RESUMO
BACKGROUND: The morbidity and socioeconomic effects of onchocerciasis, a parasitic disease that is primarily endemic in sub-Saharan Africa, have motivated large morbidity and transmission control programmes. Annual community-directed ivermectin treatment has substantially reduced prevalence. Elimination requires intensified efforts, including more efficacious treatments. We compared parasitological efficacy and safety of moxidectin and ivermectin. METHODS: This double-blind, parallel group, superiority trial was done in four sites in Ghana, Liberia, and the Democratic Republic of the Congo. We enrolled participants (aged ≥12 years) with at least 10 Onchocerca volvulus microfilariae per mg skin who were not co-infected with Loa loa or lymphatic filariasis microfilaraemic. Participants were randomly allocated, stratified by sex and level of infection, to receive a single oral dose of 8 mg moxidectin or 150 µg/kg ivermectin as overencapsulated oral tablets. The primary efficacy outcome was skin microfilariae density 12 months post treatment. We used a mixed-effects model to test the hypothesis that the primary efficacy outcome in the moxidectin group was 50% or less than that in the ivermectin group. The primary efficacy analysis population were all participants who received the study drug and completed 12-month follow-up (modified intention to treat). This study is registered with ClinicalTrials.gov, number NCT00790998. FINDINGS: Between April 22, 2009, and Jan 23, 2011, we enrolled and allocated 998 participants to moxidectin and 501 participants to ivermectin. 978 received moxidectin and 494 ivermectin, of which 947 and 480 were included in primary efficacy outcome analyses. At 12 months, skin microfilarial density (microfilariae per mg of skin) was lower in the moxidectin group (adjusted geometric mean 0·6 [95% CI 0·3-1·0]) than in the ivermectin group (4·5 [3·5-5·9]; difference 3·9 [3·2-4·9], p<0·0001; treatment difference 86%). Mazzotti (ie, efficacy-related) reactions occurred in 967 (99%) of 978 moxidectin-treated participants and in 478 (97%) of 494 ivermectin-treated participants, including ocular reactions (moxidectin 113 [12%] participants and ivermectin 47 [10%] participants), laboratory reactions (788 [81%] and 415 [84%]), and clinical reactions (944 [97%] and 446 [90%]). No serious adverse events were considered to be related to treatment. INTERPRETATION: Skin microfilarial loads (ie, parasite transmission reservoir) are lower after moxidectin treatment than after ivermectin treatment. Moxidectin would therefore be expected to reduce parasite transmission between treatment rounds more than ivermectin could, thus accelerating progress towards elimination. FUNDING: UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases.
Assuntos
Anti-Helmínticos/administração & dosagem , Ivermectina/administração & dosagem , Macrolídeos/administração & dosagem , Onchocerca volvulus , Oncocercose/tratamento farmacológico , Adolescente , Animais , Anti-Helmínticos/efeitos adversos , República Democrática do Congo/epidemiologia , Método Duplo-Cego , Doenças Endêmicas , Feminino , Gana/epidemiologia , Humanos , Ivermectina/efeitos adversos , Libéria/epidemiologia , Macrolídeos/efeitos adversos , Masculino , Microfilárias/efeitos dos fármacos , Oncocercose/epidemiologia , Carga Parasitária , Pele/parasitologiaRESUMO
BACKGROUND: Our study in CDTI-naïve areas in Nord Kivu and Ituri (Democratic Republic of the Congo, DRC), Lofa County (Liberia) and Nkwanta district (Ghana) showed that a single 8 mg moxidectin dose reduced skin microfilariae density (microfilariae/mg skin, SmfD) better and for longer than a single 150µg/kg ivermectin dose. We now analysed efficacy by study area and pre-treatment SmfD (intensity of infection, IoI). METHODOLOGY/PRINCIPAL FINDINGS: Four and three IoI categories were defined for across-study and by-study area analyses, respectively. We used a general linear model to analyse SmfD 1, 6, 12 and 18 months post-treatment, a logistic model to determine the odds of undetectable SmfD from month 1 to month 6 (UD1-6), month 12 (UD1-12) and month 18 (UD1-18), and descriptive statistics to quantitate inter-interindividual response differences. Twelve months post-treatment, treatment differences (difference in adjusted geometric mean SmfD after moxidectin and ivermectin in percentage of the adjusted geometric mean SmfD after ivermectin treatment) were 92.9%, 90.1%, 86.8% and 84.5% in Nord Kivu, Ituri, Lofa and Nkwanta, and 74.1%, 84.2%, 90.0% and 95.4% for participants with SmfD 10-20, ≥20-<50, ≥50-<80, ≥80, respectively. Ivermectin's efficacy was lower in Ituri and Nkwanta than Nord Kivu and Lofa (p≤0.002) and moxidectin's efficacy lower in Nkwanta than Nord Kivu, Ituri and Lofa (p<0.006). Odds ratios for UD1-6, UD1-12 or UD1-18 after moxidectin versus ivermectin treatment exceeded 7.0. Suboptimal response (SmfD 12 months post-treatment >40% of pre-treatment SmfD) occurred in 0%, 0.3%, 1.6% and 3.9% of moxidectin and 12.1%, 23.7%, 10.8% and 28.0% of ivermectin treated participants in Nord Kivu, Ituri, Lofa and Nkwanta, respectively. CONCLUSIONS/SIGNIFICANCE: The benefit of moxidectin vs ivermectin treatment increased with pre-treatment IoI. The possibility that parasite populations in different areas have different drug susceptibility without prior ivermectin selection pressure needs to be considered and further investigated. CLINICAL TRIAL REGISTRATION: Registered on 14 November 2008 in Clinicaltrials.gov (ID: NCT00790998).