Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Ano de publicação
Intervalo de ano de publicação
1.
Epilepsia ; 55(5): 644-653, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24621352

RESUMO

OBJECTIVE: Temporal lobe epilepsy is a relatively frequent, invalidating, and often refractory neurologic disorder. It is associated with cognitive impairments that affect memory and executive functions. In the rat lithium-pilocarpine temporal lobe epilepsy model, memory impairment and anxiety disorder are classically reported. Here we evaluated sustained visual attention in this model of epilepsy, a function not frequently explored. METHODS: Thirty-five Sprague-Dawley rats were subjected to lithium-pilocarpine status epilepticus. Twenty of them received a carisbamate treatment for 7 days, starting 1 h after status epilepticus onset. Twelve controls received lithium and saline. Five months later, attention was assessed in the five-choice serial reaction time task, a task that tests visual attention and inhibitory control (impulsivity/compulsivity). Neuronal counting was performed in brain regions of interest to the functions studied (hippocampus, prefrontal cortex, nucleus basalis magnocellularis, and pedunculopontine tegmental nucleus). RESULTS: Lithium-pilocarpine rats developed motor seizures. When they were able to learn the task, they exhibited attention impairment and a tendency toward impulsivity and compulsivity. These disturbances occurred in the absence of neuronal loss in structures classically related to attentional performance, although they seemed to better correlate with neuronal loss in hippocampus. Globally, rats that received carisbamate and developed motor seizures were as impaired as untreated rats, whereas those that did not develop overt motor seizures performed like controls, despite evidence for hippocampal damage. SIGNIFICANCE: This study shows that attention deficits reported by patients with temporal lobe epilepsy can be observed in the lithium-pilocarpine model. Carisbamate prevents the occurrence of motor seizures, attention impairment, impulsivity, and compulsivity in a subpopulation of neuroprotected rats.


Assuntos
Atenção , Modelos Animais de Doenças , Epilepsia Parcial Complexa/psicologia , Epilepsia do Lobo Temporal/psicologia , Função Executiva , Estado Epiléptico/psicologia , Animais , Anticonvulsivantes/farmacologia , Atenção/efeitos dos fármacos , Atenção/fisiologia , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Mapeamento Encefálico , Carbamatos/farmacologia , Contagem de Células , Epilepsia Parcial Complexa/induzido quimicamente , Epilepsia Parcial Complexa/fisiopatologia , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/fisiopatologia , Função Executiva/efeitos dos fármacos , Função Executiva/fisiologia , Inibição Psicológica , Carbonato de Lítio , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Reconhecimento Visual de Modelos/efeitos dos fármacos , Reconhecimento Visual de Modelos/fisiologia , Pilocarpina , Ratos , Ratos Sprague-Dawley , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/fisiologia , Aprendizagem Seriada/efeitos dos fármacos , Aprendizagem Seriada/fisiologia , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/fisiopatologia
2.
Front Behav Neurosci ; 12: 2, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29410617

RESUMO

Proechimys are small terrestrial rodents from Amazon rainforest. Each animal species is adapted to a specific environment in which the animal evolved therefore without comparative approaches unique characteristics of distinct species cannot be fully recognized. Laboratory rodents are exceedingly inbred strains dissociated from their native habitats and their fundamental ecological aspects are abstracted. Thus, the employment of exotic non-model species can be informative and complement conventional animal models. With the aim of promoting comparative studies between the exotic wildlife populations in the laboratory and traditional rodent model, we surveyed a type of synaptic plasticity intimately related to memory encoding in animals. Using theta-burst paradigm, in vitro long-term potentiation (LTP) in the CA1 subfield of hippocampal slices was assessed in the Amazon rodents Proechimys and Wistar rats. Memory, learning and anxiety were investigated through the plus-maze discriminative avoidance task (PM-DAT) and object recognition test. In PM-DAT, both animal species were submitted to two test sessions (3-h and 24-h) after the conditioning training. Proechimys exhibited higher anxiety-like behavior in the training session but during test sessions both species exhibited similar patterns of anxiety-related behavior. After 3-h of the training, Proechimys and Wistar spent significantly less time in the aversive enclosed arm than in the non-aversive arm. But, at 24-h after training, Wistar rats remained less time in the aversive closed arm in comparison with the non-aversive one, while Proechimys rodents spent the same amount of time in both enclosed arms. In the object recognition test, both species were evaluated at 24-h after the acquisition session and similar findings than those of the PM-DAT (24-h) were obtained, suggesting that long-term memory duration did not persist for 24-h in the Amazon rodent. Field excitatory post-synaptic potentials recordings revealed that LTP decays rapidly over time reaching basal levels at 90 min after theta-burst stimulation in Proechimys, contrasting to the stable LTP found in the Wistar rats which was observed throughout 3-h recording period. These findings suggest a link between the LTP decay and the lack of 24-h long-lasting memory process in Proechimys. Nevertheless, why early-phase LTP in Proechimys decays very rapidly remains to be elucidated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA