Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Neurochem ; 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37929637

RESUMO

The metabolic demands of neuronal activity are both temporally and spatially dynamic, and neurons are particularly sensitive to disruptions in fuel and oxygen supply. Glucose is considered an obligate fuel for supporting brain metabolism. Although alternative fuels are often available, the extent of their contribution to central carbon metabolism remains debated. Differential fuel metabolism likely depends on cell type, location, and activity state, complicating its study. While biosensors provide excellent spatial and temporal information, they are limited to observations of only a few metabolites. On the other hand, mass spectrometry is rich in chemical information, but traditionally relies on cell culture or homogenized tissue samples. Here, we use mass spectrometry imaging (MALDI-MSI) to focus on the fuel metabolism of the dentate granule cell (DGC) layer in murine hippocampal slices. Using stable isotopes, we explore labeling dynamics at baseline, as well as in response to brief stimulation or fuel competition. We find that at rest, glucose is the predominant fuel metabolized through glycolysis, with little to no measurable contribution from glycerol or fructose. However, lactate/pyruvate, ß-hydroxybutyrate (ßHB), octanoate, and glutamine can contribute to TCA metabolism to varying degrees. In response to brief depolarization with 50 mM KCl, glucose metabolism was preferentially increased relative to the metabolism of alternative fuels. With an increased supply of alternative fuels, both lactate/pyruvate and ßHB can outcompete glucose for TCA cycle entry. While lactate/pyruvate modestly reduced glucose contribution to glycolysis, ßHB caused little change in glycolysis. This approach achieves broad metabolite coverage from a spatially defined region of physiological tissue, in which metabolic states are rapidly preserved following experimental manipulation. Using this powerful methodology, we investigated metabolism within the dentate gyrus not only at rest, but also in response to the energetic demand of activation, and in states of fuel competition.

2.
J Neurosci Res ; 97(8): 946-960, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31106909

RESUMO

Glucose is an essential source of energy for the brain. Recently, the development of genetically encoded fluorescent biosensors has allowed real time visualization of glucose dynamics from individual neurons and astrocytes. A major difficulty for this approach, even for ratiometric sensors, is the lack of a practical method to convert such measurements into actual concentrations in ex vivo brain tissue or in vivo. Fluorescence lifetime imaging provides a strategy to overcome this. In a previous study, we reported the lifetime glucose sensor iGlucoSnFR-TS (then called SweetieTS) for monitoring changes in neuronal glucose levels in response to stimulation. This genetically encoded sensor was generated by combining the Thermus thermophilus glucose-binding protein with a circularly permuted variant of the monomeric fluorescent protein T-Sapphire. Here, we provide more details on iGlucoSnFR-TS design and characterization, as well as pH and temperature sensitivities. For accurate estimation of glucose concentrations, the sensor must be calibrated at the same temperature as the experiments. We find that when the extracellular glucose concentration is in the range 2-10 mM, the intracellular glucose concentration in hippocampal neurons from acute brain slices is ~20% of the nominal external glucose concentration (~0.4-2 mM). We also measured the cytosolic neuronal glucose concentration in vivo, finding a range of ~0.7-2.5 mM in cortical neurons from awake mice.


Assuntos
Técnicas Biossensoriais/métodos , Glucose/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Espectrometria de Fluorescência/métodos , Animais , Técnicas Biossensoriais/instrumentação , Feminino , Vetores Genéticos , Células HEK293 , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Thermus thermophilus/genética
3.
Nat Metab ; 5(10): 1820-1835, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37798473

RESUMO

Neuronal activity creates an intense energy demand that must be met by rapid metabolic responses. To investigate metabolic adaptations in the neuron-enriched dentate granule cell (DGC) layer within its native tissue environment, we employed murine acute hippocampal brain slices, coupled with fast metabolite preservation and followed by mass spectrometry (MS) imaging, to generate spatially resolved metabolomics and isotope-tracing data. Here we show that membrane depolarization induces broad metabolic changes, including increased glycolytic activity in DGCs. Increased glucose metabolism in response to stimulation is accompanied by mobilization of endogenous inosine into pentose phosphates via the action of purine nucleotide phosphorylase (PNP). The PNP reaction is an integral part of the neuronal response to stimulation, because inhibition of PNP leaves DGCs energetically impaired during recovery from strong activation. Performing MS imaging on brain slices bridges the gap between live-cell physiology and the deep chemical analysis enabled by MS.


Assuntos
Giro Denteado , Neurônios , Camundongos , Animais , Giro Denteado/fisiologia , Membrana Celular , Isótopos , Metabolômica
4.
J Neurosci ; 31(23): 8689-96, 2011 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-21653873

RESUMO

ATP-sensitive potassium channels (K(ATP) channels) are important sensors of cellular metabolic state that link metabolism and excitability in neuroendocrine cells, but their role in nonglucosensing central neurons is less well understood. To examine a possible role for K(ATP) channels in modulating excitability in hippocampal circuits, we recorded the activity of single K(ATP) channels in cell-attached patches of granule cells in the mouse dentate gyrus during bursts of action potentials generated by antidromic stimulation of the mossy fibers. Ensemble averages of the open probability (p(open)) of single K(ATP) channels over repeated trials of stimulated spike activity showed a transient increase in p(open) in response to action potential firing. Channel currents were identified as K(ATP) channels through blockade with glibenclamide and by comparison with recordings from Kir6.2 knock-out mice. The transient elevation in K(ATP) p(open) may arise from submembrane ATP depletion by the Na(+)-K(+) ATPase, as the pump blocker strophanthidin reduced the magnitude of the elevation. Both the steady-state and stimulus-elevated p(open) of the recorded channels were higher in the presence of the ketone body R-ß-hydroxybutyrate, consistent with earlier findings that ketone bodies can affect K(ATP) activity. Using perforated-patch recording, we also found that K(ATP) channels contribute to the slow afterhyperpolarization following an evoked burst of action potentials. We propose that activity-dependent opening of K(ATP) channels may help granule cells act as a seizure gate in the hippocampus and that ketone-body-mediated augmentation of the activity-dependent opening could in part explain the effect of the ketogenic diet in reducing epileptic seizures.


Assuntos
Potenciais de Ação/fisiologia , Giro Denteado/fisiologia , Canais KATP/fisiologia , Neurônios/fisiologia , Animais , Eletrofisiologia , Ativação do Canal Iônico/fisiologia , Potenciais da Membrana/fisiologia , Camundongos
5.
Bio Protoc ; 11(24): e4259, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-35087918

RESUMO

Genetically encoded fluorescent biosensors are versatile tools for studying brain metabolism and function in live tissue. The genetic information for these biosensors can be delivered into the brain by stereotaxic injection of engineered adeno-associated viruses (AAVs), which can selectively target different cell types depending on the capsid serotype and/or the viral promoter. Here, we describe a protocol for intracranial injections of two viral vectors encoding the metabolic biosensor Peredox and the calcium biosensor RCaMP1h. When combined with 2-photon microscopy and fluorescence lifetime imaging, this protocol allows the simultaneous quantitative assessment of changes in the cytosolic NADH/NAD+ ratio and the intracellular Ca2+ levels in individual dentate granule cells from acute hippocampal slices. Graphic abstract: Workflow diagram for biosensor expression in the mouse hippocampus using intracranial injections of adeno-associated viruses.

6.
Elife ; 102021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33555254

RESUMO

When neurons engage in intense periods of activity, the consequent increase in energy demand can be met by the coordinated activation of glycolysis, the tricarboxylic acid (TCA) cycle, and oxidative phosphorylation. However, the trigger for glycolytic activation is unknown and the role for Ca2+ in the mitochondrial responses has been debated. Using genetically encoded fluorescent biosensors and NAD(P)H autofluorescence imaging in acute hippocampal slices, here we find that Ca2+ uptake into the mitochondria is responsible for the buildup of mitochondrial NADH, probably through Ca2+ activation of dehydrogenases in the TCA cycle. In the cytosol, we do not observe a role for the Ca2+/calmodulin signaling pathway, or AMPK, in mediating the rise in glycolytic NADH in response to acute stimulation. Aerobic glycolysis in neurons is triggered mainly by the energy demand resulting from either Na+ or Ca2+ extrusion, and in mouse dentate granule cells, Ca2+ creates the majority of this demand.


Assuntos
Cálcio/metabolismo , Ciclo do Ácido Cítrico , Neurônios/metabolismo , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Citosol/metabolismo , Metabolismo Energético , Feminino , Glicólise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , NAD/metabolismo , NADP/metabolismo , Fosforilação Oxidativa , Sódio/metabolismo
7.
Elife ; 72018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29368690

RESUMO

Brain metabolism can profoundly influence neuronal excitability. Mice with genetic deletion or alteration of Bad (BCL-2 agonist of cell death) exhibit altered brain-cell fuel metabolism, accompanied by resistance to acutely induced epileptic seizures; this seizure protection is mediated by ATP-sensitive potassium (KATP) channels. Here we investigated the effect of BAD manipulation on KATP channel activity and excitability in acute brain slices. We found that BAD's influence on neuronal KATP channels was cell-autonomous and directly affected dentate granule neuron (DGN) excitability. To investigate the role of neuronal KATP channels in the anticonvulsant effects of BAD, we imaged calcium during picrotoxin-induced epileptiform activity in entorhinal-hippocampal slices. BAD knockout reduced epileptiform activity, and this effect was lost upon knockout or pharmacological inhibition of KATP channels. Targeted BAD knockout in DGNs alone was sufficient for the antiseizure effect in slices, consistent with a 'dentate gate' function that is reinforced by increased KATP channel activity.


Assuntos
Córtex Entorrinal/fisiologia , Canais KATP/metabolismo , Neurônios/fisiologia , Convulsões/fisiopatologia , Proteína de Morte Celular Associada a bcl/metabolismo , Animais , Camundongos , Camundongos Knockout , Proteína de Morte Celular Associada a bcl/genética
8.
Nat Commun ; 4: 2550, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24096541

RESUMO

The ATP:ADP ratio is a critical parameter of cellular energy status that regulates many metabolic activities. Here we report an optimized genetically encoded fluorescent biosensor, PercevalHR, that senses the ATP:ADP ratio. PercevalHR is tuned to the range of intracellular ATP:ADP expected in mammalian cells, and it can be used with one- or two-photon microscopy in live samples. We use PercevalHR to visualize activity-dependent changes in ATP:ADP when neurons are exposed to multiple stimuli, demonstrating that it is a sensitive reporter of physiological changes in energy consumption and production. We also use PercevalHR to visualize intracellular ATP:ADP while simultaneously recording currents from ATP-sensitive potassium (KATP) channels in single cells, showing that PercevalHR enables the study of coordinated variation in ATP:ADP and KATP channel open probability in intact cells. With its ability to monitor changes in cellular energetics within seconds, PercevalHR should be a versatile tool for metabolic research.


Assuntos
Difosfato de Adenosina/análise , Trifosfato de Adenosina/análise , Astrócitos/metabolismo , Técnicas Biossensoriais , Neurônios/metabolismo , Difosfato de Adenosina/biossíntese , Trifosfato de Adenosina/biossíntese , Animais , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Astrócitos/ultraestrutura , Linhagem Celular , Embrião de Mamíferos , Metabolismo Energético/fisiologia , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Canais KATP/genética , Canais KATP/metabolismo , Camundongos , Microscopia de Fluorescência por Excitação Multifotônica , Imagem Molecular , Neurônios/ultraestrutura , Cultura Primária de Células , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Análise de Célula Única
9.
Neuron ; 74(4): 719-30, 2012 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-22632729

RESUMO

Neuronal excitation can be substantially modulated by alterations in metabolism, as evident from the anticonvulsant effect of diets that reduce glucose utilization and promote ketone body metabolism. We provide genetic evidence that BAD, a protein with dual functions in apoptosis and glucose metabolism, imparts reciprocal effects on metabolism of glucose and ketone bodies in brain cells. These effects involve phosphoregulation of BAD and are independent of its apoptotic function. BAD modifications that reduce glucose metabolism produce a marked increase in the activity of metabolically sensitive K(ATP) channels in neurons, as well as resistance to behavioral and electrographic seizures in vivo. Seizure resistance is reversed by genetic ablation of the K(ATP) channel, implicating the BAD-K(ATP) axis in metabolic control of neuronal excitation and seizure responses.


Assuntos
Metabolismo Energético/fisiologia , Hipocampo/metabolismo , Canais KATP/metabolismo , Convulsões/metabolismo , Proteína de Morte Celular Associada a bcl/metabolismo , Animais , Apoptose/fisiologia , Astrócitos/metabolismo , Células Cultivadas , Eletroencefalografia , Hipocampo/fisiopatologia , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Consumo de Oxigênio/fisiologia , Fosforilação , Convulsões/induzido quimicamente , Convulsões/fisiopatologia , Proteína de Morte Celular Associada a bcl/genética
10.
J Gen Physiol ; 135(2): 149-67, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20100894

RESUMO

Many physiological and synthetic agents act by occluding the ion conduction pore of ion channels. A hallmark of charged blockers is that their apparent affinity for the pore usually varies with membrane voltage. Two models have been proposed to explain this voltage sensitivity. One model assumes that the charged blocker itself directly senses the transmembrane electric field, i.e., that blocker binding is intrinsically voltage dependent. In the alternative model, the blocker does not directly interact with the electric field; instead, blocker binding acquires voltage dependence solely through the concurrent movement of permeant ions across the field. This latter model may better explain voltage dependence of channel block by large organic compounds that are too bulky to fit into the narrow (usually ion-selective) part of the pore where the electric field is steep. To date, no systematic investigation has been performed to distinguish between these voltage-dependent mechanisms of channel block. The most fundamental characteristic of the extrinsic mechanism, i.e., that block can be rendered voltage independent, remains to be established and formally analyzed for the case of organic blockers. Here, we observe that the voltage dependence of block of a cyclic nucleotide-gated channel by a series of intracellular quaternary ammonium blockers, which are too bulky to traverse the narrow ion selectivity filter, gradually vanishes with extreme depolarization, a predicted feature of the extrinsic voltage dependence model. In contrast, the voltage dependence of block by an amine blocker, which has a smaller "diameter" and can therefore penetrate into the selectivity filter, follows a Boltzmann function, a predicted feature of the intrinsic voltage dependence model. Additionally, a blocker generates (at least) two blocked states, which, if related serially, may preclude meaningful application of a commonly used approach for investigating channel gating, namely, inferring the properties of the activation gate from the kinetics of channel block.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos/antagonistas & inibidores , Transdução de Sinal Luminoso/efeitos dos fármacos , Moduladores de Transporte de Membrana/farmacologia , Animais , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/fisiologia , Transdução de Sinal Luminoso/fisiologia , Potenciais da Membrana/efeitos dos fármacos , Poliaminas/farmacologia , Compostos de Amônio Quaternário/farmacologia , Retina/efeitos dos fármacos , Retina/fisiologia , Xenopus
11.
J Gen Physiol ; 136(2): 179-87, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20624857

RESUMO

Cyclic nucleotide-gated channels mediate transduction of light into electric signals in vertebrate photoreceptors. These channels are primarily controlled by the binding of intracellular cyclic GMP (cGMP). Glutamate residue 363 near the extracellular end of the ion selectivity filter interacts with the pore helix and helps anchor the filter to the helix. Disruption of this interaction by mutations renders the channels essentially fully voltage gated in the presence of saturating concentrations of cGMP. Here, we find that lowering extracellular pH makes the channels conduct in an extremely outwardly rectifying manner, as does a neutral glutamine substitution at E363. A pair of cysteine mutations, E363C and L356C (the latter located midway the pore helix), largely eliminates current rectification at low pH. Therefore, this low pH-induced rectification primarily reflects voltage-dependent gating involving the ion selectivity filter rather than altered electrostatics around the external opening of the ion pore and thus ion conduction. It then follows that protonation of E363, like the E363Q mutation, disrupts the attachment of the selectivity filter to the pore helix. Loosening the selectivity filter from its surrounding structure shifts the gating equilibrium toward closed states. At low extracellular pH, significant channel opening occurs only when positive voltages drive the pore from a low probability open conformation to a second open conformation. Consequently, at low extracellular pH the channels become practically fully voltage gated, even in the presence of a saturating concentration of cGMP.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos/fisiologia , Espaço Extracelular/fisiologia , Ativação do Canal Iônico/fisiologia , Prótons , Animais , Bovinos , GMP Cíclico/fisiologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Concentração de Íons de Hidrogênio , Potenciais da Membrana/fisiologia , Mutação
12.
J Gen Physiol ; 134(2): 151-64, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19635856

RESUMO

Activity of cyclic nucleotide-gated (CNG) cation channels underlies signal transduction in vertebrate visual receptors. These highly specialized receptor channels open when they bind cyclic GMP (cGMP). Here, we find that certain mutations restricted to the region around the ion selectivity filter render the channels essentially fully voltage gated, in such a manner that the channels remain mostly closed at physiological voltages, even in the presence of saturating concentrations of cGMP. This voltage-dependent gating resembles the selectivity filter-based mechanism seen in KcsA K(+) channels, not the S4-based mechanism of voltage-gated K(+) channels. Mutations that render CNG channels gated by voltage loosen the attachment of the selectivity filter to its surrounding structure, thereby shifting the channel's gating equilibrium toward closed conformations. Significant pore opening in mutant channels occurs only when positive voltages drive the pore from a low-probability open conformation toward a second open conformation to increase the channels' open probability. Thus, the structure surrounding the selectivity filter has evolved to (nearly completely) suppress the expression of inherent voltage-dependent gating of CNGA1, ensuring that the binding of cGMP by itself suffices to open the channels at physiological voltages.


Assuntos
GMP Cíclico/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Ativação do Canal Iônico/fisiologia , Mutação , Sequência de Aminoácidos , Animais , Sítios de Ligação , Eletrofisiologia , Modelos Moleculares , Dados de Sequência Molecular , Oócitos/metabolismo , Técnicas de Patch-Clamp , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Xenopus laevis
13.
J Physiol ; 538(Pt 1): 79-86, 2002 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-11773318

RESUMO

The maitotoxin (MTX)-induced cationic current (I(mtx)) from human skin fibroblasts was characterized using the patch-clamp technique in whole-cell configuration. Under resting conditions (absence of MTX), the main current observed is produced by an outwardly rectifying K(+) channel which is inhibited by 1 mM TEA. The current reversal potential was -86 mV (n = 12). MTX (500 pM) activated a current with a linear current-voltage relationship and a reversal potential of -10 mV (n = 10). Replacing the extracellular Na(+) and K(+) with N-methyl-D-glucamine (NMDG) caused a shift of the reversal potential to a value below -100 mV, indicating that Na(+) and K(+), but not NMDG, carry I(mtx). Further ion selectivity experiments showed that Ca(2+) carries I(mtx) also. The resulting permeability sequence obtained with the Goldman-Hodgkin-Katz equation yielded Na(+) (1) approximately equal to K(+) (1) > Ca(2+) (0.87). The I(mtx) activation time course reflected the changes in intracellular Ca(2+) and Na(+) measured with the fluorescent indicators fura-2 and SBFI, respectively, suggesting that the activation of I(mtx) brings about an increment in intracellular Ca(2+) and Na(+). Reducing the extracellular Ca(2+) concentration below 1.8 mM prevented the activation of I(mtx) and the increment in intracellular Na(+) induced by MTX. Mn(2+) and Mg(2+) could not replace Ca(2+), but Ba(2+) could replace Ca(2+). MTX activation of current in 10 mM Ba(2+) was approximately 50 % of that induced in the presence of 1.8 mM Ca(2+). When 5 mM of the Ca(2+) chelator BAPTA was included in the patch pipette, MTX either failed to activate the current or induced a small current (less than 15 % of the control), indicating that intracellular Ca(2+) is also required for the activation of I(mtx). Intracellular Ba(2+) can replace Ca(2+) as an activator of I(mtx). However, in the presence of 10 mM Ba(2+) the activation by MTX of the current was 50 % less than the activation with nM concentrations of free intracellular Ca(2+).


Assuntos
Cátions Bivalentes/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/fisiologia , Canais Iônicos/fisiologia , Toxinas Marinhas/farmacologia , Oxocinas , Fenômenos Fisiológicos da Pele/efeitos dos fármacos , Bário/fisiologia , Cálcio/fisiologia , Células Cultivadas , Condutividade Elétrica , Espaço Extracelular/metabolismo , Humanos , Membranas Intracelulares/metabolismo , Magnésio/fisiologia , Técnicas de Patch-Clamp , Potássio/fisiologia , Pele/citologia , Sódio/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA