RESUMO
BACKGROUND: Tobacco smoking alters the DNA methylation profiles of immune cells which may underpin some of the pathogenesis of smoking-associated diseases. To link smoking-driven epigenetic effects in specific immune cell types with disease risk, we isolated six leukocyte subtypes, CD14+ monocytes, CD15+ granulocytes, CD19+ B cells, CD4+ T cells, CD8+ T cells, and CD56+ natural killer cells, from whole blood of 67 healthy adult smokers and 74 nonsmokers for epigenome-wide association study (EWAS) using Illumina 450k and EPIC methylation arrays. RESULTS: Numbers of smoking-associated differentially methylated sites (smCpGs) at genome-wide significance (p < 1.2 × 10-7) varied widely across cell types, from 5 smCpGs in CD8+ T cells to 111 smCpGs in CD19+ B cells. We found unique smoking effects in each cell type, some of which were not apparent in whole blood. Methylation-based deconvolution to estimate B cell subtypes revealed that smokers had 7.2% (p = 0.033) less naïve B cells. Adjusting for naïve and memory B cell proportions in EWAS and RNA-seq allowed the identification of genes enriched for B cell activation-related cytokine signaling pathways, Th1/Th2 responses, and hematopoietic cancers. Integrating with large-scale public datasets, 62 smCpGs were among CpGs associated with health-relevant EWASs. Furthermore, 74 smCpGs had reproducible methylation quantitative trait loci single nucleotide polymorphisms (SNPs) that were in complete linkage disequilibrium with genome-wide association study SNPs, associating with lung function, disease risks, and other traits. CONCLUSIONS: We observed blood cell-type-specific smCpGs, a naïve-to-memory shift among B cells, and by integrating genome-wide datasets, we identified their potential links to disease risks and health traits.
Assuntos
Metilação de DNA , Fumar , Adulto , Humanos , Fumar/efeitos adversos , Fumar/genética , Estudo de Associação Genômica Ampla , Epigenômica , Leucócitos , Fumar Tabaco , Ilhas de CpG , Epigênese GenéticaRESUMO
BACKGROUND: Allele-specific DNA methylation (ASM) describes genomic loci that maintain CpG methylation at only one inherited allele rather than having coordinated methylation across both alleles. The most prominent of these regions are germline ASMs (gASMs) that control the expression of imprinted genes in a parent of origin-dependent manner and are associated with disease. However, our recent report reveals numerous ASMs at non-imprinted genes. These non-germline ASMs are dependent on DNA methyltransferase 1 (DNMT1) and strikingly show the feature of random, switchable monoallelic methylation patterns in the mouse genome. The significance of these ASMs to human health has not been explored. Due to their shared allelicity with gASMs, herein, we propose that non-traditional ASMs are sensitive to exposures in association with human disease. RESULTS: We first explore their conservancy in the human genome. Our data show that our putative non-germline ASMs were in conserved regions of the human genome and located adjacent to genes vital for neuronal development and maturation. We next tested the hypothesized vulnerability of these regions by exposing human embryonic kidney cell HEK293 with the neurotoxicant rotenone for 24 h. Indeed,14 genes adjacent to our identified regions were differentially expressed from RNA-sequencing. We analyzed the base-resolution methylation patterns of the predicted non-germline ASMs at two neurological genes, HCN2 and NEFM, with potential to increase the risk of neurodegeneration. Both regions were significantly hypomethylated in response to rotenone. CONCLUSIONS: Our data indicate that non-germline ASMs seem conserved between mouse and human genomes, overlap important regulatory factor binding motifs, and regulate the expression of genes vital to neuronal function. These results support the notion that ASMs are sensitive to environmental factors such as rotenone and may alter the risk of neurological disease later in life by disrupting neuronal development.
Assuntos
DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Epigenoma , Inseticidas/toxicidade , Síndromes Neurotóxicas/genética , Rotenona/toxicidade , Animais , Sequência Conservada , Metilação de DNA/efeitos dos fármacos , Células HEK293 , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Inseticidas/farmacologia , Camundongos , Proteínas de Neurofilamentos/genética , Proteínas de Neurofilamentos/metabolismo , Síndromes Neurotóxicas/etiologia , Canais de Potássio/genética , Canais de Potássio/metabolismo , Rotenona/farmacologia , TranscriptomaRESUMO
Tobacco smoke exposure contributes to the global burden of communicable and chronic diseases. To identify immune cells affected by smoking, we use single-cell RNA sequencing on peripheral blood from smokers and nonsmokers. Transcriptomes reveal a subpopulation of FCGR3A (CD16)-expressing Natural Killer (NK)-like CD8 T lymphocytes that increase in smokers. Mass cytometry confirms elevated CD16+ CD8 T cells in smokers. Inferred as highly differentiated by pseudotime analysis, NK-like CD8 T cells express markers characteristic of effector memory re-expressing CD45RA T (TEMRA) cells. Indicative of immune aging, smokers' CD8 T cells are biased toward differentiated cells and smokers have fewer naïve cells than nonsmokers. DNA methylation-based models show that smoking dose is associated with accelerated aging and decreased telomere length, a biomarker of T cell senescence. Immune aging accompanies T cell senescence, which can ultimately lead to impaired immune function. This suggests a role for smoking-induced, senescence-associated immune dysregulation in smoking-mediated pathologies.
Assuntos
Linfócitos T CD8-Positivos/efeitos dos fármacos , Fumar Cigarros/efeitos adversos , Receptores de IgG/metabolismo , Adulto , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Fumar Cigarros/imunologia , Feminino , Proteínas Ligadas por GPI/efeitos dos fármacos , Proteínas Ligadas por GPI/imunologia , Proteínas Ligadas por GPI/metabolismo , Humanos , Doenças do Sistema Imunitário/fisiopatologia , Células Matadoras Naturais/imunologia , Antígenos Comuns de Leucócito , Masculino , Pessoa de Meia-Idade , Receptores de IgG/efeitos dos fármacos , Receptores de IgG/imunologia , Análise de Célula Única/métodos , Fumantes , Fumar/sangueRESUMO
Histone modification including H3 lysine 79 methylation (H3K79me) plays a key role during gene transcription and DNA damage repair. DOT1L, the sole methyltransferase for three states of H3K79me, is implicated in leukemia, co-lorectal cancer, and dilated cardiomyopathy. However, understanding of DOT1L and H3K79me in these pathways and disease pathogenesis has been limited due to the difficulty of working with DOT1L protein. For instance, locus-specific or genome-wide binding sites of DOT1L revealed by chromatin immunoprecipitation (ChIP)-based methods are necessary for inferring its functions, but high-quality ChIP-grade antibodies are currently not available. Herein we have developed a knock-in approach to tag endogenous DOT1L with 3 × Flag at its C-terminal domain to follow functional analyses. The knock-in was facilitated by using TALENs to induce a targeted double-strand break at the endogenous DOTIL to stimulate local homologous recombination at that site. The single cell colonies with successful knock-in were isolated and verified by different methods. We also demonstrated that tagged DOT1L maintains its normal function in terms of methylation and that the engineered cells would be very useful for further studies.
RESUMO
Imprinted genes are vulnerable to environmental influences during early embryonic development, thereby contributing to the onset of disease in adulthood. Monoallelic methylation at several germline imprints has been reported as DNMT1-dependent. However, which of these two epigenetic attributes, DNMT1-dependence or allelic methylation, renders imprinted genes susceptible to environmental stressors has not been determined. Herein, we developed a new approach, referred to as NORED, to identify 2468 DNMT1-dependent DNA methylation patterns in the mouse genome. We further developed an algorithm based on a genetic variation-independent approach (referred to as MethylMosaic) to detect 2487 regions with bimodal methylation patterns. Two approaches identified 207 regions, including known imprinted germline allele-specific methylation patterns (ASMs), that were both NORED and MethylMosaic regions. Examination of methylation in four independent mouse embryonic stem cell lines shows that two regions identified by both NORED and MethylMosaic (Hcn2 and Park7) did not display parent-of-origin-dependent allelic methylation. In these four F1 hybrid cell lines, genetic variation in Cast allele at Hcn2 locus introduces a transcription factor binding site for MTF-1 that may predispose Cast allelic hypomethylation in a reciprocal cross with either C57 or 129 strains. In contrast, each allele of Hcn2 ASM in J1 inbred cell line and Park7 ASM in four F1 hybrid cell lines seems to exhibit similar propensity to be either hypo- or hypermethylated, suggesting a 'random, switchable' ASM. Together with published results, our data on ASMs prompted us to propose a hypothesis of regional 'autosomal chromosome inactivation (ACI)' that may control a subset of autosomal genes. Therefore, our results open a new avenue to understand monoallelic methylation and provide a rich resource of candidate genes to examine in environmental and nutritional exposure models.
RESUMO
Epigenetic mechanisms involving DNA methylation, histone modification, histone variants and nucleosome positioning, and noncoding RNAs regulate cell-, tissue-, and developmental stage-specific gene expression by influencing chromatin structure and modulating interactions between proteins and DNA. Epigenetic marks are mitotically inherited in somatic cells and may be altered in response to internal and external stimuli. The idea that environment-induced epigenetic changes in mammals could be inherited through the germline, independent of genetic mechanisms, has stimulated much debate. Many experimental models have been designed to interrogate the possibility of transgenerational epigenetic inheritance and provide insight into how environmental exposures influence phenotypes over multiple generations in the absence of any apparent genetic mutation. Unexpected molecular evidence has forced us to reevaluate not only our understanding of the plasticity and heritability of epigenetic factors, but of the stability of the genome as well. Recent reviews have described the difference between transgenerational and intergenerational effects; the two major epigenetic reprogramming events in the mammalian lifecycle; these two events making transgenerational epigenetic inheritance of environment-induced perturbations rare, if at all possible, in mammals; and mechanisms of transgenerational epigenetic inheritance in non-mammalian eukaryotic organisms. This paper briefly introduces these topics and mainly focuses on (1) transgenerational phenotypes and epigenetic effects in mammals, (2) environment-induced intergenerational epigenetic effects, and (3) the inherent difficulties in establishing a role for epigenetic inheritance in human environmental disease.
Assuntos
Doença/genética , Meio Ambiente , Epigênese Genética , Padrões de Herança/genética , Animais , Humanos , FenótipoRESUMO
BACKGROUND: DNA methylation patterns are initiated by de novo DNA methyltransferases DNMT3a/3b adding methyl groups to CG dinucleotides in the hypomethylated genome of early embryos. These patterns are faithfully maintained by DNMT1 during DNA replication to ensure epigenetic inheritance across generations. However, this two-step model is based on limited data. RESULTS: We generated base-resolution DNA methylomes for a series of DNMT knockout embryonic stem cells, with deep coverage at highly repetitive elements. We show that DNMT1 and DNMT3a/3b activities work complementarily and simultaneously to establish symmetric CG methylation and CHH (H = A, T or C) methylation. DNMT3a/3b can add methyl groups to daughter strands after each cycle of DNA replication. We also observe an unexpected division of labor between DNMT1 and DNMT3a/3b in suppressing retrotransposon long terminal repeats and long interspersed elements, respectively. Our data suggest that mammalian cells use a specific CG density threshold to predetermine methylation levels in wild-type cells and the magnitude of methylation reduction in DNMT knockout cells. Only genes with low CG density can be induced or, surprisingly, suppressed in the hypomethylated genome. Lastly, we do not find any association between gene body methylation and transcriptional activity. CONCLUSIONS: We show the concerted actions of DNMT enzymes in the establishment and maintenance of methylation patterns. The finding of distinct roles of DNMT1-dependent and -independent methylation patterns in genome stability and regulation of transcription provides new insights for understanding germ cell development, neuronal diversity, and transgenerational epigenetic inheritance and will help to develop next-generation DNMT inhibitors.