to a wide variety of pathogens, and improving plant stress tolerance under extreme environmental conditions. Understanding the molecular mechanisms by which P. indica can improve plant tolerance to stresses will pave the way to identifying the major mechanisms underlying plant adaptability to environmental stresses. We conducted greenhouse experiments at three different salt levels (0, 100 and 300 mM NaCl) on barley (Hordeum vulgare L.) cultivar "Pallas" inoculated with P. indica. Based on the analysis of variance, P. indica had a significant impact on the barley growth and shoot biomass under normal and salt stress conditions. P. indica modulated ion accumulation in colonized plants by increasing the foliar potassium (K(+))/sodium (Na(+)) ratio, as it is considered a reliable indicator of salt stress tolerance. P. indica induced calcium (Ca(2+)) accumulation and likely influenced the stress signal transduction. Subsequently, proteomic analysis of the barley leaf sheath using two-dimensional electrophoresis resulted in detection of 968 protein spots. Of these detected spots, the abundance of 72 protein spots changed significantly in response to salt treatment and P. indica-root colonization. Mass spectrometry analysis of responsive proteins led to the identification of 51 proteins. These proteins belonged to different functional categories including photosynthesis, cell antioxidant defense, protein translation and degradation, energy production, signal transduction and cell wall arrangement. Our results showed that P. indica induced a systemic response to salt stress by altering the physiological and proteome responses of the plant host.


Assuntos
Basidiomycota/fisiologia , Endófitos/fisiologia , Hordeum/microbiologia , Hordeum/fisiologia , Raízes de Plantas/microbiologia , Tolerância ao Sal/genética , Simbiose , Basidiomycota/genética , Endófitos/genética , Hordeum/genética , Hordeum/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Potássio/metabolismo , Proteômica , Sódio/metabolismo , Cloreto de Sódio/metabolismo , Estresse Fisiológico
20.
PLoS One ; 8(6): e66372, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23824690

RESUMO

BACKGROUND: Witches' broom disease of Mexican lime (Citrus aurantifolia L.), which is associated to the phytoplasma 'Candidatus Phytoplasma aurantifolia', is a devastating disease that results in significant economic losses. Plants adapt to biotic stresses by regulating gene expression at the transcriptional and post-transcriptional levels. MicroRNAs (miRNAs) are a recently identified family of molecules that regulate plant responses to environmental stresses through post-transcriptional gene silencing. METHODS: Using a high-throughput approach to sequence small RNAs, we compared the expression profiles of miRNAs in healthy Mexican lime trees and in plants infected with 'Ca. P. aurantifolia'. RESULTS: Our results demonstrated the involvement of different miRNAs in the response of Mexican lime trees to infection by 'Ca. P. aurantifolia'. We identified miRNA families that are expressed differentially upon infection with phytoplasmas. Most of the miRNAs had variants with small sequence variations (isomiRs), which are expressed differentially in response to pathogen infection. CONCLUSIONS: It is likely that the miRNAs that are expressed differentially in healthy and phytoplasma-infected Mexican lime trees are involved in coordinating the regulation of hormonal, nutritional, and stress signalling pathways, and the complex interactions between them. Future research to elucidate the roles of these miRNAs should improve our understanding of the level of diversity of specific plant responses to phytoplasmas.


Assuntos
Citrus/metabolismo , MicroRNAs/fisiologia , Phytoplasma/fisiologia , Transdução de Sinais , Estresse Fisiológico , Inativação Gênica , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/genética , Phytoplasma/genética , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA