Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Ano de publicação
Intervalo de ano de publicação
1.
J Infect Public Health ; 11(4): 463-471, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29150378

RESUMO

BACKGROUND: Increased incidence of Multi-drug resistance in microorganisms has become the greatest challenge in the treatment of Diabetic Foot Ulcer (DFU) and urges the need of a new antimicrobial agent. In this study, we determined the bactericidal effects of ZnO nanoparticles (ZnO NPs) green synthesized from Aristolochia indica against Multi-drug Resistant Organisms (MDROs) isolated from pus samples of DFU patients attending in a tertiary care hospital in South India. METHODS: ZnO NPs were characterized by UV-vis-DRS spectroscopy, Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM) and for its zeta potential value. MIC/MBC assays were performed to determine bactericidal or bacteriostatic effects. Time-kill assays, Protein leakage and Flow cytometric analysis evaluated bacterial cell death at 1x MIC and 2x MIC concentrations of ZnO NPs. RESULTS: ZnO NPs of size 22.5nm with a zeta potential of -21.9±1mV exhibited remarkable bactericidal activity with MIC/MBC ranging from 25 to 400µg/ml with a significant reduction in viable count from 2h onwards. Protein leakage and Flow cytometric analysis confirmed bacterial cell death due to ZnO NPs. CONCLUSION: This study concluded that green synthesis protocol offers reliable, eco-friendly approach towards the development of antimicrobial ZnO NPs to combat antibiotic drug resistance.


Assuntos
Antibacterianos/farmacologia , Aristolochia/química , Pé Diabético/tratamento farmacológico , Pé Diabético/microbiologia , Óxido de Zinco/farmacologia , Antibacterianos/química , Pé Diabético/epidemiologia , Farmacorresistência Bacteriana Múltipla , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/isolamento & purificação , Bactérias Gram-Negativas/patogenicidade , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/isolamento & purificação , Bactérias Gram-Positivas/patogenicidade , Humanos , Índia/epidemiologia , Testes de Sensibilidade Microbiana , Nanopartículas/química , Extratos Vegetais/química , Folhas de Planta/química , Óxido de Zinco/química
2.
J Adv Res ; 9: 69-77, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30046488

RESUMO

Nanobiotechnology has been emerged as an efficient technology for the development of antimicrobial nanoparticles through an eco-friendly approach. In this study, green synthesized phytonanocomposite of ZnO from Strychnos nux-vomica leaf aqueous extract was characterized by X-ray diffraction analysis (XRD), UV-visible-spectroscopy, Photoluminescence spectroscopy (PL), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), High-resolution Transmission Electron Microscopy (HR-TEM), and Energy dispersive X-ray analysis (EDX). Antibacterial activity was investigated against multidrug-resistant bacteria (MDR) isolated from diabetic foot ulcers (DFUs), such as MDR-methicillin resistant Staphylococcus aureus (MRSA), MDR-Escherichia coli, MDR-Pseudomonas aeruginosa, MDR-Acinetobacter baumannii, as well as against standard bacterial strains, S. aureus ATCC 29213, E. coli ATCC 25922, P. aeruginosa ATCC 27853, and E. faecalis ATCC 29212 through disc diffusion assays on Muller Hinton Agar. The characterization studies revealed a size-controlled synthesis of quasi-spherical hexagonal wurtzite structured ZnO phytonanocomposite with an average size of 15.52 nm. Additionally, remarkable bactericidal activities against MDR clinical as well as ATCC bacterial strains were exhibited, with a maximum zone of inhibition of 22.33 ±â€¯1.53 mm (against S. aureus ATCC 29213) and 22.33 ±â€¯1.16 mm (MDR-MRSA) at a concentration of 400 µg/mL. This study thus established the possibility of developing antimicrobial ZnO nanocomposite of Strychnos nux-vomica leaf extract to combat developing drug resistance currently being experienced in health care facilities.

3.
J Trace Elem Med Biol ; 50: 229-239, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30262284

RESUMO

Multidrug resistance in bacterial strains has become the greatest challenge for healthcare professionals for treating non-healing ulcers such as diabetic foot infections (DFI). Plant-mediated synthesis of S. nux-vomica-ZnO nanocomposite appears as a potential new alternative therapeutic agent that might be capable of tackling antibiotic-resistant bacterial pathogens and for treating a non-healing ulcer. The aim of the study was to investigate the antibacterial potential of S. nux-vomica-ZnO nanocomposite biosynthesised from Strychnos nux-vomica against multidrug-resistant organisms (MDROs) from DFU, wound-healing properties, and cytotoxic effects. The antibacterial potential was assessed by minimum inhibitory concentration (MIC)/ minimum bactericidal concentration (MBC) assays, time-kill kinetics, protein-leakage, and flow cytometric analysis. The wound-healing properties were assessed by scratch assay on mouse L929 fibroblastic cell line to quantify cell migration towards the injured area. Cytotoxicity was assessed using 3-[4,5-dimethyl-2-thiazol-yl]-2,5-diphenyl- 2H-tetrazolium bromide (MTT) cellular viability assay on the L929 cell line and human embryonic kidney epithelial (HEK-293) cell line. Strychnos nux-vomica-ZnO nanocomposite at a size range of 10-12 nm exhibited significant bactericidal potency at a concentration of 100-200 µg/ml against MDR-Methicillin-resistant Staphylococcus aureus, MDR-Escherichia coli, MDR-Pseudomonas aeruginosa, MDR-Acinetobacter baumannii, and also against standard bacterial strains S. aureus ATCC 29213, E. coli ATCC 25922, P. aeruginosa ATCC 27853, E. faecalis ATCC 29212. S. nux-vomica-ZnO nanocomposite also exhibited wound-healing and reduced cytotoxic properties at the antimicrobially active concentrations. Our findings thus suggested remarkable bactericidal properties of S. nux-vomica-ZnO nanocomposite and can be further exploited towards for the development of an antibacterial agent against the threatening superbugs.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Nanocompostos/química , Animais , Antibacterianos/efeitos adversos , Linhagem Celular , Escherichia coli/efeitos dos fármacos , Citometria de Fluxo , Células HEK293 , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Nanocompostos/efeitos adversos , Staphylococcus aureus/efeitos dos fármacos , Cicatrização/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA