Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 214
Filtrar
1.
Phys Chem Chem Phys ; 26(7): 6386-6395, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38315169

RESUMO

Interpreting NMR experiments benefits from first-principles predictions of chemical shifts. Reaching the accuracy limit of theory is relevant for unambiguous structural analysis and dissecting theoretical approximations. Since accurate chemical shift measurements are based on using internal reference compounds such as trimethylsilylpropanesulfonate (DSS), a detailed comparison of experimental with theoretical data requires simultaneous consideration of both target and reference species ensembles in the same solvent environment. Here we show that ab initio molecular dynamics simulations to generate liquid-state ensembles of target and reference compounds, including explicitly their short-range solvation environments and combined with quantum-mechanical solvation models, allows for predicting highly accurate 1H (∼0.1-0.5 ppm) and aliphatic 13C (∼1.5 ppm) chemical shifts for aqueous solutions of the model compounds trimethylamine N-oxide (TMAO) and N-methylacetamide (NMA), referenced to DSS without any system-specific adjustments. This encompasses the two peptide bond conformations of NMA identified by NMR. The results are used to derive a general-purpose guideline set for predictive NMR chemical shift calculations of NMA in the liquid state and to identify artifacts of force field models. Accurate predictions are only obtained if a sufficient number of explicit water molecules is included in the quantum-mechanical calculations, disproving a purely electrostatic model of the solvent effect on chemical shifts.

2.
Angew Chem Int Ed Engl ; 63(28): e202402120, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38695846

RESUMO

Supercritical water provides distinctly different solvation properties compared to what is known from liquid water. Despite its prevalence deep in the Earth's crust and its role in chemosynthetic ecosystems in the vicinity of hydrothermal vents, molecular insights into its solvation mechanisms are still very scarce compared to what is known for liquid water. Recently, neutral metal particles have been detected in hydrothermal fluids and proposed to explain the transport of gold species to ore deposits on Earth. Using ab initio molecular dynamics, we elucidate the solvation properties of small gold species at supercritical conditions. The neutral metal clusters themselves contribute enormous THz intensity not because of their intramolecular vibrations, but due to their pronounced electronic polarization coupling to the dynamical supercritical solvent, leading to a continuum absorption up to about 1000 cm-1. On top, long-lived interactions between the gold clusters and solvation water leads at these supercritical conditions to a sharp THz resonance that happens to be close to the one due to H-bonding in liquid water at ambient conditions. The resulting distinct resonances can be used to analyse the solvation properties of neutral metal particles in supercritical aqueous solutions.

3.
Phys Rev Lett ; 130(8): 083001, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36898117

RESUMO

Little is known about how rotating molecular ions interact with multiple ^{4}He atoms and how this relates to microscopic superfluidity. Here, we use infrared spectroscopy to investigate ^{4}He_{N}⋯H_{3}O^{+} complexes and find that H_{3}O^{+} undergoes dramatic changes in rotational behavior as ^{4}He atoms are added. We present evidence of clear rotational decoupling of the ion core from the surrounding helium for N>3, with sudden changes in rotational constants at N=6 and 12. In sharp contrast to studies on small neutral molecules microsolvated in helium, accompanying path integral simulations show that an incipient superfluid effect is not needed to account for these findings.

4.
Chem Rev ; 121(11): 6293-6320, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34006106

RESUMO

In this Focus Review, we put the spotlight on very recent insights into the fascinating world of wet chemistry in the realm offered by nanoconfinement of water in mechanically rather rigid and chemically inert planar slit pores wherein only monolayer and bilayer water lamellae can be hosted. We review the effect of confinement on different aspects such as hydrogen bonding, ion diffusion, and charge defect migration of H+(aq) and OH-(aq) in nanoconfined water depending on slit pore width. A particular focus is put on the strongly modulated local dielectric properties as quantified in terms of anisotropic polarization fluctuations across such extremely confined water films and their putative effects on chemical reactions therein. The stunning findings disclosed only recently extend wet chemistry in particular and solvation science in general toward extreme molecular confinement conditions.

5.
Phys Chem Chem Phys ; 25(41): 28119-28129, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37818616

RESUMO

There is an increasing interest toward disclosing and explaining confinement effects on liquids, such as water or aqueous solutions, in slit pore setups. Particularly puzzling are the changes of physical and chemical properties in the nanoconfinement regime where no bulk-like water phase exists between the two interfacial water layers such that the density profile across the slit pore becomes highly stratified, ultimately leading to bilayer and monolayer water. These changes must be quantified with respect to some meaningful reference state of water, the most natural one being bulk water at the same pressure and temperature conditions. However, bulk water is a homogeneous liquid with isotropic properties, whereas water confined in slit pores is inhomogeneous, implying anisotropic properties as described by the perpendicular and parallel components of the respective tensors. In the case of pressure, the inhomogeneous nature of the setup results in a well-defined difference between the perpendicular and parallel pressure tensor components that is uniquely determined by the interfacial tension being a thermodynamic property. For bilayer water constrained in graphene slit pores that are only about 1 nm wide, we demonstrate that there exists a thermodynamic point where the pressure tensor of the inhomogeneous fluid, nanoconfined water, is effectively isotopic and the pressure is thus scalar as in the homogeneous fluid, bulk water. This specific point of vanishing effective interfacial tension is proposed to serve as a well-defined reference state to compare the properties of nanoconfined liquids to those of the corresponding bulk liquid at the same (isotropic) pressure and temperature conditions. In future work, this idea could be applied to assess confinement effects on chemical reactivity in aqueous solutions as well as to other nanoconfined liquids in other pores such as layered minerals.

6.
J Phys Chem A ; 127(11): 2460-2471, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36917575

RESUMO

Helium, the lightest and most weakly interacting noble gas, is well-known for its unsurpassed chemical inertness. In many applications of helium in experimental techniques, such as tagging, messenger, or nanodroplet isolation action spectroscopy of molecules or complexes, it is assumed that the interaction of helium with the respective species, and thus the resulting interaction-induced perturbation, is small enough not to affect their structure and dynamics. Here, we probe the impact of one up to many attached helium atoms on protonated acetylene─an important nonclassical carbocation subject to three-center two-electron bonding in its ground state structure─using highly accurate interaction potentials in conjunction with entropy-based higher-order nonlinear correlation analysis. In particular, using neural network potentials at CCSD(T) accuracy, we disclose the specific structural perturbations due to the tagging of C2H3+ with up to 20 He atoms at a temperature of 1 K. Analysis reveals that microsolvation by helium influences the structure of C2H3+ noticeably, while our investigation of the quantum configurational information entropy additionally shows that correlations between individual orientational degrees of freedom are affected as a function of cluster size. In particular, it is found that the most probable bridge-like structure of the ro-vibrational quantum ground state of C2H3+, which is nonplanar and trans-bent in contrast to the perfectly planar equilibrium structure, becomes increasingly more localized upon adding helium atoms. The remarkably nonlinear behavior of the angular correlations as a function of cluster size is traced back to the buildup of the quantum microsolvation shell that enhances anisotropy up to NHe = 6 while more and more isotropic solvation takes over beyond six. Our approach is general and thus sets the stage to investigate the salient effects on the structure of flexible molecules due to tagging beyond the specific case.

7.
J Phys Chem A ; 127(31): 6447-6466, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37524058

RESUMO

Nitroxides are common EPR sensors of microenvironmental properties such as polarity, numbers of H-bonds, pH, and so forth. Their solvation in an aqueous environment is facilitated by their high propensity to form H-bonds with the surrounding water molecules. Their g- and A-tensor elements are key parameters to extracting the properties of their microenvironment. In particular, the gxx value of nitroxides is rich in information. It is known to be characterized by discrete values representing nitroxide populations previously assigned to have different H-bonds with the surrounding waters. Additionally, there is a large g-strain, that is, a broadening of g-values associated with it, which is generally correlated with environmental and structural micro-heterogeneities. The g-strain is responsible for the frequency dependence of the apparent line width of the EPR spectra, which becomes evident at high field/frequency. Here, we address the molecular origin of the gxx heterogeneity and of the g-strain of a nitroxide moiety (HMI: 2,2,3,4,5,5-hexamethylimidazolidin-1-oxyl, C9H19N2O) in water. To treat the solvation effect on the g-strain, we combined a multi-frequency experimental approach with ab initio molecular dynamics simulations for structural sampling and quantum chemical EPR property calculations at the highest realistically affordable level, including an explicitly micro-solvated HMI ensemble and the embedded cluster reference interaction site model. We could clearly identify the distinct populations of the H-bonded nitroxides responsible for the gxx heterogeneity experimentally observed, and we dissected the role of the solvation shell, H-bond formation, and structural deformation of the nitroxide in the creation of the g-strain associated with each nitroxide subensemble. Two contributions to the g-strain were identified in this study. The first contribution depends on the number of hydrogen bonds formed between the nitroxide and the solvent because this has a large and well-understood effect on the gxx-shift. This contribution can only be resolved at high resonance frequencies, where it leads to distinct peaks in the gxx region. The second contribution arises from configurational fluctuations of the nitroxide that necessarily lead to g-shift heterogeneity. These contributions cannot be resolved experimentally as distinct resonances but add to the line broadening. They can be quantitatively analyzed by studying the apparent line width as a function of microwave frequency. Interestingly, both theory and experiment confirm that this contribution is independent of the number of H-bonds. Perhaps even more surprisingly, the theoretical analysis suggests that the configurational fluctuation broadening is not induced by the solvent but is inherently present even in the gas phase. Moreover, the calculations predict that this broadening decreases upon solvation of the nitroxide.

8.
Angew Chem Int Ed Engl ; 62(41): e202306744, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37561837

RESUMO

Quantum mechanics dictates that nuclei must undergo some delocalization. In this work, emergence of quantum nuclear delocalization and its rovibrational fingerprints are discussed for the case of the van der Waals complex HHe 3 + ${{\rm{HHe}}_3^ + }$ . The equilibrium structure of HHe 3 + ${{\rm{HHe}}_3^ + }$ is planar and T-shaped, one He atom solvating the quasi-linear He-H+ -He core. The dynamical structure of HHe 3 + ${{\rm{HHe}}_3^ + }$ , in all of its bound states, is fundamentally different. As revealed by spatial distribution functions and nuclear densities, during the vibrations of the molecule the solvating He is not restricted to be in the plane defined by the instantaneously bent HHe 2 + ${{\rm{HHe}}_2^ + }$ chomophore, but freely orbits the central proton, forming a three-dimensional torus around the HHe 2 + ${{\rm{HHe}}_2^ + }$ chromophore. This quantum delocalization is observed for all vibrational states, the type of vibrational excitation being reflected in the topology of the nodal surfaces in the nuclear densities, showing, for example, that intramolecular bending involves excitation along the circumference of the torus.

9.
Phys Rev Lett ; 129(22): 226001, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36493459

RESUMO

Coupled cluster theory is a general and systematic electronic structure method, but in particular the highly accurate "gold standard" coupled cluster singles, doubles and perturbative triples, CCSD(T), can only be applied to small systems. To overcome this limitation, we introduce a framework to transfer CCSD(T) accuracy of finite molecular clusters to extended condensed phase systems using a high-dimensional neural network potential. This approach, which is automated, allows one to perform high-quality coupled cluster molecular dynamics, CCMD, as we demonstrate for liquid water including nuclear quantum effects. The machine learning strategy is very efficient, generic, can be systematically improved, and is applicable to a variety of complex systems.


Assuntos
Simulação de Dinâmica Molecular , Água , Aprendizado de Máquina , Redes Neurais de Computação
10.
Phys Rev Lett ; 128(3): 033001, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35119904

RESUMO

We investigate glycine microsolvation with water molecules, mimicking astrophysical conditions, in our laboratory by embedding these clusters in helium nanodroplets at 0.37 K. We recorded mass selective infrared spectra in the frequency range 1500-1800 cm^{-1} where two bands centered at 1630 and 1724 cm^{-1} were observed. By comparison with the extensive accompanying calculations, the band at 1630 cm^{-1} was assigned to the COO^{-} asymmetric stretching mode of the zwitter ion and the band at 1724 cm^{-1} was assigned to redshifted C=O stretch within neutral clusters. We show that zwitter ion formation of amino acids readily occurs with only few water molecules available even under extreme conditions.

11.
Phys Chem Chem Phys ; 24(40): 24734-24747, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36196772

RESUMO

The properties of water at interfaces have long been known to differ from those of bulk water in many distinctive ways. More recently, specific confinement effects different from mere interfacial effects have been discovered upon enclosing water in very narrow cylindrical pores and planar surfaces as offered by nanotubes and slit pores, respectively. Using experimental and theoretical THz spectroscopy, we elucidate nanoconfinement effects on the H-bond network of stratified water lamellae that are hosted within graphene-based two-dimensional pores. Characteristic confinement-induced changes of the THz response are traced back to the level of structural dynamics, notably distinct resonances due to intralayer and interlayer H-bonds at correspondingly low and high intermolecular stretching frequencies and impact of dangling (free) OH bonds at the water-graphene interface that enormously broaden the librational band in sufficiently narrow pores. The interplay of these molecular effects causes characteristic changes of the THz lineshape upon nanoconfining water.

12.
J Chem Phys ; 157(7): 074302, 2022 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-35987576

RESUMO

The study of molecular impurities in para-hydrogen (pH2) clusters is key to push forward our understanding of intra- and intermolecular interactions, including their impact on the superfluid response of this bosonic quantum solvent. This includes tagging with only one or very few pH2, the microsolvation regime for intermediate particle numbers, and matrix isolation with many solvent molecules. However, the fundamental coupling between the bosonic pH2 environment and the (ro-)vibrational motion of molecular impurities remains poorly understood. Quantum simulations can, in principle, provide the necessary atomistic insight, but they require very accurate descriptions of the involved interactions. Here, we present a data-driven approach for the generation of impurity⋯pH2 interaction potentials based on machine learning techniques, which retain the full flexibility of the dopant species. We employ the well-established adiabatic hindered rotor (AHR) averaging technique to include the impact of the nuclear spin statistics on the symmetry-allowed rotational quantum numbers of pH2. Embedding this averaging procedure within the high-dimensional neural network potential (NNP) framework enables the generation of highly accurate AHR-averaged NNPs at coupled cluster accuracy, namely, explicitly correlated coupled cluster single, double, and scaled perturbative triples, CCSD(T*)-F12a/aVTZcp, in an automated manner. We apply this methodology to the water and protonated water molecules as representative cases for quasi-rigid and highly flexible molecules, respectively, and obtain AHR-averaged NNPs that reliably describe the corresponding H2O⋯pH2 and H3O+⋯pH2 interactions. Using path integral simulations, we show for the hydronium cation, H3O+, that umbrella-like tunneling inversion has a strong impact on the first and second pH2 microsolvation shells. The automated and data-driven nature of our protocol opens the door to the study of bosonic pH2 quantum solvation for a wide range of embedded impurities.


Assuntos
Hidrogênio , Água , Ligação de Hidrogênio , Redes Neurais de Computação , Solventes
13.
Phys Chem Chem Phys ; 23(37): 20875-20882, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34523631

RESUMO

A multitude of distinct physical processes and molecular mechanisms have been introduced in the past in an effort to understand the unusual dielectric loss spectrum of water with its pronounced peak at roughly 20 GHz. Our computer simulations including ab initio molecular dynamics provide no evidence for a major impact of cage dynamics or local-diffusive motion on the lineshape below 200 GHz. We also show that the collective motion of hundreds of water molecules and/or their significant diffusive displacements are not required. Instead, the dielectric relaxation of water up to about 200 GHz can be quantitatively described in terms of two unimodal and smoothly decaying spectral contributions.

14.
Phys Chem Chem Phys ; 23(19): 11355-11365, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-33972970

RESUMO

Trimethylamine N-oxide (TMAO) is a well known osmolyte in nature, which is used by deep sea fish to stabilize proteins against High Hydrostatic Pressure (HHP). We present a combined ab initio molecular dynamics, force field molecular dynamics, and THz absorption study of TMAO in water up to 12 kbar to decipher its solvation properties upon extreme compression. On the hydrophilic oxygen side of TMAO, AIMD simulations at 1 bar and 10 kbar predict a change of the coordination number from a dominating TMAO·(H2O)3 complex at ambient conditions towards an increased population of a TMAO·(H2O)4 complex at HHP conditions. This increase of the TMAO-oxygen coordination number goes in line with a weakening of the local hydrogen bond network, spectroscopic shifts and intensity changes of the corresponding intermolecular THz bands. Using a pressure-dependent HHP force field, FFMD simulations predict a significant increase of hydrophobic hydration from 1 bar up to 4-5 kbar, which levels off at higher pressures up to 10 kbar. THz spectroscopic data reveal two important pressure regimes with spectroscopic inflection points of the dominant intermolecular modes: The first regime (1.5-2 kbar) is barely recognizable in the simulation data. However, it relates well with the observation that the apparent molar volume of solvated TMAO is nearly constant in the biologically relevant pressure range up to 1 kbar as found in the deepest habitats on Earth in the ocean. The second inflection point around 4-5 kbar is related to the amount of hydrophobic hydration as predicted by the FFMD simulations. In particular, the blueshift of the intramolecular CNC bending mode of TMAO at about 390 cm-1 is the spectroscopic signature of increasingly pronounced pressure-induced changes in the solvation shell of TMAO. Thus, the CNC bend can serve as local pressure sensor in the multi-kbar pressure regime.

15.
J Chem Phys ; 154(5): 051101, 2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33557570

RESUMO

A previously published neural network potential for the description of protonated water clusters up to the protonated water tetramer, H+(H2O)4, at an essentially converged coupled cluster accuracy [C. Schran, J. Behler, and D. Marx, J. Chem. Theory Comput. 16, 88 (2020)] is applied to the protonated water hexamer, H+(H2O)6-a system that the neural network has never seen before. Although being in the extrapolation regime, it is shown that the potential not only allows for quantum simulations from ultra-low temperatures ∼1 K up to 300 K but is also able to describe the new system very accurately compared to explicit coupled cluster calculations. This transferability of the model is rationalized by the similarity of the atomic environments encountered for the larger cluster compared to the environments in the training set of the model. Compared to the interpolation regime, the quality of the model is reduced by roughly one order of magnitude, but most of the difference to the coupled cluster reference comes from global shifts of the potential energy surface, while local energy fluctuations are well recovered. These results suggest that the application of neural network potentials in extrapolation regimes can provide useful results and might be more general than usually thought.

16.
Angew Chem Int Ed Engl ; 60(7): 3768-3772, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33156972

RESUMO

Based upon precise terahertz (THz) measurements of the solvated amino acid glycine and accompanying ab-initio molecular-dynamics simulations, we show that the N-C-C-O open/close mode at 315 cm-1 serves as a sensitive, label-free probe for the local protonation of the amide group. Experimentally, we can show that this holds not only for glycine but also for diglycine and valine. The approach is more general, since the changes due to protonation result in intensity changes which can be probed by THz time domain (0-50 cm-1 ) as well as by precise THz-FT spectroscopy (50-400 cm-1 ). A detailed analysis allows us to directly correlate the titration spectra with pKa values. This demonstrates the potential of THz spectroscopy to probe the charge state of a natural amino acid in water in a label-free manner.

17.
Phys Rev Lett ; 125(8): 086001, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32909792

RESUMO

Compression of liquid water up to multi-kbar pressures is known to perturb dramatically its local structure required for charge defects to migrate as topological defects in the hydrogen-bonded network. Our ab initio simulations show that the migration of excess protons is not much affected at 10 kbar, whereas that of proton holes is significantly reduced. Non-Markovian analyses show that this is not due to modifying the free energy barriers of both charge transfer and migration. It is rather pressure-induced modifications of the population of activated states, depending on interstitial water, which rules charge migration at extreme compression.

18.
Chemistry ; 26(52): 11955-11959, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32080914

RESUMO

Acid dissociation, and thus liberation of excess protons in small water droplets, impacts on diverse fields such as interstellar, atmospheric or environmental chemistry. At cryogenic temperatures below 1 K, it is now well established that as few as four water molecules suffice to dissociate the generic strong acid HCl, yet temperature-driven recombination sets in simply upon heating that cluster. Here, the fundamental question is posed of how many more water molecules are required to stabilize a hydrated excess proton at room temperature. Ab initio path integral simulations disclose that not five, but six water molecules are needed at 300 K to allow for HCl dissociation independently from nuclear quantum effects. In order to provide the molecular underpinnings of these observations, the classical and quantum free energy profiles were decomposed along the dissociation coordinate in terms of the corresponding internal energy and entropy profiles. What decides in the end about acid dissociation, and thus ion pair formation, in a specific microsolvated water cluster at room temperature is found to be a fierce competition between classical configurational entropy and internal energy, where the former stabilizes the undissociated state whereas the latter favors dissociation. It is expected that these are generic findings with broad implications on acid-base chemistry depending on temperature in small water assemblies.

19.
Chemphyschem ; 21(24): 2660-2666, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-32845560

RESUMO

Lignin is a potential biomass feedstock from plant material, but it is particularly difficult to economically process. Inspired by recent ball-milling results, state-of-the-art quantum mechanochemistry calculations have been performed to isolate and probe the purely mechanochemical stretching effect alone upon acid-catalyzed deconstruction of lignin. Effects upon cleavage of several exemplary simple ethers are examined first, and with low stretching force they all are predicted to cleave substantially faster, allowing for use of milder acids and lower temperatures. Effects upon an experimentally known lignin fragment model (containing the ubiquitous ß-O-4 linkage) are next examined; this first required a mechanism refinement (3-step indirect cleavage, 1-step side reaction) and identification of the rate-limiting step under zero-force (thermal) conditions. Mechanochemical activation using very low stretching forces improves at first only yield, by fully shutting off the ring-closure side reaction. At only somewhat larger forces, in stark contrast, a switch in mechanism is found to occur, from 3-step indirect cleavage to the direct cleavage mechanism of simple ethers, finally strongly enhancing the cleavage rate of lignin. It is concluded that mechanochemical activation of the common ß-O-4 link in lignin would improve the rate of its acidolysis via a mechanism switch past a low force threshold. Relevance to ball-milling experiments is discussed.


Assuntos
Lignina/química , Catálise , Teoria da Densidade Funcional , Concentração de Íons de Hidrogênio , Estrutura Molecular , Estresse Mecânico
20.
Phys Chem Chem Phys ; 22(19): 10462-10479, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-31720610

RESUMO

Supercritical water features fascinating physical properties which are fundamentally different compared to ambient liquid water. Importantly, it can gradually be compressed from gas-like to liquid-like densities while avoiding any thermodynamic phase transition. Although the interest in supercritical water has recently increased, many microscopic characteristics still remain unknown. Based on extensive ab initio molecular dynamics simulations using the RPBE-D3 density functional along a supercritical isotherm and the isochore from the ambient liquid into the supercritical phase, we provide a comprehensive picture of supercritical water regarding its structural, dynamical and electronic properties depending on the chosen thermodynamic state point. Our results do not only show that the effective molecular dipole moment of water can be gradually tuned as a function of density along an isotherm, but also that it correlates linearly with the number of H-bond neighbors all the way from liquid-like to gas-like densities which is shown to be caused by many-body electronic polarization and charge transfer effects. Remarkably, these polarization and charge transfer effects are still present even at rather low gas-like densities. Regarding the dynamics, the H-bond lifetime is largely decreased in supercritical water and follows an Arrhenius-type behavior as a function of temperature, while it is essentially unaffected by the extreme density changes along the supercritical isotherm. In contrast, the self-diffusion coefficient dramatically varies as a function of density along the isotherm, while it scales essentially linearly as a function of temperature along the isochore.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA