Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Cogn Affect Behav Neurosci ; 23(1): 66-83, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36109422

RESUMO

Heart rate variability is a robust biomarker of emotional well-being, consistent with the shared brain networks regulating emotion regulation and heart rate. While high heart rate oscillatory activity clearly indicates healthy regulatory brain systems, can increasing this oscillatory activity also enhance brain function? To test this possibility, we randomly assigned 106 young adult participants to one of two 5-week interventions involving daily biofeedback that either increased heart rate oscillations (Osc+ condition) or had little effect on heart rate oscillations (Osc- condition) and examined effects on brain activity during rest and during regulating emotion. While there were no significant changes in the right amygdala-medial prefrontal cortex (MPFC) functional connectivity (our primary outcome), the Osc+ intervention increased left amygdala-MPFC functional connectivity and functional connectivity in emotion-related resting-state networks during rest. It also increased down-regulation of activity in somatosensory brain regions during an emotion regulation task. The Osc- intervention did not have these effects. In this healthy cohort, the two conditions did not differentially affect anxiety, depression, or mood. These findings indicate that modulating heart rate oscillatory activity changes emotion network coordination in the brain.


Assuntos
Encéfalo , Emoções , Adulto Jovem , Humanos , Frequência Cardíaca/fisiologia , Emoções/fisiologia , Córtex Pré-Frontal/fisiologia , Tonsila do Cerebelo/fisiologia , Imageamento por Ressonância Magnética , Vias Neurais/fisiologia , Mapeamento Encefálico
2.
Neural Comput ; 31(7): 1327-1355, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31113305

RESUMO

This letter proposes a novel method, multi-input, multi-output neuronal mode network (MIMO-NMN), for modeling encoding dynamics and functional connectivity in neural ensembles such as the hippocampus. Compared with conventional approaches such as the Volterra-Wiener model, linear-nonlinear-cascade (LNC) model, and generalized linear model (GLM), the NMN has several advantages in terms of estimation accuracy, model interpretation, and functional connectivity analysis. We point out the limitations of current neural spike modeling methods, especially the estimation biases caused by the imbalanced class problem when the number of zeros is significantly larger than ones in the spike data. We use synthetic data to test the performance of NMN with a comparison of the traditional methods, and the results indicate the NMN approach could reduce the imbalanced class problem and achieve better predictions. Subsequently, we apply the MIMO-NMN method to analyze data from the human hippocampus. The results indicate that the MIMO-NMN method is a promising approach to modeling neural dynamics and analyzing functional connectivity of multi-neuronal data.


Assuntos
Simulação por Computador , Modelos Neurológicos , Rede Nervosa/fisiologia , Neurônios/fisiologia , Potenciais de Ação/fisiologia , Hipocampo/fisiologia , Humanos , Dinâmica não Linear
3.
Neural Comput ; 30(1): 149-183, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29064783

RESUMO

This letter examines the results of input-output (nonparametric) modeling based on the analysis of data generated by a mechanism-based (parametric) model of CA3-CA1 neuronal connections in the hippocampus. The motivation is to obtain biological insight into the interpretation of such input-output (Volterra-equivalent) models estimated from synthetic data. The insights obtained may be subsequently used to interpretat input-output models extracted from actual experimental data. Specifically, we found that a simplified parametric model may serve as a useful tool to study the signal transformations in the hippocampal CA3-CA1 regions. Input-output modeling of model-based synthetic data show that GABAergic interneurons are responsible for regulating neuronal excitation, controlling the precision of spike timing, and maintaining network oscillations, in a manner consistent with previous studies. The input-output model obtained from real data exhibits intriguing similarities with its synthetic-data counterpart, demonstrating the importance of a dynamic resonance in the system/model response around 2 Hz to 3 Hz. Using the input-output model from real data as a guide, we may be able to amend the parametric model by incorporating more mechanisms in order to yield better-matching input-output model. The approach we present can also be applied to the study of other neural systems and pathways.


Assuntos
Região CA1 Hipocampal/citologia , Região CA3 Hipocampal/citologia , Modelos Neurológicos , Redes Neurais de Computação , Neurônios/fisiologia , Sinapses/fisiologia , Potenciais de Ação/fisiologia , Animais , Região CA1 Hipocampal/fisiologia , Região CA3 Hipocampal/fisiologia , Humanos , Inibição Neural/fisiologia , Dinâmica não Linear , Receptores de GABA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
4.
Neural Comput ; 30(5): 1180-1208, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29566356

RESUMO

Neurostimulation is a promising therapy for abating epileptic seizures. However, it is extremely difficult to identify optimal stimulation patterns experimentally. In this study, human recordings are used to develop a functional 24 neuron network statistical model of hippocampal connectivity and dynamics. Spontaneous seizure-like activity is induced in silico in this reconstructed neuronal network. The network is then used as a testbed to design and validate a wide range of neurostimulation patterns. Commonly used periodic trains were not able to permanently abate seizures at any frequency. A simulated annealing global optimization algorithm was then used to identify an optimal stimulation pattern, which successfully abated 92% of seizures. Finally, in a fully responsive, or closed-loop, neurostimulation paradigm, the optimal stimulation successfully prevented the network from entering the seizure state. We propose that the framework presented here for algorithmically identifying patient-specific neurostimulation patterns can greatly increase the efficacy of neurostimulation devices for seizures.


Assuntos
Encéfalo/fisiologia , Terapia por Estimulação Elétrica/métodos , Hipocampo/patologia , Modelos Neurológicos , Convulsões/patologia , Convulsões/terapia , Algoritmos , Simulação por Computador , Eletroencefalografia , Hipocampo/fisiopatologia , Humanos , Neurônios/fisiologia , Dinâmica não Linear , Convulsões/diagnóstico por imagem , Convulsões/fisiopatologia
5.
PLoS Comput Biol ; 13(7): e1005624, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28686594

RESUMO

Much of the research on cannabinoids (CBs) has focused on their effects at the molecular and synaptic level. However, the effects of CBs on the dynamics of neural circuits remains poorly understood. This study aims to disentangle the effects of CBs on the functional dynamics of the hippocampal Schaffer collateral synapse by using data-driven nonparametric modeling. Multi-unit activity was recorded from rats doing an working memory task in control sessions and under the influence of exogenously administered tetrahydrocannabinol (THC), the primary CB found in marijuana. It was found that THC left firing rate unaltered and only slightly reduced theta oscillations. Multivariate autoregressive models, estimated from spontaneous spiking activity, were then used to describe the dynamical transformation from CA3 to CA1. They revealed that THC served to functionally isolate CA1 from CA3 by reducing feedforward excitation and theta information flow. The functional isolation was compensated by increased feedback excitation within CA1, thus leading to unaltered firing rates. Finally, both of these effects were shown to be correlated with memory impairments in the working memory task. By elucidating the circuit mechanisms of CBs, these results help close the gap in knowledge between the cellular and behavioral effects of CBs.


Assuntos
Região CA1 Hipocampal/efeitos dos fármacos , Região CA3 Hipocampal/efeitos dos fármacos , Canabinoides/farmacologia , Memória de Curto Prazo/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Biologia Computacional , Masculino , Modelos Neurológicos , Ratos , Ratos Long-Evans , Análise e Desempenho de Tarefas
6.
J Comput Neurosci ; 38(1): 89-103, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25260381

RESUMO

Although an anatomical connection from CA1 to CA3 via the Entorhinal Cortex (EC) and through backprojecting interneurons has long been known it exist, it has never been examined quantitatively on the single neuron level, in the in-vivo nonpatholgical, nonperturbed brain. Here, single spike activity was recorded using a multi-electrode array from the CA3 and CA1 areas of the rodent hippocampus (N = 7) during a behavioral task. The predictive power from CA3→CA1 and CA1→CA3 was examined by constructing Multivariate Autoregressive (MVAR) models from recorded neurons in both directions. All nonsignificant inputs and models were identified and removed by means of Monte Carlo simulation methods. It was found that 121/166 (73 %) CA3→CA1 models and 96/145 (66 %) CA1→CA3 models had significant predictive power, thus confirming a predictive 'Granger' causal relationship from CA1 to CA3. This relationship is thought to be caused by a combination of truly causal connections such as the CA1→EC→CA3 pathway and common inputs such as those from the Septum. All MVAR models were then examined in the frequency domain and it was found that CA3 kernels had significantly more power in the theta and beta range than those of CA1, confirming CA3's role as an endogenous hippocampal pacemaker.


Assuntos
Potenciais de Ação/fisiologia , Região CA1 Hipocampal/fisiologia , Região CA3 Hipocampal/fisiologia , Modelos Neurológicos , Rede Nervosa/fisiologia , Neurônios/fisiologia , Animais , Ondas Encefálicas , Região CA1 Hipocampal/citologia , Região CA3 Hipocampal/citologia , Masculino , Método de Monte Carlo , Vias Neurais/fisiologia , Dinâmica não Linear , Curva ROC , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Estatísticas não Paramétricas
7.
J Vis ; 15(9): 16, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26230978

RESUMO

Receptive field identification is a vital problem in sensory neurophysiology and vision. Much research has been done in identifying the receptive fields of nonlinear neurons whose firing rate is determined by the nonlinear interactions of a small number of linear filters. Despite more advanced methods that have been proposed, spike-triggered covariance (STC) continues to be the most widely used method in such situations due to its simplicity and intuitiveness. Although the connection between STC and Wiener/Volterra kernels has often been mentioned in the literature, this relationship has never been explicitly derived. Here we derive this relationship and show that the STC matrix is actually a modified version of the second-order Wiener kernel, which incorporates the input autocorrelation and mixes first- and second-order dynamics. It is then shown how, with little modification of the STC method, the Wiener kernels may be obtained and, from them, the principal dynamic modes, a set of compact and efficient linear filters that essentially combine the spike-triggered average and STC matrix and generalize to systems with both continuous and point-process outputs. Finally, using Wiener theory, we show how these obtained filters may be corrected when they were estimated using correlated inputs. Our correction technique is shown to be superior to those commonly used in the literature for both correlated Gaussian images and natural images.


Assuntos
Modelos Teóricos , Reconhecimento Visual de Modelos/fisiologia , Detecção de Sinal Psicológico , Campos Visuais/fisiologia , Humanos , Matemática , Distribuição Normal , Neurônios Retinianos/fisiologia
8.
J Cereb Blood Flow Metab ; : 271678X241254716, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748923

RESUMO

We studied the regulation dynamics of cerebral blood velocity (CBv) at middle cerebral arteries (MCA) in response to spontaneous changes of arterial blood pressure (ABP), termed dynamic cerebral autoregulation (dCA), and end-tidal CO2 as proxy for blood CO2 tension, termed dynamic vasomotor reactivity (DVR), by analyzing time-series data collected at supine rest from 36 patients with Type-2 Diabetes Mellitus (T2DM) and 22 age/sex-matched non-diabetic controls without arterial hypertension. Our analysis employed a robust dynamic modeling methodology that utilizes Principal Dynamic Modes (PDM) to estimate subject-specific dynamic transformations of spontaneous changes in ABP and end-tidal CO2 (viewed as two "inputs") into changes of CBv at MCA measured via Transcranial Doppler ultrasound (viewed as the "output"). The quantitative results of PDM analysis indicate significant alterations in T2DM of both DVR and dCA in terms of two specific PDM contributions that rise to significance (p < 0.05). Our results further suggest that the observed DVR and dCA alterations may be due to reduction of cholinergic activity (based on previously published results from cholinergic blockade data) that may disturb the sympatho-vagal balance in T2DM. Combination of these two model-based "physio-markers" differentiated T2DM patients from controls (p = 0.0007), indicating diabetes-related alteration of cerebrovascular regulation, with possible diagnostic implications.

9.
J Cereb Blood Flow Metab ; : 271678X241249276, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38688529

RESUMO

Cerebral Autoregulation (CA) is an important physiological mechanism stabilizing cerebral blood flow (CBF) in response to changes in cerebral perfusion pressure (CPP). By maintaining an adequate, relatively constant supply of blood flow, CA plays a critical role in brain function. Quantifying CA under different physiological and pathological states is crucial for understanding its implications. This knowledge may serve as a foundation for informed clinical decision-making, particularly in cases where CA may become impaired. The quantification of CA functionality typically involves constructing models that capture the relationship between CPP (or arterial blood pressure) and experimental measures of CBF. Besides describing normal CA function, these models provide a means to detect possible deviations from the latter. In this context, a recent white paper from the Cerebrovascular Research Network focused on Transfer Function Analysis (TFA), which obtains frequency domain estimates of dynamic CA. In the present paper, we consider the use of time-domain techniques as an alternative approach. Due to their increased flexibility, time-domain methods enable the mitigation of measurement/physiological noise and the incorporation of nonlinearities and time variations in CA dynamics. Here, we provide practical recommendations and guidelines to support researchers and clinicians in effectively utilizing these techniques to study CA.

10.
Front Comput Neurosci ; 18: 1263311, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38390007

RESUMO

Objective: Here, we demonstrate the first successful use of static neural stimulation patterns for specific information content. These static patterns were derived by a model that was applied to a subject's own hippocampal spatiotemporal neural codes for memory. Approach: We constructed a new model of processes by which the hippocampus encodes specific memory items via spatiotemporal firing of neural ensembles that underlie the successful encoding of targeted content into short-term memory. A memory decoding model (MDM) of hippocampal CA3 and CA1 neural firing was computed which derives a stimulation pattern for CA1 and CA3 neurons to be applied during the encoding (sample) phase of a delayed match-to-sample (DMS) human short-term memory task. Main results: MDM electrical stimulation delivered to the CA1 and CA3 locations in the hippocampus during the sample phase of DMS trials facilitated memory of images from the DMS task during a delayed recognition (DR) task that also included control images that were not from the DMS task. Across all subjects, the stimulated trials exhibited significant changes in performance in 22.4% of patient and category combinations. Changes in performance were a combination of both increased memory performance and decreased memory performance, with increases in performance occurring at almost 2 to 1 relative to decreases in performance. Across patients with impaired memory that received bilateral stimulation, significant changes in over 37.9% of patient and category combinations was seen with the changes in memory performance show a ratio of increased to decreased performance of over 4 to 1. Modification of memory performance was dependent on whether memory function was intact or impaired, and if stimulation was applied bilaterally or unilaterally, with nearly all increase in performance seen in subjects with impaired memory receiving bilateral stimulation. Significance: These results demonstrate that memory encoding in patients with impaired memory function can be facilitated for specific memory content, which offers a stimulation method for a future implantable neural prosthetic to improve human memory.

11.
J Comput Neurosci ; 34(1): 163-83, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22878687

RESUMO

We propose a new variant of Volterra-type model with a nonlinear auto-regressive (NAR) component that is a suitable framework for describing the process of AP generation by the neuron membrane potential, and we apply it to input-output data generated by the Hodgkin-Huxley (H-H) equations. Volterra models use a functional series expansion to describe the input-output relation for most nonlinear dynamic systems, and are applicable to a wide range of physiologic systems. It is difficult, however, to apply the Volterra methodology to the H-H model because is characterized by distinct subthreshold and suprathreshold dynamics. When threshold is crossed, an autonomous action potential (AP) is generated, the output becomes temporarily decoupled from the input, and the standard Volterra model fails. Therefore, in our framework, whenever membrane potential exceeds some threshold, it is taken as a second input to a dual-input Volterra model. This model correctly predicts membrane voltage deflection both within the subthreshold region and during APs. Moreover, the model naturally generates a post-AP afterpotential and refractory period. It is known that the H-H model converges to a limit cycle in response to a constant current injection. This behavior is correctly predicted by the proposed model, while the standard Volterra model is incapable of generating such limit cycle behavior. The inclusion of cross-kernels, which describe the nonlinear interactions between the exogenous and autoregressive inputs, is found to be absolutely necessary. The proposed model is general, non-parametric, and data-derived.


Assuntos
Potenciais da Membrana/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Dinâmica não Linear , Animais , Estimulação Elétrica , Humanos , Matemática , Valor Preditivo dos Testes , Período Refratário Eletrofisiológico , Fatores de Tempo
12.
J Comput Neurosci ; 34(1): 73-87, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23011343

RESUMO

A methodology for nonlinear modeling of multi-input multi-output (MIMO) neuronal systems is presented that utilizes the concept of Principal Dynamic Modes (PDM). The efficacy of this new methodology is demonstrated in the study of the dynamic interactions between neuronal ensembles in the Pre-Frontal Cortex (PFC) of a behaving non-human primate (NHP) performing a Delayed Match-to-Sample task. Recorded spike trains from Layer-2 and Layer-5 neurons were viewed as the "inputs" and "outputs", respectively, of a putative MIMO system/model that quantifies the dynamic transformation of multi-unit neuronal activity between Layer-2 and Layer-5 of the PFC. Model prediction performance was evaluated by means of computed Receiver Operating Characteristic (ROC) curves. The PDM-based approach seeks to reduce the complexity of MIMO models of neuronal ensembles in order to enable the practicable modeling of large-scale neural systems incorporating hundreds or thousands of neurons, which is emerging as a preeminent issue in the study of neural function. The "scaling-up" issue has attained critical importance as multi-electrode recordings are increasingly used to probe neural systems and advance our understanding of integrated neural function. The initial results indicate that the PDM-based modeling methodology may greatly reduce the complexity of the MIMO model without significant degradation of performance. Furthermore, the PDM-based approach offers the prospect of improved biological/physiological interpretation of the obtained MIMO models.


Assuntos
Modelos Neurológicos , Neurônios/fisiologia , Dinâmica não Linear , Potenciais de Ação/fisiologia , Humanos , Rede Nervosa/fisiologia , Curva ROC
13.
J Comput Neurosci ; 35(3): 335-57, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23674048

RESUMO

One key problem in computational neuroscience and neural engineering is the identification and modeling of functional connectivity in the brain using spike train data. To reduce model complexity, alleviate overfitting, and thus facilitate model interpretation, sparse representation and estimation of functional connectivity is needed. Sparsities include global sparsity, which captures the sparse connectivities between neurons, and local sparsity, which reflects the active temporal ranges of the input-output dynamical interactions. In this paper, we formulate a generalized functional additive model (GFAM) and develop the associated penalized likelihood estimation methods for such a modeling problem. A GFAM consists of a set of basis functions convolving the input signals, and a link function generating the firing probability of the output neuron from the summation of the convolutions weighted by the sought model coefficients. Model sparsities are achieved by using various penalized likelihood estimations and basis functions. Specifically, we introduce two variations of the GFAM using a global basis (e.g., Laguerre basis) and group LASSO estimation, and a local basis (e.g., B-spline basis) and group bridge estimation, respectively. We further develop an optimization method based on quadratic approximation of the likelihood function for the estimation of these models. Simulation and experimental results show that both group-LASSO-Laguerre and group-bridge-B-spline can capture faithfully the global sparsities, while the latter can replicate accurately and simultaneously both global and local sparsities. The sparse models outperform the full models estimated with the standard maximum likelihood method in out-of-sample predictions.


Assuntos
Funções Verossimilhança , Vias Neurais/fisiologia , Neurônios/fisiologia , Algoritmos , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/fisiologia , Região CA3 Hipocampal/citologia , Região CA3 Hipocampal/fisiologia , Simulação por Computador , Fenômenos Eletrofisiológicos/fisiologia , Modelos Lineares , Memória/fisiologia , Modelos Neurológicos , Ratos
14.
Sci Data ; 10(1): 503, 2023 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-37516756

RESUMO

We present data from the Heart Rate Variability and Emotion Regulation (HRV-ER) randomized clinical trial testing effects of HRV biofeedback. Younger (N = 121) and older (N = 72) participants completed baseline magnetic resonance imaging (MRI) including T1-weighted, resting and emotion regulation task functional MRI (fMRI), pulsed continuous arterial spin labeling (PCASL), and proton magnetic resonance spectroscopy (1H MRS). During fMRI scans, physiological measures (blood pressure, pulse, respiration, and end-tidal CO2) were continuously acquired. Participants were randomized to either increase heart rate oscillations or decrease heart rate oscillations during daily sessions. After 5 weeks of HRV biofeedback, they repeated the baseline measurements in addition to new measures (ultimatum game fMRI, training mimicking during blood oxygen level dependent (BOLD) and PCASL fMRI). Participants also wore a wristband sensor to estimate sleep time. Psychological assessment comprised three cognitive tests and ten questionnaires related to emotional well-being. A subset (N = 104) provided plasma samples pre- and post-intervention that were assayed for amyloid and tau. Data is publicly available via the OpenNeuro data sharing platform.


Assuntos
Biorretroalimentação Psicológica , Neuroimagem , Humanos , Bioensaio , Pressão Sanguínea , Frequência Cardíaca , Ensaios Clínicos Controlados Aleatórios como Assunto
15.
J Neurophysiol ; 107(7): 1808-21, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22157112

RESUMO

Intracortical recordings comprise both fast events, action potentials (APs), and slower events, known as local field potentials (LFPs). Although it is believed that LFPs mostly reflect local synaptic activity, it is unclear which of their signal components are most closely related to synaptic potentials and would therefore be causally related to the occurrence of individual APs. This issue is complicated by the significant contribution from AP waveforms, especially at higher LFP frequencies. In recordings of single-cell activity and LFPs from the human temporal cortex, we computed quantitative, nonlinear, causal dynamic models for the prediction of AP timing from LFPs, at millisecond resolution, before and after removing AP contributions to the LFP. In many cases, the timing of a significant number of single APs could be predicted from spike-free LFPs at different frequencies. Not surprisingly, model performance was superior when spikes were not removed. Cells whose activity was predicted by the spike-free LFP models generally fell into one of two groups: in the first group, neuronal spike activity was associated with specific phases of low LFP frequencies, lower spike activity at high LFP frequencies, and a stronger linear component in the spike-LFP model; in the second group, neuronal spike activity was associated with larger amplitude of high LFP frequencies, less frequent phase locking, and a stronger nonlinear model component. Spike timing in the first group was better predicted by the sign and level of the LFP preceding the spike, whereas spike timing in the second group was better predicted by LFP power during a certain time window before the spike.


Assuntos
Potenciais de Ação/fisiologia , Potenciais Evocados/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Lobo Temporal/citologia , Lobo Temporal/fisiologia , Adulto , Mapeamento Encefálico , Eletroencefalografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Estatísticos , Aprendizagem por Associação de Pares/fisiologia , Fatores de Tempo , Aprendizagem Verbal
16.
Front Physiol ; 13: 1015544, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36406984

RESUMO

Background: Cerebral flow autoregulation (CFA) is a homeostatic mechanism critical for survival. The autonomic nervous system (ANS) plays a key role in maintaining proper CFA function. More quantitative studies of how the ANS influences CFA are desirable. Objective: To discover and quantify the dynamic effects of cholinergic blockade upon CFA in response to changes of arterial blood pressure and blood CO2 tension in healthy adults. Methods: We analyzed time-series data of spontaneous beat-to-beat mean arterial blood pressure (ABP) and cerebral blood flow velocity in the middle cerebral arteries (CFV), as well as breath-to-breath end-tidal CO2 (CO2), collected in 9 adults before and after cholinergic blockade, in order to obtain subject-specific predictive input-output models of the dynamic effects of changes in ABP and CO2 (inputs) upon CFV (output). These models are defined in convolutional form using "kernel" functions (or, equivalently, Transfer Functions in the frequency domain) that are estimated via the robust method of Laguerre expansions. Results: Cholinergic blockade caused statistically significant changes in the obtained kernel estimates (and the corresponding Transfer Functions) that define the linear dynamics of the ABP-to-CFV and CO2-to-CFV causal relations. The kernel changes due to cholinergic blockade reflect the effects of the cholinergic mechanism and exhibited, in the frequency domain, resonant peaks at 0.22 Hz and 0.06 Hz for the ABP-to-CFV and CO2-to-CFV dynamics, respectively. Conclusion: Quantitative estimates of the dynamics of the cholinergic component in CFA are found as average changes of the ABP-to-CFV and CO2-to-CFV kernels, and corresponding Transfer Functions, before and after cholinergic blockade.

18.
Front Hum Neurosci ; 16: 933401, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35959242

RESUMO

RATIONALE: Deep brain stimulation (DBS) of the hippocampus is proposed for enhancement of memory impaired by injury or disease. Many pre-clinical DBS paradigms can be addressed in epilepsy patients undergoing intracranial monitoring for seizure localization, since they already have electrodes implanted in brain areas of interest. Even though epilepsy is usually not a memory disorder targeted by DBS, the studies can nevertheless model other memory-impacting disorders, such as Traumatic Brain Injury (TBI). METHODS: Human patients undergoing Phase II invasive monitoring for intractable epilepsy were implanted with depth electrodes capable of recording neurophysiological signals. Subjects performed a delayed-match-to-sample (DMS) memory task while hippocampal ensembles from CA1 and CA3 cell layers were recorded to estimate a multi-input, multi-output (MIMO) model of CA3-to-CA1 neural encoding and a memory decoding model (MDM) to decode memory information from CA3 and CA1 neuronal signals. After model estimation, subjects again performed the DMS task while either MIMO-based or MDM-based patterned stimulation was delivered to CA1 electrode sites during the encoding phase of the DMS trials. Each subject was sorted (post hoc) by prior experience of repeated and/or mild-to-moderate brain injury (RMBI), TBI, or no history (control) and scored for percentage successful delayed recognition (DR) recall on stimulated vs. non-stimulated DMS trials. The subject's medical history was unknown to the experimenters until after individual subject memory retention results were scored. RESULTS: When examined compared to control subjects, both TBI and RMBI subjects showed increased memory retention in response to both MIMO and MDM-based hippocampal stimulation. Furthermore, effects of stimulation were also greater in subjects who were evaluated as having pre-existing mild-to-moderate memory impairment. CONCLUSION: These results show that hippocampal stimulation for memory facilitation was more beneficial for subjects who had previously suffered a brain injury (other than epilepsy), compared to control (epilepsy) subjects who had not suffered a brain injury. This study demonstrates that the epilepsy/intracranial recording model can be extended to test the ability of DBS to restore memory function in subjects who previously suffered a brain injury other than epilepsy, and support further investigation into the beneficial effect of DBS in TBI patients.

19.
Behav Pharmacol ; 22(4): 335-46, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21558844

RESUMO

It has previously been demonstrated that the detrimental effect on the performance of a delayed nonmatch to sample (DNMS) memory task by exogenously administered cannabinoid (CB1) receptor agonist, WIN 55212-2 (WIN), is reversed by the receptor antagonist rimonabant. In addition, rimonabant administered alone elevates DNMS performance, presumably through the suppression of negative modulation by released endocannabinoids during normal task performance. Other investigations have shown that rimonabant enhances encoding of DNMS task-relevant information on a trial-by-trial, delay-dependent basis. In this study, these reciprocal pharmacological actions were completely characterized by long-term, chronic intrahippocampal infusion of both agents (WIN and rimonabant) in successive 2-week intervals. Such long-term exposure allowed extraction and confirmation of task-related firing patterns, in which rimonabant reversed the effects of CB1 agonists. This information was then utilized to artificially impose the facilitatory effects of rimonabant and to reverse the effects of WIN on DNMS performance, by delivering multichannel electrical stimulation in the same firing patterns to the same hippocampal regions. Direct comparison of normal and WIN-injected subjects, in which rimonabant injections and ensemble firing facilitated performance, verified reversal of the modulation of hippocampal memory processes by CB1 receptor agonists, including released endocannabinoids.


Assuntos
Canabinoides/farmacologia , Hipocampo/fisiologia , Memória/fisiologia , Receptor CB1 de Canabinoide/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Benzamidas/farmacologia , Benzoxazinas/farmacologia , Compostos de Bifenilo/farmacologia , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/efeitos dos fármacos , Carbamatos/farmacologia , Estimulação Elétrica , Eletrodos Implantados , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Injeções , Masculino , Morfolinas/farmacologia , Naftalenos/farmacologia , Neurônios/efeitos dos fármacos , Piperidinas/farmacologia , Pirazóis/farmacologia , Ratos , Ratos Long-Evans , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/antagonistas & inibidores , Rimonabanto
20.
Front Physiol ; 12: 772456, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34955886

RESUMO

Background: Recent studies have utilized data-based dynamic modeling to establish strong association between dysregulation of cerebral perfusion and Mild Cognitive Impairment (MCI), expressed in terms of impaired CO2 dynamic vasomotor reactivity in the cerebral vasculature. This raises the question of whether this is due to dysregulation of central mechanisms (baroreflex and chemoreflex) or mechanisms of cortical tissue oxygenation (CTO) in MCI patients. We seek to answer this question using data-based input-output predictive dynamic models. Objective: To use subject-specific data-based multivariate input-output dynamic models to quantify the effects of systemic hemodynamic and blood CO2 changes upon CTO and to examine possible differences in CTO regulation in MCI patients versus age-matched controls, after the dynamic effects of central regulatory mechanisms have been accounted for by using cerebral flow measurements as another input. Methods: The employed model-based approach utilized the general dynamic modeling methodology of Laguerre expansions of kernels to analyze spontaneous time-series data in order to quantify the dynamic effects upon CTO (an index of relative capillary hemoglobin saturation distribution measured via near-infrared spectroscopy) of contemporaneous changes in end-tidal CO2 (proxy for arterial CO2), arterial blood pressure and cerebral blood flow velocity in the middle cerebral arteries (measured via transcranial Doppler). Model-based indices (physio-markers) were computed for these distinct dynamic relationships. Results: The obtained model-based indices revealed significant statistical differences of CO2 dynamic vasomotor reactivity in cortical tissue, combined with "perfusivity" that quantifies the dynamic relationship between flow velocity in cerebral arteries and CTO in MCI patients versus age-matched controls (p = 0.006). Significant difference between MCI patients and age-matched controls was also found in the respective model-prediction accuracy (p = 0.0001). Combination of these model-based indices via the Fisher Discriminant achieved even smaller p-value (p = 5 × 10-5) when comparing MCI patients with controls. The differences in dynamics of CTO in MCI patients are in lower frequencies (<0.05 Hz), suggesting impairment in endocrine/metabolic (rather than neural) mechanisms. Conclusion: The presented model-based approach elucidates the multivariate dynamic connectivity in the regulation of cerebral perfusion and yields model-based indices that may serve as physio-markers of possible dysregulation of CTO during transient CO2 changes in MCI patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA