RESUMO
Differently functionalized porphyrin linkers represent the key compounds for the syntheses of new porphyrin-based metal-organic frameworks (MOFs), which have gathered great interest within the last two decades. Herein we report the synthesis of a large range of 5,15-bis(4-ethoxycarbonylphenyl)porphyrin derivatives, through Suzuki and Sonogashira cross-coupling reactions of an easily accessible corresponding meso-dibrominated trans-A2 B2 -porphyrin with commercially available boronic acids or terminal alkynes. The resulting porphyrins were fully characterized through NMR, MS, and IR spectroscopy and systematically investigated through UV/Vis absorption. Finally, selected structures were saponified to the corresponding carboxylic acids and subsequently proven to be suitable for the synthesis of surface-anchored MOF thin films.
RESUMO
Photoconductivity is a characteristic property of semi-conductors. Herein, we present a photo-conducting crystalline metal-organic framework (MOF) thin film with an on-off photocurrent ratio of two orders of magnitude. These oriented, surface-mounted MOF thin films (SURMOFs), contain porphyrin in the framework backbone and C60 guests, loaded in the pores using a layer-by-layer process. By comparison with results obtained for reference MOF structures and based on DFT calculations, we conclude that donor-acceptor interactions between the porphyrin of the host MOF and the C60 guests give rise to a rapid charge separation. Subsequently, holes and electrons are transported through separate channels formed by porphyrin and by C60 , respectively. The ability to tune the properties and energy levels of the porphyrin and fullerene, along with the controlled organization of donor-acceptor pairs in this regular framework offers potential to increase the photoconduction on-off ratio.
RESUMO
This work presents a new approach to prepare mono- and disubstituted linear rigid bimetallic [2.2]paracyclophane-porphyrin conjugates via palladium-mediated Stille cross-coupling reaction. The metalated porphyrin moiety can be varied allowing convenient access to modular metal-metal fixed-distance Cu/Zn complexes.