Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Cell ; 162(6): 1418-30, 2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26359992

RESUMO

Progressive depletion of midbrain dopamine neurons (PDD) is associated with deficits in the initiation, speed, and fluidity of voluntary movement. Models of basal ganglia function focus on initiation deficits; however, it is unclear how they account for deficits in the speed or amplitude of movement (vigor). Using an effort-based operant conditioning task for head-fixed mice, we discovered distinct functional classes of neurons in the dorsal striatum that represent movement vigor. Mice with PDD exhibited a progressive reduction in vigor, along with a selective impairment of its neural representation in striatum. Restoration of dopaminergic tone with a synthetic precursor ameliorated deficits in movement vigor and its neural representation, while suppression of striatal activity during movement was sufficient to reduce vigor. Thus, dopaminergic input to the dorsal striatum is indispensable for the emergence of striatal activity that mediates adaptive changes in movement vigor. These results suggest refined intervention strategies for Parkinson's disease.


Assuntos
Dopamina/metabolismo , Mesencéfalo/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/fisiopatologia , Animais , Gânglios da Base/metabolismo , Modelos Animais de Doenças , Hipocinesia/metabolismo , Hipocinesia/fisiopatologia , Camundongos , Músculo Esquelético/fisiologia
2.
Nature ; 621(7980): 788-795, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37730989

RESUMO

Oxytocin is a neuropeptide that is important for maternal physiology and childcare, including parturition and milk ejection during nursing1-6. Suckling triggers the release of oxytocin, but other sensory cues-specifically, infant cries-can increase the levels of oxytocin in new human mothers7, which indicates that cries can activate hypothalamic oxytocin neurons. Here we describe a neural circuit that routes auditory information about infant vocalizations to mouse oxytocin neurons. We performed in vivo electrophysiological recordings and photometry from identified oxytocin neurons in awake maternal mice that were presented with pup calls. We found that oxytocin neurons responded to pup vocalizations, but not to pure tones, through input from the posterior intralaminar thalamus, and that repetitive thalamic stimulation induced lasting disinhibition of oxytocin neurons. This circuit gates central oxytocin release and maternal behaviour in response to calls, providing a mechanism for the integration of sensory cues from the offspring in maternal endocrine networks to ensure modulation of brain state for efficient parenting.


Assuntos
Comportamento Materno , Vias Neurais , Neurônios , Ocitocina , Vocalização Animal , Animais , Feminino , Camundongos , Sinais (Psicologia) , Hipotálamo/citologia , Hipotálamo/fisiologia , Comportamento Materno/fisiologia , Neurônios/metabolismo , Ocitocina/metabolismo , Fotometria , Núcleos Talâmicos/fisiologia , Vocalização Animal/fisiologia , Vigília
3.
Nature ; 587(7834): 426-431, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33029014

RESUMO

Infant cries evoke powerful responses in parents1-4. Whether parental animals are intrinsically sensitive to neonatal vocalizations, or instead learn about vocal cues for parenting responses is unclear. In mice, pup-naive virgin females do not recognize the meaning of pup distress calls, but retrieve isolated pups to the nest after having been co-housed with a mother and litter5-9. Distress calls are variable, and require co-caring virgin mice to generalize across calls for reliable retrieval10,11. Here we show that the onset of maternal behaviour in mice results from interactions between intrinsic mechanisms and experience-dependent plasticity in the auditory cortex. In maternal females, calls with inter-syllable intervals (ISIs) from 75 to 375 milliseconds elicited pup retrieval, and cortical responses were generalized across these ISIs. By contrast, naive virgins were neuronally and behaviourally sensitized to the most common ('prototypical') ISIs. Inhibitory and excitatory neural responses were initially mismatched in the cortex of naive mice, with untuned inhibition and overly narrow excitation. During co-housing experiments, excitatory responses broadened to represent a wider range of ISIs, whereas inhibitory tuning sharpened to form a perceptual boundary. We presented synthetic calls during co-housing and observed that neurobehavioural responses adjusted to match these statistics, a process that required cortical activity and the hypothalamic oxytocin system. Neuroplastic mechanisms therefore build on an intrinsic sensitivity in the mouse auditory cortex, and enable rapid plasticity for reliable parenting behaviour.


Assuntos
Córtex Auditivo/fisiologia , Comportamento Materno/fisiologia , Plasticidade Neuronal/fisiologia , Estimulação Acústica , Animais , Córtex Auditivo/citologia , Potenciais Pós-Sinápticos Excitadores , Feminino , Abrigo para Animais , Comportamento Materno/psicologia , Camundongos , Inibição Neural/fisiologia , Ocitocina/metabolismo , Sinapses/metabolismo , Fatores de Tempo , Vocalização Animal
4.
Nature ; 587(7834): E2, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33154579

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

5.
Proc Natl Acad Sci U S A ; 120(38): e2218150120, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37695914

RESUMO

The endothelium is a major target of the proinflammatory cytokine, tumor necrosis factor alpha (TNFα). Exposure of endothelial cells (EC) to proinflammatory stimuli leads to an increase in mitochondrial metabolism; however, the function and regulation of elevated mitochondrial metabolism in EC in response to proinflammatory cytokines remain unclear. Studies using high-resolution metabolomics and 13C-glucose and 13C-glutamine labeling flux techniques showed that pyruvate dehydrogenase activity (PDH) and oxidative tricarboxylic acid cycle (TCA) flux are elevated in human umbilical vein ECs in response to overnight (16 h) treatment with TNFα (10 ng/mL). Mechanistic studies indicated that TNFα mediated these metabolic changes via mitochondrial-specific protein degradation of pyruvate dehydrogenase kinase 4 (PDK4, inhibitor of PDH) by the Lon protease via an NF-κB-dependent mechanism. Using RNA sequencing following siRNA-mediated knockdown of the catalytically active subunit of PDH, PDHE1α (PDHA1 gene), we show that PDH flux controls the transcription of approximately one-third of the genes that are up-regulated by TNFα stimulation. Notably, TNFα-induced PDH flux regulates a unique signature of proinflammatory mediators (cytokines and chemokines) but not inducible adhesion molecules. Metabolomics and ChIP sequencing for acetylated modification on lysine 27 of histone 3 (H3K27ac) showed that TNFα-induced PDH flux promotes histone acetylation of specific gene loci via citrate accumulation and ATP-citrate lyase-mediated generation of acetyl CoA. Together, these results uncover a mechanism by which TNFα signaling increases oxidative TCA flux of glucose to support TNFα-induced gene transcription through extramitochondrial acetyl CoA generation and histone acetylation.


Assuntos
Protease La , Fator de Necrose Tumoral alfa , Humanos , Fator de Necrose Tumoral alfa/farmacologia , Acetilcoenzima A , Células Endoteliais , Histonas , Citocinas
6.
Stem Cells ; 41(10): 907-915, 2023 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-37386941

RESUMO

The role of serum response factor (Srf), a central mediator of actin dynamics and mechanical signaling, in cell identity regulation is debated to be either a stabilizer or a destabilizer. We investigated the role of Srf in cell fate stability using mouse pluripotent stem cells. Despite the fact that serum-containing cultures yield heterogeneous gene expression, deletion of Srf in mouse pluripotent stem cells leads to further exacerbated cell state heterogeneity. The exaggerated heterogeneity is detectible not only as increased lineage priming but also as the developmentally earlier 2C-like cell state. Thus, pluripotent cells explore more variety of cellular states in both directions of development surrounding naïve pluripotency, a behavior that is constrained by Srf. These results support that Srf functions as a cell state stabilizer, providing rationale for its functional modulation in cell fate intervention and engineering.


Assuntos
Células-Tronco Pluripotentes , Fator de Resposta Sérica , Camundongos , Animais , Fator de Resposta Sérica/genética , Fator de Resposta Sérica/metabolismo , Células-Tronco Pluripotentes/metabolismo , Diferenciação Celular/genética , Actinas/metabolismo , Expressão Gênica
7.
Circ Res ; 131(4): 290-307, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35862006

RESUMO

BACKGROUND: Unfolded protein response (UPR) is a multifaceted signaling cascade that alleviates protein misfolding. Although well studied in nucleated cells, UPR in absence of transcriptional regulation has not been described. Intricately associated with cardiovascular diseases, platelets, despite being anucleate, respond rapidly to stressors in blood. We investigate the UPR in anucleate platelets and explore its role, if any, on platelet physiology and function. METHODS: Human and mouse platelets were studied using a combination of ex vivo and in vivo experiments. Platelet lineage-specific knockout mice were generated independently for each of the 3 UPR pathways, PERK (protein kinase RNA [PKR]-like endoplasmic reticulum kinase), XBP1 (X-binding protein), and ATF6 (activating transcription factor 6). Diabetes patients were prospectively recruited, and platelets were evaluated for activation of UPR under chronic pathophysiological disease conditions. RESULTS: Tunicamycin induced the IRE1α (inositol-requiring enzyme-1alpha)-XBP1 pathway in human and mouse platelets, while oxidative stress predominantly activated the PERK pathway. PERK deletion significantly increased platelet aggregation and apoptosis and phosphorylation of PLCγ2, PLCß3, and p38 MAPK. Deficiency of XBP1 increased platelet aggregation, with higher PLCß3 and PKCδ activation. ATF6 deletion mediated a relatively modest effect on platelet phenotype with increased PKA (protein kinase A). Platelets from diabetes patients exhibited a positive correlation between disease severity, platelet activation, and protein aggregation, with only IRE1α-XBP1 activation. Moreover, IRE1α inhibition increased platelet aggregation, while clinically approved chemical chaperone, sodium 4-phenylbutyrate reduced the platelet hyperactivation. CONCLUSIONS: We show for the first time, that UPR activation occurs in platelets and can be independent of genomic regulation, with selective induction being specific to the source and severity of stress. Each UPR pathway plays a key role and can differentially modulate the platelet activation pathways and phenotype. Targeting the specific arms of UPR may provide a new antiplatelet strategy to mitigate thrombotic risk in diabetes and other cardiovascular diseases.


Assuntos
Doenças Cardiovasculares , Endorribonucleases , Fator 6 Ativador da Transcrição/genética , Fator 6 Ativador da Transcrição/metabolismo , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Estresse do Retículo Endoplasmático , Endorribonucleases/genética , Endorribonucleases/metabolismo , Humanos , Camundongos , Fenótipo , Proteínas Serina-Treonina Quinases/genética , Resposta a Proteínas não Dobradas , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/metabolismo , eIF-2 Quinase
8.
Circulation ; 145(23): 1720-1737, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35502657

RESUMO

BACKGROUND: Vascular smooth muscle cell (VSMC) phenotypic switching contributes to cardiovascular diseases. Epigenetic regulation is emerging as a key regulatory mechanism, with the methylcytosine dioxygenase TET2 acting as a master regulator of smooth muscle cell phenotype. The histone acetyl-transferases p300 and CREB-binding protein (CBP) are highly homologous and often considered to be interchangeable, and their roles in smooth muscle cell phenotypic regulation are not known. METHODS: We assessed the roles of p300 and CBP in human VSMC with knockdown, in inducible smooth muscle-specific knockout mice (inducible knockout [iKO]; p300iKO or CBPiKO), and in samples of human intimal hyperplasia. RESULTS: P300, CBP, and histone acetylation were differently regulated in VSMCs undergoing phenotypic switching and in vessel remodeling after vascular injury. Medial p300 expression and activity were repressed by injury, but CBP and histone acetylation were induced in neointima. Knockdown experiments revealed opposing effects of p300 and CBP in the VSMC phenotype: p300 promoted contractile protein expression and inhibited migration, but CBP inhibited contractile genes and enhanced migration. p300iKO mice exhibited severe intimal hyperplasia after arterial injury compared with controls, whereas CBPiKO mice were entirely protected. In normal aorta, p300iKO reduced, but CBPiKO enhanced, contractile protein expression and contractility compared with controls. Mechanistically, we found that these histone acetyl-transferases oppositely regulate histone acetylation, DNA hydroxymethylation, and PolII (RNA polymerase II) binding to promoters of differentiation-specific contractile genes. Our data indicate that p300 and TET2 function together, because p300 was required for TET2-dependent hydroxymethylation of contractile promoters, and TET2 was required for p300-dependent acetylation of these loci. TET2 coimmunoprecipitated with p300, and this interaction was enhanced by rapamycin but repressed by platelet-derived growth factor (PDGF) treatment, with p300 promoting TET2 protein stability. CBP did not associate with TET2, but instead facilitated recruitment of histone deacetylases (HDAC2, HDAC5) to contractile protein promoters. Furthermore, CBP inhibited TET2 mRNA levels. Immunostaining of cardiac allograft vasculopathy samples revealed that p300 expression is repressed but CBP is induced in human intimal hyperplasia. CONCLUSIONS: This work reveals that p300 and CBP serve nonredundant and opposing functions in VSMC phenotypic switching and coordinately regulate chromatin modifications through distinct functional interactions with TET2 or HDACs. Targeting specific histone acetyl-transferases may hold therapeutic promise for cardiovascular diseases.


Assuntos
Doenças Cardiovasculares , Músculo Liso Vascular , Fatores de Transcrição de p300-CBP/metabolismo , Acetilação , Animais , Proteína de Ligação a CREB/genética , Proteína de Ligação a CREB/metabolismo , Doenças Cardiovasculares/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas Contráteis/metabolismo , Epigênese Genética , Histonas/metabolismo , Humanos , Hiperplasia/metabolismo , Camundongos , Camundongos Knockout , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo
9.
Am J Physiol Heart Circ Physiol ; 325(1): H77-H88, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37145957

RESUMO

Arteriovenous fistulae (AVF) fail to mature more frequently in female patients compared with male patients, leading to inferior outcomes and decreased utilization. Since our mouse AVF model recapitulates sex differences in human AVF maturation, we hypothesized that sex hormones mediate these differences during AVF maturation. C57BL/6 mice (9-11 wk) were treated with aortocaval AVF surgery and/or gonadectomy. AVF hemodynamics were measured via ultrasound (days 0-21). Blood was collected for FACS and tissue for immunofluorescence and ELISA (days 3 and 7); wall thickness was assessed by histology (day 21). Inferior vena cava shear stress was higher in male mice (P = 0.0028) after gonadectomy, and they had increased wall thickness (22.0 ± 1.8 vs. 12.7 ± 1.2 µm; P < 0.0001). Conversely, female mice had decreased wall thickness (6.8 ± 0.6 vs. 15.3 ± 0.9 µm; P = 0.0002). Intact female mice had higher proportions of circulating CD3+ T cells on day 3 (P = 0.0043), CD4+ (P = 0.0003) and CD8+ T cells (P = 0.005) on day 7, and CD11b+ monocytes on day 3 (P = 0.0046). After gonadectomy, these differences disappeared. In intact female mice, CD3+ T cells (P = 0.025), CD4+ T cells (P = 0.0178), CD8+ T cells (P = 0.0571), and CD68+ macrophages (P = 0.0078) increased in the fistula wall on days 3 and 7. This disappeared after gonadectomy. Furthermore, female mice had higher IL-10 (P = 0.0217) and TNF-α (P = 0.0417) levels in their AVF walls than male mice. Sex hormones mediate AVF maturation, suggesting that hormone receptor signaling may be a target to improve AVF maturation.NEW & NOTEWORTHY After arteriovenous fistula creation, females have lower rates of maturation and higher rates of failure than males. In a mouse model of venous adaptation that recapitulates human fistula maturation, sex hormones may be mechanisms of the sexual dimorphism: testosterone is associated with reduced shear stress, whereas estrogen is associated with increased immune cell recruitment. Modulating sex hormones or downstream effectors suggests sex-specific therapies and could address disparities in sex differences in clinical outcomes.


Assuntos
Fístula Arteriovenosa , Derivação Arteriovenosa Cirúrgica , Humanos , Masculino , Feminino , Camundongos , Animais , Linfócitos T CD8-Positivos , Maturidade Sexual , Camundongos Endogâmicos C57BL , Derivação Arteriovenosa Cirúrgica/efeitos adversos , Modelos Animais de Doenças , Testosterona , Imunidade , Diálise Renal
10.
Clin Transplant ; 37(12): e15153, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37792313

RESUMO

PURPOSE OF THE REVIEW: Cardiac allograft vasculopathy (CAV) is a progressive fibroproliferative disease which occurs after heart transplantation and is associated with significant long-term morbidity and mortality. Currently available strategies including statins, mammalian target of rapamycin (mTOR) inhibitors, and revascularization, have limited overall effectiveness in treating this pathology once the disease process is established. mTOR inhibitors, while effective when used early in the disease process, are not well tolerated, and hence not routinely used in post-transplant care. RECENT DATA: Recent work on rodent models have given us a novel mechanistic understanding of effects of ascorbic acid in preventing CAV. TET methyl cytosine dioxygenase2 (TET2) reduces vascular smooth muscle cell (VSMC) apoptosis and intimal thickening. TET2 is repressed by interferon γ (IFNγ) in the setting of CAV. Ascorbic acid has been shown to promote TET2 activity and attenuate allograft vasculopathy in animal models and CAV progression in a small clinical trial. SUMMARY: CAV remains a challenging disease process and needs better preventative strategies. Ascorbic acid improves endothelial dysfunction, reduces reactive oxygen species, and prevents development of intimal hyperplasia by preventing smooth muscle cell apoptosis and hyperproliferation. Further large-scale randomized control studies of ascorbic acid are needed to establish the role in routine post-transplant management.


Assuntos
Cardiopatias , Transplante de Coração , Doenças Vasculares , Animais , Humanos , Ácido Ascórbico/uso terapêutico , Cardiopatias/etiologia , Doenças Vasculares/tratamento farmacológico , Doenças Vasculares/etiologia , Doenças Vasculares/prevenção & controle , Transplante Homólogo , Transplante de Coração/efeitos adversos , Aloenxertos , Mamíferos
11.
Circulation ; 144(6): 455-470, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34111946

RESUMO

BACKGROUND: Coronary allograft vasculopathy (CAV) is a devastating sequela of heart transplant in which arterial intimal thickening limits coronary blood flow. There are currently no targeted therapies to prevent or reduce this pathology that leads to transplant failure. Vascular smooth muscle cell (VSMC) phenotypic plasticity is critical in CAV neointima formation. TET2 (TET methylcytosine dioxygenase 2) is an important epigenetic regulator of VSMC phenotype, but the role of TET2 in the progression of CAV is unknown. METHODS: We assessed TET2 expression and activity in human CAV and renal transplant samples. We also used the sex-mismatched murine aortic graft model of graft arteriopathy (GA) in wild-type and inducible smooth muscle-specific Tet2 knockout mice; and in vitro studies in murine and human VSMCs using knockdown, overexpression, and transcriptomic approaches to assess the role of TET2 in VSMC responses to IFNγ (interferon γ), a cytokine elaborated by T cells that drives CAV progression. RESULTS: In the present study, we found that TET2 expression and activity are negatively regulated in human CAV and renal transplant samples and in the murine aortic graft model of GA. IFNγ was sufficient to repress TET2 and induce an activated VSMC phenotype in vitro. TET2 depletion mimicked the effects of IFNγ, and TET2 overexpression rescued IFNγ-induced dedifferentiation. VSMC-specific TET2 depletion in aortic grafts, and in the femoral wire restenosis model, resulted in increased VSMC apoptosis and medial thinning. In GA, this apoptosis was tightly correlated with proliferation. In vitro, TET2-deficient VSMCs undergo apoptosis more readily in response to IFNγ and expressed a signature of increased susceptibility to extrinsic apoptotic signaling. Enhancing TET2 enzymatic activity with high-dose ascorbic acid rescued the effect of GA-induced VSMC apoptosis and intimal thickening in a TET2-dependent manner. CONCLUSIONS: TET2 is repressed in CAV and GA, likely mediated by IFNγ. TET2 serves to protect VSMCs from apoptosis in the context of transplant vasculopathy or IFNγ stimulation. Promoting TET2 activity in vivo with systemic ascorbic acid reduces VSMC apoptosis and intimal thickening. These data suggest that promoting TET2 activity in CAV may be an effective strategy for limiting CAV progression.


Assuntos
Apoptose/genética , Proteínas de Ligação a DNA/genética , Dioxigenases/genética , Miócitos de Músculo Liso/metabolismo , Túnica Íntima/metabolismo , Túnica Íntima/patologia , Doenças Vasculares/etiologia , Doenças Vasculares/metabolismo , Aloenxertos , Animais , Biomarcadores , Proteínas de Ligação a DNA/metabolismo , Dioxigenases/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Transplante de Coração/efeitos adversos , Humanos , Imuno-Histoquímica , Interferon gama/metabolismo , Camundongos , Camundongos Knockout , Fator de Transcrição STAT1 , Transdução de Sinais , Doenças Vasculares/patologia
12.
Circulation ; 143(4): 354-371, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33207953

RESUMO

BACKGROUND: Aberrant expression of circular RNA contributes to human diseases. Circular RNAs regulate gene expression by sequestering specific microRNAs. In this study, we investigated whether circMAP3K5 (circular mitogen-activated protein kinase 5) could act as a competing endogenous microRNA-22-3p (miR-22-3p) sponge and regulate neointimal hyperplasia. METHODS: Circular RNA profiling from genome-wide RNA sequencing data was compared between human coronary artery smooth muscle cells (SMCs) treated with or without platelet-derived growth factor. Expression levels of circMAP3K5 were assessed in human coronary arteries from autopsies on patients with dilated cardiomyopathy or coronary heart disease. The role of circMAP3K5 in intimal hyperplasia was further investigated in mice with adeno-associated virus 9-mediated circMAP3K5 transfection. SMC-specific Tet2 (ten-eleven translocation-2) knockout mice and global miR-22-3p knockout mice were used to delineate the mechanism by which circMAP3K5 attenuated neointimal hyperplasia using the femoral arterial wire injury model. RESULTS: RNA sequencing demonstrated that treatment with platelet-derived growth factor-BB significantly reduced expression of circMAP3K5 in human coronary artery SMCs. Wire-injured mouse femoral arteries and diseased arteries from patients with coronary heart disease (where platelet-derived growth factor-BB is increased) confirmed in vivo downregulation of circMAP3K5 associated with injury and disease. Lentivirus-mediated overexpression of circMAP3K5 inhibited the proliferation of human coronary artery SMCs. In vivo adeno-associated virus 9-mediated transfection of circMap3k5 (mouse circular Map3k5) specifically inhibited SMC proliferation in the wire-injured mouse arteries, resulting in reduced neointima formation. Using a luciferase reporter assay and RNA pull-down, circMAP3K5 (human circular MAP3K5) was found to sequester miR-22-3p, which, in turn, inhibited the expression of TET2. Both in vitro and in vivo results demonstrate that the loss of miR-22-3p recapitulated the antiproliferative effect of circMap3k5 on vascular SMCs. In SMC-specific Tet2 knockout mice, loss of Tet2 abolished the circMap3k5-mediated antiproliferative effect on vascular SMCs. CONCLUSIONS: We identify circMAP3K5 as a master regulator of TET2-mediated vascular SMC differentiation. Targeting the circMAP3K5/miR-22-3p/TET2 axis may provide a potential therapeutic strategy for diseases associated with intimal hyperplasia, including restenosis and atherosclerosis.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Dioxigenases/metabolismo , MicroRNAs/metabolismo , Miócitos de Músculo Liso/patologia , RNA Circular/metabolismo , Túnica Íntima/metabolismo , Animais , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Diferenciação Celular/fisiologia , Modelos Animais de Doenças , Feminino , Humanos , Hiperplasia/metabolismo , Hiperplasia/patologia , Masculino , Camundongos , Camundongos Knockout , MicroRNAs/genética , Miócitos de Músculo Liso/metabolismo , RNA Circular/genética , Túnica Íntima/patologia
13.
Circ Res ; 127(7): 855-873, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32597702

RESUMO

RATIONALE: Kawasaki disease (KD) is an acute vasculitis of early childhood that can result in permanent coronary artery structural damage. The cause for this arterial vulnerability in up to 15% of patients with KD is unknown. Vascular smooth muscle cell dedifferentiation play a key role in the pathophysiology of medial damage and aneurysm formation, recognized arterial pathology in KD. Platelet hyperreactivity is also a hallmark of KD. We recently demonstrated that uptake of platelets and platelet-derived miRNAs influences vascular smooth muscle cell phenotype in vivo. OBJECTIVE: We set out to explore whether platelet/vascular smooth muscle cell (VSMC) interactions contribute to coronary pathology in KD. METHODS AND RESULTS: We prospectively recruited and studied 242 patients with KD, 75 of whom had documented coronary artery pathology. Genome-wide miRNA sequencing and droplet digital PCR demonstrated that patient with KD platelets have significant induction of miR-223 compared with healthy controls (HCs). Platelet-derived miR-223 has recently been shown to promote vascular smooth muscle quiescence and resolution of wound healing after vessel injury. Paradoxically, patients with KD with the most severe coronary pathology (giant coronary artery aneurysms) exhibited a lack of miR-223 induction. Hyperactive platelets isolated from patients with KD are readily taken up by VSMCs, delivering functional miR-223 into the VSMCs promoting VSMC differentiation via downregulation of PDGFRß (platelet-derived growth factor receptor ß). The lack of miR-223 induction in patients with severe coronary pathology leads to persistent VSMC dedifferentiation. In a mouse model of KD (Lactobacillus casei cell wall extract injection), miR-223 knockout mice exhibited increased medial thickening, loss of contractile VSMCs in the media, and fragmentation of medial elastic fibers compared with WT mice, which demonstrated significant miR-223 induction upon Lactobacillus casei cell wall extract challenge. The excessive arterial damage in the miR-223 knockout could be rescued by adoptive transfer of platelet, administration of miR-223 mimics, or the PDGFRß inhibitor imatinib mesylate. Interestingly, miR-223 levels progressively increase with age, with the lowest levels found in <5-year-old. This provides a basis for coronary pathology susceptibility in this very young cohort. CONCLUSIONS: Platelet-derived miR-223 (through PDGFRß inhibition) promotes VSMC differentiation and resolution of KD induced vascular injury. Lack of miR-223 induction leads to severe coronary pathology characterized by VSMC dedifferentiation and medial damage. Detection of platelet-derived miR-223 in patients with KD (at the time of diagnosis) may identify patients at greatest risk of coronary artery pathology. Moreover, targeting platelet miR-223 or VSMC PDGFRß represents potential therapeutic strategies to alleviate coronary pathology in KD. Graphic Abstract: A graphic abstract is available for this article.


Assuntos
Plaquetas/metabolismo , Doença da Artéria Coronariana/etiologia , MicroRNAs/sangue , MicroRNAs/metabolismo , Síndrome de Linfonodos Mucocutâneos/complicações , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Adulto , Fatores Etários , Animais , Estudos de Casos e Controles , Células Cultivadas , Criança , Pré-Escolar , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/patologia , Vasos Coronários/metabolismo , Vasos Coronários/patologia , Modelos Animais de Doenças , Feminino , Humanos , Lactente , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Síndrome de Linfonodos Mucocutâneos/sangue , Síndrome de Linfonodos Mucocutâneos/diagnóstico , Síndrome de Linfonodos Mucocutâneos/genética , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Ativação Plaquetária , Estudos Prospectivos , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Índice de Gravidade de Doença , Transdução de Sinais , Adulto Jovem
15.
Circulation ; 139(5): 679-693, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30586711

RESUMO

BACKGROUND: Vascular smooth muscle cells (SMCs) synthesize extracellular matrix (ECM) that contributes to tissue remodeling after revascularization interventions. The cytokine transforming growth factor ß (TGF-ß) is induced on tissue injury and regulates tissue remodeling and wound healing, but dysregulated signaling results in excess ECM deposition and fibrosis. The LIM (Lin11, Isl-1 & Mec-3) domain protein LIM domain only 7 (LMO7) is a TGF-ß1 target gene in hepatoma cells, but its role in vascular physiology and fibrosis is unknown. METHODS: We use carotid ligation and femoral artery denudation models in mice with global or inducible smooth muscle-specific deletion of LMO7, and knockout, knockdown, overexpression, and mutagenesis approaches in mouse and human SMC, and human arteriovenous fistula and cardiac allograft vasculopathy samples to assess the role of LMO7 in neointima and fibrosis. RESULTS: We demonstrate that LMO7 is induced postinjury and by TGF-ß in SMC in vitro. Global or SMC-specific LMO7 deletion enhanced neointimal formation, TGF-ß signaling, ECM deposition, and proliferation in vascular injury models. LMO7 loss of function in human and mouse SMC enhanced ECM protein expression at baseline and after TGF-ß treatment. TGF-ß neutralization or receptor antagonism prevented the exacerbated neointimal formation and ECM synthesis conferred by loss of LMO7. Notably, loss of LMO7 coordinately amplified TGF-ß signaling by inducing expression of Tgfb1 mRNA, TGF-ß protein, αv and ß3 integrins that promote activation of latent TGF-ß, and downstream effectors SMAD3 phosphorylation and connective tissue growth factor. Mechanistically, the LMO7 LIM domain interacts with activator protein 1 transcription factor subunits c-FOS and c-JUN and promotes their ubiquitination and degradation, disrupting activator protein 1-dependent TGF-ß autoinduction. Importantly, preliminary studies suggest that LMO7 is upregulated in human intimal hyperplastic arteriovenous fistula and cardiac allograft vasculopathy samples, and inversely correlates with SMAD3 phosphorylation in cardiac allograft vasculopathy. CONCLUSIONS: LMO7 is induced by TGF-ß and serves to limit vascular fibrotic responses through negative feedback regulation of the TGF-ß pathway. This mechanism has important implications for intimal hyperplasia, wound healing, and fibrotic diseases.


Assuntos
Proteínas com Domínio LIM/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Remodelação Vascular , Lesões do Sistema Vascular/metabolismo , Animais , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Retroalimentação Fisiológica , Fibrose , Hiperplasia , Integrina alfaVbeta3/metabolismo , Proteínas com Domínio LIM/deficiência , Proteínas com Domínio LIM/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/lesões , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Neointima , Transdução de Sinais , Fator de Transcrição AP-1/metabolismo , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Fator de Crescimento Transformador beta1/genética , Lesões do Sistema Vascular/genética , Lesões do Sistema Vascular/patologia
16.
Arterioscler Thromb Vasc Biol ; 39(4): 603-612, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30727757

RESUMO

Smooth muscle cells (SMCs) are a critical component of blood vessel walls that provide structural support, regulate vascular tone, and allow for vascular remodeling. These cells also exhibit a remarkable plasticity that contributes to vascular growth and repair but also to cardiovascular pathologies, including atherosclerosis, intimal hyperplasia and restenosis, aneurysm, and transplant vasculopathy. Mouse models have been an important tool for the study of SMC functions. The development of smooth muscle-expressing Cre-driver lines has allowed for exciting discoveries, including recent advances revealing the diversity of phenotypes derived from mature SMC transdifferentiation in vivo using inducible CreER T2 lines. We review SMC-targeting Cre lines driven by the Myh11, Tagln, and Acta2 promoters, including important technical considerations associated with these models. Limitations that can complicate study of the vasculature include expression in visceral SMCs leading to confounding phenotypes, and expression in multiple nonsmooth muscle cell types, such as Acta2-Cre expression in myofibroblasts. Notably, the frequently employed Tagln/ SM22α- Cre driver expresses in the embryonic heart but can also confer expression in nonmuscular cells including perivascular adipocytes and their precursors, myeloid cells, and platelets, with important implications for interpretation of cardiovascular phenotypes. With new Cre-driver lines under development and the increasing use of fate mapping methods, we are entering an exciting new era in SMC research.


Assuntos
Marcação de Genes/métodos , Músculo Liso Vascular/fisiologia , Regiões Promotoras Genéticas , Actinas/biossíntese , Actinas/genética , Animais , Linhagem Celular , Linhagem da Célula , Transdiferenciação Celular , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Camundongos , Proteínas dos Microfilamentos/biossíntese , Proteínas dos Microfilamentos/genética , Proteínas Musculares/biossíntese , Proteínas Musculares/genética , Miócitos de Músculo Liso/fisiologia , Miofibroblastos/fisiologia , Cadeias Pesadas de Miosina/biossíntese , Cadeias Pesadas de Miosina/genética , Neovascularização Patológica/fisiopatologia , Neovascularização Fisiológica , Fenótipo , Proteínas Recombinantes de Fusão/metabolismo
17.
Arterioscler Thromb Vasc Biol ; 39(2): 250-262, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30567484

RESUMO

Objective- TCF7L2 (transcription factor 7-like 2) is a Wnt-regulated transcription factor that maintains stemness and promotes proliferation in embryonic tissues and adult stem cells. Mice with a coronary artery disease-linked mutation in Wnt-coreceptor LRP6 (LDL receptor-related protein 6) exhibit vascular smooth muscle cell dedifferentiation and obstructive coronary artery disease, which are paradoxically associated with reduced TCF7L2 expression. We conducted a comprehensive study to explore the role of TCF7L2 in vascular smooth muscle cell differentiation and protection against intimal hyperplasia. Approach and Results- Using multiple mouse models, we demonstrate here that TCF7L2 promotes differentiation and inhibits proliferation of vascular smooth muscle cells. TCF7L2 accomplishes these effects by stabilization of GATA6 (GATA-binding protein 6) and upregulation of SM-MHC (smooth muscle cell myosin heavy chain) and cell cycle inhibitors. Accordingly, TCF7L2 haploinsufficient mice exhibited increased susceptibility to injury-induced hyperplasia, while mice overexpressing TCF7L2 were protected against injury-induced intimal hyperplasia compared with wild-type littermates. Consequently, the overexpression of TCF7L2 in LRP6 mutant mice rescued the injury-induced intimal hyperplasia. Conclusions- Our novel findings imply cell type-specific functional role of TCF7L2 and provide critical insight into mechanisms underlying the pathogenesis of intimal hyperplasia.


Assuntos
Plasticidade Celular , Fator de Transcrição GATA6/fisiologia , Músculo Liso Vascular/fisiologia , Miócitos de Músculo Liso/fisiologia , Proteína 2 Semelhante ao Fator 7 de Transcrição/fisiologia , Túnica Íntima/patologia , Animais , Células Cultivadas , Hiperplasia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/citologia , Fator de Crescimento Derivado de Plaquetas/farmacologia
20.
Arterioscler Thromb Vasc Biol ; 37(12): 2311-2321, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29025710

RESUMO

OBJECTIVE: Drug-eluting stent delivery of mTORC1 (mechanistic target of rapamycin complex 1) inhibitors is highly effective in preventing intimal hyperplasia after coronary revascularization, but adverse effects limit their use for systemic vascular disease. Understanding the mechanism of action may lead to new treatment strategies. We have shown that rapamycin promotes vascular smooth muscle cell differentiation in an AKT2-dependent manner in vitro. Here, we investigate the roles of AKT (protein kinase B) isoforms in intimal hyperplasia. APPROACH AND RESULTS: We found that germ-line-specific or smooth muscle-specific deletion of Akt2 resulted in more severe intimal hyperplasia compared with control mice after arterial denudation injury. Conversely, smooth muscle-specific Akt1 knockout prevented intimal hyperplasia, whereas germ-line Akt1 deletion caused severe thrombosis. Notably, rapamycin prevented intimal hyperplasia in wild-type mice but had no therapeutic benefit in Akt2 knockouts. We identified opposing roles for AKT1 and AKT2 isoforms in smooth muscle cell proliferation, migration, differentiation, and rapamycin response in vitro. Mechanistically, rapamycin induced MYOCD (myocardin) mRNA expression. This was mediated by AKT2 phosphorylation and nuclear exclusion of FOXO4 (forkhead box O4), inhibiting its binding to the MYOCD promoter. CONCLUSIONS: Our data reveal opposing roles for AKT isoforms in smooth muscle cell remodeling. AKT2 is required for rapamycin's therapeutic inhibition of intimal hyperplasia, likely mediated in part through AKT2-specific regulation of MYOCD via FOXO4. Because AKT2 signaling is impaired in diabetes mellitus, this work has important implications for rapamycin therapy, particularly in diabetic patients.


Assuntos
Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Neointima , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sirolimo/farmacologia , Lesões do Sistema Vascular/prevenção & controle , Animais , Sítios de Ligação , Proteínas de Ciclo Celular , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Fatores de Transcrição Forkhead , Regulação da Expressão Gênica , Predisposição Genética para Doença , Humanos , Camundongos Knockout , Músculo Liso Vascular/enzimologia , Músculo Liso Vascular/lesões , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/enzimologia , Miócitos de Músculo Liso/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenótipo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-akt/deficiência , Proteínas Proto-Oncogênicas c-akt/genética , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transfecção , Lesões do Sistema Vascular/enzimologia , Lesões do Sistema Vascular/genética , Lesões do Sistema Vascular/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA