Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Int J Mol Sci ; 24(9)2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37175867

RESUMO

Dengue virus (DENV) is a single-stranded (+)-sense RNA virus that infects humans and mosquitoes, posing a significant health risk in tropical and subtropical regions. Mature virions are composed of an icosahedral shell of envelope (E) and membrane (M) proteins circumscribing a lipid bilayer, which in turn contains a complex of the approximately 11 kb genomic RNA with capsid (C) proteins. Whereas the structure of the envelope is clearly defined, the structure of the packaged genome in complex with C proteins remains elusive. Here, we investigated the interactions of C proteins with viral RNA, in solution and inside mature virions, via footprinting and cross-linking experiments. We demonstrated that C protein interaction with DENV genomes saturates at an RNA:C protein ratio below 1:250. Moreover, we also showed that the length of the RNA genome interaction sites varies, in a multimodal distribution, consistent with the C protein binding to each RNA site mostly in singlets or pairs (and, in some instances, higher numbers). We showed that interaction sites are preferentially sites with low base pairing, as previously measured by 2'-acetylation analyzed by primer extension (SHAPE) reactivity indicating structuredness. We found a clear association pattern emerged: RNA-C protein binding sites are strongly associated with long-range RNA-RNA interaction sites, particularly inside virions. This, in turn, explains the need for C protein in viral genome packaging: the protein has a chief role in coordinating these key interactions, promoting proper packaging of viral RNA. Such sites are, thus, highly consequential for viral assembly, and, as such, may be targeted in future drug development strategies against these and related viruses.


Assuntos
Proteínas do Capsídeo , Vírus da Dengue , Animais , Humanos , Proteínas do Capsídeo/química , Vírus da Dengue/genética , Vírus da Dengue/metabolismo , Genoma Viral , Capsídeo/química , RNA Viral/metabolismo
2.
Arch Biochem Biophys ; 704: 108858, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33798534

RESUMO

Success rates in drug discovery are extremely low, and the imbalance between new drugs entering clinical research and their approval is steadily widening. Among the causes of the failure of new therapeutic agents are the lack of safety and insufficient efficacy. On the other hand, timely disease diagnosis may enable an early management of the disease, generally leading to better and less costly outcomes. Several strategies have been explored to overcome the barriers for drug development and facilitate diagnosis. Using lipid membranes as platforms for drug delivery or as biosensors are promising strategies, due to their biocompatibility and unique physicochemical properties. We examine some of the lipid membrane-based strategies for drug delivery and diagnostics, including their advantages and shortcomings. Regarding synthetic lipid membrane-based strategies for drug delivery, liposomes are the archetypic example of a successful approach, already with a long period of well-succeeded clinical application. The use of lipid membrane-based structures from biological sources as drug carriers, currently under clinical evaluation, is also discussed. These biomimetic strategies can enhance the in vivo lifetime of drug and delivery system by avoiding fast clearance, consequently increasing their therapeutic window. The strategies under development using lipid membranes for diagnostic purposes are also reviewed.


Assuntos
Materiais Biomiméticos , Técnicas Biossensoriais , Lipídeos de Membrana , Materiais Biomiméticos/química , Materiais Biomiméticos/uso terapêutico , Humanos , Lipossomos , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Lipídeos de Membrana/uso terapêutico
3.
Arch Biochem Biophys ; 683: 108298, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32045581

RESUMO

Intrinsically disordered protein regions are at the core of biological processes and involved in key protein-ligand interactions. The Flavivirus proteins, of viruses of great biomedical importance such as Zika and dengue viruses, exemplify this. Several proteins of these viruses have disordered regions that are of the utmost importance for biological activity. Disordered proteins can adopt several conformations, each able to interact with and/or bind to different ligands. In fact, such interactions can help stabilize a particular fold. Moreover, by being promiscuous in the number of target molecules they can bind to, these protein regions increase the number of functions that their small proteome (10 proteins) can achieve. A folding energy waterfall better describes the protein folding landscape of these proteins. A disordered protein can be thought as rolling down the folding energy cascade, in order "to fall, fold and function". This is the case of many viral protein regions, as seen in the flaviviruses proteome. Given their small size, flaviviruses are a good model system for understanding the role of intrinsically disordered protein regions in viral function. Finally, studying these viruses disordered protein regions will certainly contribute to the development of therapeutic approaches against such promising (yet challenging) targets.


Assuntos
Infecções por Flavivirus/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Virais/química , Animais , Vírus da Dengue/metabolismo , Humanos , Ligantes , Espectroscopia de Ressonância Magnética , Ligação Proteica , Domínios Proteicos , Dobramento de Proteína , Proteoma/metabolismo , Proteômica , Publicações , Resultado do Tratamento , Zika virus/metabolismo
4.
Int J Mol Sci ; 20(16)2019 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-31398956

RESUMO

Dengue, West Nile and Zika, closely related viruses of the Flaviviridae family, are an increasing global threat, due to the expansion of their mosquito vectors. They present a very similar viral particle with an outer lipid bilayer containing two viral proteins and, within it, the nucleocapsid core. This core is composed by the viral RNA complexed with multiple copies of the capsid protein, a crucial structural protein that mediates not only viral assembly, but also encapsidation, by interacting with host lipid systems. The capsid is a homodimeric protein that contains a disordered N-terminal region, an intermediate flexible fold section and a very stable conserved fold region. Since a better understanding of its structure can give light into its biological activity, here, first, we compared and analyzed relevant mosquito-borne Flavivirus capsid protein sequences and their predicted structures. Then, we studied the alternative conformations enabled by the N-terminal region. Finally, using dengue virus capsid protein as main model, we correlated the protein size, thermal stability and function with its structure/dynamics features. The findings suggest that the capsid protein interaction with host lipid systems leads to minor allosteric changes that may modulate the specific binding of the protein to the viral RNA. Such mechanism can be targeted in future drug development strategies, namely by using improved versions of pep14-23, a dengue virus capsid protein peptide inhibitor, previously developed by us. Such knowledge can yield promising advances against Zika, dengue and closely related Flavivirus.


Assuntos
Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Vírus da Dengue , Flavivirus , Sequência de Aminoácidos , Animais , Proteínas do Capsídeo/genética , Sequência Conservada , Vírus da Dengue/genética , Vírus da Dengue/metabolismo , Evolução Molecular , Flavivirus/genética , Flavivirus/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Filogenia , Conformação Proteica , Estabilidade Proteica , Relação Estrutura-Atividade
5.
Brain ; 140(5): 1399-1419, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28398476

RESUMO

α-Synuclein misfolding and aggregation is a hallmark in Parkinson's disease and in several other neurodegenerative diseases known as synucleinopathies. The toxic properties of α-synuclein are conserved from yeast to man, but the precise underpinnings of the cellular pathologies associated are still elusive, complicating the development of effective therapeutic strategies. Combining molecular genetics with target-based approaches, we established that glycation, an unavoidable age-associated post-translational modification, enhanced α-synuclein toxicity in vitro and in vivo, in Drosophila and in mice. Glycation affected primarily the N-terminal region of α-synuclein, reducing membrane binding, impaired the clearance of α-synuclein, and promoted the accumulation of toxic oligomers that impaired neuronal synaptic transmission. Strikingly, using glycation inhibitors, we demonstrated that normal clearance of α-synuclein was re-established, aggregation was reduced, and motor phenotypes in Drosophila were alleviated. Altogether, our study demonstrates glycation constitutes a novel drug target that can be explored in synucleinopathies as well as in other neurodegenerative conditions.


Assuntos
Doenças Neurodegenerativas/metabolismo , Agregação Patológica de Proteínas/metabolismo , alfa-Sinucleína/metabolismo , alfa-Sinucleína/toxicidade , Envelhecimento/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Modelos Animais de Doenças , Drosophila , Inibidores Enzimáticos/farmacologia , Feminino , Glicosilação/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Processamento de Proteína Pós-Traducional , Aldeído Pirúvico/farmacologia , Ratos , Leveduras/efeitos dos fármacos , Leveduras/fisiologia , alfa-Sinucleína/efeitos dos fármacos , alfa-Sinucleína/fisiologia
7.
Chem Soc Rev ; 43(15): 5326-45, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-24781248

RESUMO

Self-assembling amyloid-like peptides and proteins give rise to promising biomaterials with potential applications in many fields. Amyloid structures are formed by the process of molecular recognition and self-assembly, wherein a peptide or protein monomer spontaneously self-associates into dimers and oligomers and subsequently into supramolecular aggregates, finally resulting in condensed fibrils. Mature amyloid fibrils possess a quasi-crystalline structure featuring a characteristic fiber diffraction pattern and have well-defined properties, in contrast to many amorphous protein aggregates that arise when proteins misfold. Core sequences of four to seven amino acids have been identified within natural amyloid proteins. They are capable to form amyloid fibers and fibrils and have been used as amyloid model structures, simplifying the investigations on amyloid structures due to their small size. Recent studies have highlighted the use of self-assembled amyloid-based fibers as nanomaterials. Here, we discuss the latest advances and the major challenges in developing amyloids for future applications in nanotechnology and nanomedicine, with the focus on development of sensors to study protein-ligand interactions.


Assuntos
Amiloide , Bioengenharia , Nanoestruturas , Nanotecnologia
8.
Nanomedicine ; 10(1): 247-55, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23792329

RESUMO

Dengue affects millions of people worldwide. No specific treatment is currently available, in part due to an incomplete understanding of the viral components' interactions with host cellular structures. We tested dengue virus (DENV) capsid protein (C) interaction with low- and very low-density lipoproteins (LDL and VLDL, respectively) using atomic force microscopy-based force spectroscopy, dynamic light scattering, NMR and computational analysis. Data reveal a specific DENV C interaction with VLDL, but not LDL. This binding is potassium-dependent and involves the DENV C N-terminal region, as previously observed for the DENV C-lipid droplets (LDs) interaction. A successful inhibition of DENV C-VLDL binding was achieved with a peptide drug lead. The similarities between LDs and VLDL, and between perilipin 3 (DENV C target on LDs) and ApoE, indicate ApoE as the molecular target on VLDL. We hypothesize that DENV may form lipoviroparticles, which would constitute a novel step on DENV life cycle. FROM THE CLINICAL EDITOR: Using atomic force microscopy-based force spectroscopy, dynamic light scattering, NMR, and computational analysis, these authors demonstrate that dengue viral capsid proteins (DENV C) bind to very low density lipoprotein surfaces, but not to LDLs, in a potassium-dependent manner. This observation suggests the formation of lipo-viroparticles, which may be a novel step in its life cycle, and may offer potential therapeutic interventions directed to this step.


Assuntos
Proteínas do Capsídeo/metabolismo , Vírus da Dengue/metabolismo , Dengue/virologia , Lipoproteínas VLDL/metabolismo , Dengue/genética , Dengue/patologia , Vírus da Dengue/genética , Vírus da Dengue/patogenicidade , Interações Hospedeiro-Patógeno/genética , Humanos , Potássio/metabolismo , Ligação Proteica , Vírion/genética , Vírion/metabolismo
9.
J Virol ; 86(4): 2096-108, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22130547

RESUMO

Dengue virus (DENV) affects millions of people, causing more than 20,000 deaths annually. No effective treatment for the disease caused by DENV infection is currently available, partially due to the lack of knowledge on the basic aspects of the viral life cycle, including the molecular basis of the interaction between viral components and cellular compartments. Here, we characterized the properties of the interaction between the DENV capsid (C) protein and hepatic lipid droplets (LDs), which was recently shown to be essential for the virus replication cycle. Zeta potential analysis revealed a negative surface charge of LDs, with an average surface charge of -19 mV. The titration of LDs with C protein led to an increase of the surface charge, which reached a plateau at +13.7 mV, suggesting that the viral protein-LD interaction exposes the protein cationic surface to the aqueous environment. Atomic force microscopy (AFM)-based force spectroscopy measurements were performed by using C protein-functionalized AFM tips. The C protein-LD interaction was found to be strong, with a single (un)binding force of 33.6 pN. This binding was dependent on high intracellular concentrations of potassium ions but not sodium. The inhibition of Na(+)/K(+)-ATPase in DENV-infected cells resulted in the dissociation of C protein from LDs and a 50-fold inhibition of infectious virus production but not of RNA replication, indicating a biological relevance for the potassium-dependent interaction. Limited proteolysis of the LD surface impaired the C protein-LD interaction, and force measurements in the presence of specific antibodies indicated that perilipin 3 (TIP47) is the major DENV C protein ligand on the surface of LDs.


Assuntos
Proteínas do Capsídeo/metabolismo , Vírus da Dengue/metabolismo , Dengue/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Capsídeo/genética , Dengue/virologia , Vírus da Dengue/genética , Células Hep G2 , Humanos , Fígado/virologia , Potássio/metabolismo , Ligação Proteica
10.
Arch Biochem Biophys ; 531(1-2): 116-27, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23228596

RESUMO

Atomic force microscopy (AFM) applied to biological systems can, besides generating high-quality and well-resolved images, be employed to study protein folding via AFM-based force spectroscopy. This approach allowed remarkable advances in the measurement of inter- and intramolecular interaction forces with piconewton resolution. The detection of specific interaction forces between molecules based on the AFM sensitivity and the manipulation of individual molecules greatly advanced the understanding of intra-protein and protein-ligand interactions. Apart from the academic interest in the resolution of basic scientific questions, this technique has also key importance on the clarification of several biological questions of immediate biomedical relevance. Force spectroscopy is an especially appropriate technique for "mechanical proteins" that can provide crucial information on single protein molecules and/or domains. Importantly, it also has the potential of combining in a single experiment spatial and kinetic measurements. Here, the main principles of this methodology are described, after which the ability to measure interactions at the single-molecule level is discussed, in the context of relevant protein-folding examples. We intend to demonstrate the potential of AFM-based force spectroscopy in the study of protein folding, especially since this technique is able to circumvent some of the difficulties typically encountered in classical thermal/chemical denaturation studies.


Assuntos
Microscopia de Força Atômica/métodos , Dobramento de Proteína , Proteínas/química , Análise Espectral/métodos
11.
Reprod Biol Endocrinol ; 11: 25, 2013 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-23531155

RESUMO

BACKGROUND: The impact of prion proteins in the rules that dictate biological reproduction is still poorly understood. Likewise, the role of prnt gene, encoding the prion-like protein testis specific (Prt), in ram reproductive physiology remains largely unknown. In this study, we assessed the effect of Prt in ovine fertilization by using an anti-Prt antibody (APPA) in fertilization medium incubated with spermatozoa and oocytes. Moreover, a computational model was constructed to infer how the results obtained could be related to a hypothetical role for Prt in sperm-zona pellucida (ZP) binding. METHODS: Mature ovine oocytes were transferred to fertilization medium alone (control) or supplemented with APPA, or pre-immune serum (CSerum). Oocytes were inseminated with ovine spermatozoa and after 18 h, presumptive zygotes (n=142) were fixed to evaluate fertilization rates or transferred (n=374) for embryo culture until D6-7. Predicted ovine Prt tertiary structure was compared with data obtained by circular dichroism spectroscopy (CD) and a protein-protein computational docking model was estimated for a hypothetical Prt/ZP interaction. RESULTS: The fertilizing rate was lower (P=0.006) in APPA group (46.0+/-6.79%) when compared to control (78.5+/-7.47%) and CSerum (64.5+/-6.65%) groups. In addition, the cleavage rate was higher (P<0.0001) in control (44.1+/-4.15%) than in APPA group (19.7+/-4.22%). Prt CD spectroscopy showed a 22% alpha-helical structure in 30% (m/v) aqueous trifluoroethanol (TFE) and 17% alpha in 0.6% (m/v) TFE. The predominant alpha-helical secondary structure detected correlates with the predicted three dimensional structure for ovine Prt, which was subsequently used to test Prt/ZP docking. Computational analyses predicted a favorable Prt-binding activity towards ZP domains. CONCLUSIONS: Our data indicates that the presence of APPA reduces the number of fertilized oocytes and of cleaved embryos. Moreover, the CD analysis data reinforces the predicted ovine Prt trend towards an alpha-helical structure. Predicted protein-protein docking suggests a possible interaction between Prt and ZP, thus supporting an important role for Prt in ovine fertilization.


Assuntos
Anticorpos Monoclonais/farmacologia , Fertilização in vitro/efeitos dos fármacos , Príons/metabolismo , Zona Pelúcida/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Dicroísmo Circular , Proteínas do Ovo/química , Proteínas do Ovo/genética , Proteínas do Ovo/metabolismo , Embrião de Mamíferos/efeitos dos fármacos , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Feminino , Masculino , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Príons/química , Príons/imunologia , Ligação Proteica , Conformação Proteica/efeitos dos fármacos , Estrutura Secundária de Proteína/efeitos dos fármacos , Estrutura Terciária de Proteína , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Homologia de Sequência de Aminoácidos , Ovinos , Interações Espermatozoide-Óvulo/efeitos dos fármacos , Fatores de Tempo , Trifluoretanol/química , Trifluoretanol/farmacologia , Glicoproteínas da Zona Pelúcida
12.
Biochem J ; 444(3): 405-15, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22428600

RESUMO

Dengue is the major arthropod-borne human viral disease, for which no vaccine or specific treatment is available. We used NMR, zeta potential measurements and atomic force microscopy to study the structural features of the interaction between dengue virus C (capsid) protein and LDs (lipid droplets), organelles crucial for infectious particle formation. C protein-binding sites to LD were mapped, revealing a new function for a conserved segment in the N-terminal disordered region and indicating that conformational selection is involved in recognition. The results suggest that the positively charged N-terminal region of C protein prompts the interaction with negatively charged LDs, after which a conformational rearrangement enables the access of the central hydrophobic patch to the LD surface. Taken together, the results allowed the design of a peptide with inhibitory activity of C protein-LD binding, paving the way for new drug development approaches against dengue.


Assuntos
Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Vírus da Dengue/genética , Vírus da Dengue/metabolismo , Lipídeos/fisiologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sítios de Ligação/fisiologia , Proteínas do Capsídeo/química , Linhagem Celular , Cricetinae , Vírus da Dengue/química , Humanos , Lipídeos/química , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Ligação Proteica/fisiologia , Conformação Proteica , Eletricidade Estática
13.
Pharmaceutics ; 14(11)2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36432726

RESUMO

Dengue, West Nile and Zika viruses are vector-borne flaviviruses responsible for numerous disease outbreaks in both Hemispheres. Despite relatively low mortality, infection may lead to potentially severe situations such as (depending on the virus): hypovolemic shock, encephalitis, acute flaccid paralysis, Guillain-Barré syndrome, congenital malformations (e.g., microcephaly) and, in some situations, death. Moreover, outbreaks also have major socioeconomic repercussions, especially in already vulnerable societies. Thus far, only generic symptoms relief is possible, as there are no specific treatments available yet. Dengvaxia was the world's first dengue vaccine. However, it is not fully effective. Prophylactic approaches against West Nile and Zika viruses are even more limited. Therefore, therapeutic strategies are required and will be discussed hereafter. We will first briefly present these viruses' epidemiology, life cycle and structure. Then, we introduce the clinical presentation, diagnosis approaches and available vaccines. Finally, we list and discuss promising compounds at discovery and preclinical development stages already deposited at the GlobalData database and divided into three main types, according to therapeutic molecule: antibody-based, peptide-based molecules and, other compounds. To conclude, we discuss and compare promising developments, useful for future therapies against these three flaviviruses of major concern to human health.

14.
Artigo em Inglês | MEDLINE | ID: mdl-36416027

RESUMO

Infections caused by antibiotic-resistant bacteria continue to challenge the medical field, mostly due to conventional treatments inefficiency after years of overuse and misuse in clinics. Cases of multiresistant bacterial infections are increasing every year. This led the World Health Organization (WHO) to update the list of resistant micro-organisms that represent greatest threat to human health. To stop the growing of the global resistance to antimicrobial drugs, new alternatives are necessary to fight these pathogens. In this context, antimicrobials peptides (AMPs) emerge as a new alternative to the current antibiotics in the pharmaceutical market. To improve their antimicrobial activity, different strategies are being developed to overcome antibiotic-resistant bacteria. Nanotechnology can be used to further potentiate antimicrobials, by increasing their activity or assisting in their delivering, frequently using nanostructured materials. There are already several antimicrobial peptides used in therapeutics, some of them coupled to nanoparticles. Additionally, detection strategies taking advantage of peptides as recognition agents are also being explored. Several examples are detailed of peptides that are specific to bacterial targets, and how that specificity can be used in diagnostics systems, coupled with nanoparticles-based signal detection approaches. Thus, the same properties of AMPs that enable specific neutralization can be harnessed to detect the very same bacteria they target. Overall, this review is focused on current research on nanoparticles coupled to antimicrobial peptides and how they can be used against multidrug-resistant bacteria as antimicrobials and/or as detection system. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.


Assuntos
Anti-Infecciosos , Nanopartículas , Humanos , Bactérias , Peptídeos , Antibacterianos/uso terapêutico , Nanopartículas/química
15.
Neural Regen Res ; 16(6): 1127-1130, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33269760

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder that affects millions worldwide. Due to population ageing, the incidence of AD is increasing. AD patients develop cognitive decline and dementia, features for which is known, requiring permanent care. This poses a major socio-economic burden on healthcare systems as AD patients' relatives and healthcare workers are forced to cope with rising numbers of affected people. Despite recent advances, AD pathological mechanisms are not fully understood. Nevertheless, it is clear that the amyloid beta (Aß) peptide, which forms amyloid plaques in AD patients' brains, plays a key role. Type 2 diabetes, the most common form of diabetes, affects hundreds of million people globally. Islet amyloid polypeptide (IAPP) is a hormone co-produced and secreted with insulin in pancreatic ß-cells, with a key role in diabetes, as it helps regulate glucose levels and control adiposity and satiation. Similarly to Aß, IAPP is very amyloidogenic, generating intracellular amyloid deposits that cause ß-cell dysfunction and death. It is now clear that IAPP can also have a pathological role in AD, decreasing cognitive function. IAPP harms the blood-brain barrier, directly interacts and co-deposits with Aß, promoting diabetes-associated dementia. IAPP can cause a metabolic dysfunction in the brain, leading to other diabetes-related forms of AD. Thus, here we discuss IAPP association with diabetes, Aß and dementia, in the context of what we designate a "diabetes brain phenotype" AD hypothesis. Such approach helps to set a conceptual framework for future IAPP-based drugs against AD.

16.
Cells ; 10(3)2021 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-33805761

RESUMO

The circularization of viral genomes fulfills various functions, from evading host defense mechanisms to promoting specific replication and translation patterns supporting viral proliferation. Here, we describe the genomic structures and associated host factors important for flaviviruses genome circularization and summarize their functional roles. Flaviviruses are relatively small, single-stranded, positive-sense RNA viruses with genomes of approximately 11 kb in length. These genomes contain motifs at their 5' and 3' ends, as well as in other regions, that are involved in circularization. These motifs are highly conserved throughout the Flavivirus genus and occur both in mature virions and within infected cells. We provide an overview of these sequence motifs and RNA structures involved in circularization, describe their linear and circularized structures, and discuss the proteins that interact with these circular structures and that promote and regulate their formation, aiming to clarify the key features of genome circularization and understand how these affect the flaviviruses life cycle.


Assuntos
Flavivirus/patogenicidade , Genoma Viral/genética , Replicação Viral/fisiologia , Humanos
17.
Front Mol Neurosci ; 13: 35, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32265649

RESUMO

Diabetes affects hundreds of millions of patients worldwide. Despite the advances in understanding the disease and therapeutic options, it remains a leading cause of death and of comorbidities globally. Islet amyloid polypeptide (IAPP), or amylin, is a hormone produced by pancreatic ß-cells. It contributes to the maintenance of glucose physiological levels namely by inhibiting insulin and glucagon secretion as well as controlling adiposity and satiation. IAPP is a highly amyloidogenic polypeptide forming intracellular aggregates and amyloid structures that are associated with ß-cell death. Data also suggest the relevance of unprocessed IAPP forms as seeding for amyloid buildup. Besides the known consequences of hyperamylinemia in the pancreas, evidence has also pointed out that IAPP has a pathological role in cognitive function. More specifically, IAPP was shown to impair the blood-brain barrier; it was also seen to interact and co-deposit with amyloid beta peptide (Aß), and possibly with Tau, within the brain of Alzheimer's disease (AD) patients, thereby contributing to diabetes-associated dementia. In fact, it has been suggested that AD results from a metabolic dysfunction in the brain, leading to its proposed designation as type 3 diabetes. Here, we have first provided a brief perspective on the IAPP amyloidogenic process and its role in diabetes and AD. We have then discussed the potential interventions for modulating IAPP proteotoxicity that can be explored for therapeutics. Finally, we have proposed the concept of a "diabetes brain phenotype" hypothesis in AD, which may help design future IAPP-centered drug developmentstrategies against AD.

18.
Trop Med Infect Dis ; 5(4)2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32977703

RESUMO

Dengue virus (DENV), which can lead to fatal hemorrhagic fever, affects 390 million people worldwide. The closely related Zika virus (ZIKV) causes microcephaly in newborns and Guillain-Barré syndrome in adults. Both viruses are mostly transmitted by Aedes albopictus and Aedes aegypti mosquitoes, which, due to globalization of trade and travel alongside climate change, are spreading worldwide, paving the way to DENV and ZIKV transmission and the occurrence of new epidemics. Local outbreaks have already occurred in temperate climates, even in Europe. As there are no specific treatments, these viruses are an international public health concern. Here, we analyze and discuss DENV and ZIKV outbreaks history, clinical and pathogenesis features, and modes of transmission, supplementing with information on advances on potential therapies and restraining measures. Taking advantage of the knowledge of the structure and biological function of the capsid (C) protein, a relatively conserved protein among flaviviruses, within a genus that includes DENV and ZIKV, we designed and patented a new drug lead, pep14-23 (WO2008/028939A1). It was demonstrated that it inhibits the interaction of DENV C protein with the host lipid system, a process essential for viral replication. Such an approach can be used to develop new therapies for related viruses, such as ZIKV.

19.
Artigo em Inglês | MEDLINE | ID: mdl-30788291

RESUMO

West Nile and dengue viruses are closely related flaviviruses, originating mosquito-borne viral infections for which there are no effective and specific treatments. Their capsid proteins sequence and structure are particularly similar, forming highly superimposable α-helical homodimers. Measuring protein-ligand interactions at the single-molecule level yields detailed information of biological and biomedical relevance. In this work, such an approach was successfully applied on the characterization of the West Nile virus capsid protein interaction with host lipid systems, namely intracellular lipid droplets (an essential step for dengue virus replication) and blood plasma lipoproteins. Dynamic light scattering measurements show that West Nile virus capsid protein binds very low-density lipoproteins, but not low-density lipoproteins, and this interaction is dependent of potassium ions. Zeta potential experiments show that the interaction with lipid droplets is also dependent of potassium ions as well as surface proteins. The forces involved on the binding of the capsid protein with lipid droplets and lipoproteins were determined using atomic force microscopy-based force spectroscopy, proving that these interactions are K+-dependent rather than a general dependence of ionic strength. The capsid protein interaction with host lipid systems may be targeted in future therapeutic strategies against different flaviviruses. The biophysical and nanotechnology approaches employed in this study may be applied to characterize the interactions of other important proteins from different viruses, in order to understand their life cycles, as well as to find new strategies to inhibit them.


Assuntos
Proteínas do Capsídeo/metabolismo , Interações Hospedeiro-Patógeno , Metabolismo dos Lipídeos , Vírus do Nilo Ocidental/crescimento & desenvolvimento , Animais , Linhagem Celular , Cricetinae , Humanos , Gotículas Lipídicas/metabolismo , Lipoproteínas VLDL/metabolismo , Ligação Proteica
20.
Sci Rep ; 9(1): 1647, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30733478

RESUMO

Understanding protein structure and dynamics, which govern key cellular processes, is crucial for basic and applied research. Intrinsically disordered protein (IDP) regions display multifunctionality via alternative transient conformations, being key players in disease mechanisms. IDP regions are abundant, namely in small viruses, allowing a large number of functions out of a small proteome. The relation between protein function and structure is thus now seen from a different perspective: as IDP regions enable transient structural arrangements, each conformer can play different roles within the cell. However, as IDP regions are hard and time-consuming to study via classical techniques (optimized for globular proteins with unique conformations), new methods are required. Here, employing the dengue virus (DENV) capsid (C) protein and the immunoglobulin-binding domain of streptococcal protein G, we describe a straightforward NMR method to differentiate the solvent accessibility of single amino acid N-H groups in structured and IDP regions. We also gain insights into DENV C flexible fold region biological activity. The method, based on minimal pH changes, uses the well-established 1H-15N HSQC pulse sequence and is easily implementable in current protein NMR routines. The data generated are simple to interpret, with this rapid approach being an useful first-choice IDPs characterization method.


Assuntos
Proteínas de Bactérias/química , Proteínas do Capsídeo/química , Vírus da Dengue/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Imageamento por Ressonância Magnética/métodos , Solventes/química , Conformação Proteica , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA