Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 177(5): 1280-1292.e20, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31031006

RESUMO

Hyperactivity and disturbances of attention are common behavioral disorders whose underlying cellular and neural circuit causes are not understood. We report the discovery that striatal astrocytes drive such phenotypes through a hitherto unknown synaptic mechanism. We found that striatal medium spiny neurons (MSNs) triggered astrocyte signaling via γ-aminobutyric acid B (GABAB) receptors. Selective chemogenetic activation of this pathway in striatal astrocytes in vivo resulted in acute behavioral hyperactivity and disrupted attention. Such responses also resulted in upregulation of the synaptogenic cue thrombospondin-1 (TSP1) in astrocytes, increased excitatory synapses, enhanced corticostriatal synaptic transmission, and increased MSN action potential firing in vivo. All of these changes were reversed by blocking TSP1 effects. Our data identify a form of bidirectional neuron-astrocyte communication and demonstrate that acute reactivation of a single latent astrocyte synaptogenic cue alters striatal circuits controlling behavior, revealing astrocytes and the TSP1 pathway as therapeutic targets in hyperactivity, attention deficit, and related psychiatric disorders.


Assuntos
Astrócitos/metabolismo , Transtorno do Deficit de Atenção com Hiperatividade/metabolismo , Comportamento Animal , Comunicação Celular , Neurônios/metabolismo , Transdução de Sinais , Sinapses/metabolismo , Animais , Astrócitos/patologia , Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno do Deficit de Atenção com Hiperatividade/patologia , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/patologia , Receptores de GABA-B/genética , Receptores de GABA-B/metabolismo , Sinapses/genética , Trombospondina 1/genética , Trombospondina 1/metabolismo , Ácido gama-Aminobutírico/genética , Ácido gama-Aminobutírico/metabolismo
2.
PLoS Comput Biol ; 18(3): e1009271, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35239644

RESUMO

Converging evidence suggests the brain encodes time in dynamic patterns of neural activity, including neural sequences, ramping activity, and complex dynamics. Most temporal tasks, however, require more than just encoding time, and can have distinct computational requirements including the need to exhibit temporal scaling, generalize to novel contexts, or robustness to noise. It is not known how neural circuits can encode time and satisfy distinct computational requirements, nor is it known whether similar patterns of neural activity at the population level can exhibit dramatically different computational or generalization properties. To begin to answer these questions, we trained RNNs on two timing tasks based on behavioral studies. The tasks had different input structures but required producing identically timed output patterns. Using a novel framework we quantified whether RNNs encoded two intervals using either of three different timing strategies: scaling, absolute, or stimulus-specific dynamics. We found that similar neural dynamic patterns at the level of single intervals, could exhibit fundamentally different properties, including, generalization, the connectivity structure of the trained networks, and the contribution of excitatory and inhibitory neurons. Critically, depending on the task structure RNNs were better suited for generalization or robustness to noise. Further analysis revealed different connection patterns underlying the different regimes. Our results predict that apparently similar neural dynamic patterns at the population level (e.g., neural sequences) can exhibit fundamentally different computational properties in regards to their ability to generalize to novel stimuli and their robustness to noise-and that these differences are associated with differences in network connectivity and distinct contributions of excitatory and inhibitory neurons. We also predict that the task structure used in different experimental studies accounts for some of the experimentally observed variability in how networks encode time.


Assuntos
Modelos Neurológicos , Neurônios , Encéfalo/fisiologia , Neurônios/fisiologia
3.
Neurobiol Dis ; 157: 105447, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34274461

RESUMO

Huntington's disease (HD) is a progressive, fatal neurodegenerative disorder characterized by motor, cognitive, and psychiatric disturbances. There is no known cure for HD, but its progressive nature allows for early therapeutic intervention. Currently, much of the research has focused on the striatum, however, there is evidence suggesting that disruption of thalamocortical circuits could underlie some of the early symptoms of HD. Loss of both cortical pyramidal neurons (CPNs) and thalamic neurons occurs in HD patients, and cognitive, somatosensory, and attention deficits precede motor abnormalities. However, the role of thalamocortical pathways in HD progression has been understudied. Here, we measured single unit activity and local field potentials (LFPs) from electrode arrays implanted in the thalamus and primary motor cortex of 4-5 month-old male and female Q175 mice. We assessed neuronal activity under baseline conditions as well as during presentation of rewards delivered via actuation of an audible solenoid valve. HD mice showed a significantly delayed licking response to the reward stimulus. At the same time, neuronal activation to the reward was delayed in thalamic neurons, CPNs and fast-spiking cortical interneurons (FSIs) of HD mice. In addition, thalamocortical coherence increased at lower frequencies in HD relative to wildtype mice. Together, these data provide evidence that impaired cortical and thalamic responses to reward stimuli, and impaired thalamocortical coherence, may play an important early role in motor, cognitive, and learning deficits in HD patients.


Assuntos
Doença de Huntington/fisiopatologia , Córtex Motor/fisiopatologia , Tálamo/fisiopatologia , Animais , Córtex Cerebral/fisiopatologia , Cognição , Modelos Animais de Doenças , Progressão da Doença , Técnicas de Introdução de Genes , Interneurônios/fisiologia , Camundongos , Atividade Motora , Vias Neurais/fisiopatologia , Técnicas de Patch-Clamp , Células Piramidais/fisiologia
4.
J Neurophysiol ; 124(2): 634-644, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32727312

RESUMO

Survival relies on the ability to flexibly choose between different actions according to varying environmental circumstances. Many lines of evidence indicate that action selection involves signaling in corticostriatal circuits, including the orbitofrontal cortex (OFC) and dorsomedial striatum (DMS). While choice-specific responses have been found in individual neurons from both areas, it is unclear whether populations of OFC or DMS neurons are better at encoding an animal's choice. To address this, we trained head-fixed mice to perform an auditory guided two-alternative choice task, which required moving a joystick forward or backward. We then used silicon microprobes to simultaneously measure the spiking activity of OFC and DMS ensembles, allowing us to directly compare population dynamics between these areas within the same animals. Consistent with previous literature, both areas contained neurons that were selective for specific stimulus-action associations. However, analysis of concurrently recorded ensemble activity revealed that the animal's trial-by-trial behavior could be decoded more accurately from DMS dynamics. These results reveal substantial regional differences in encoding action selection, suggesting that DMS neural dynamics are more specialized than OFC at representing an animal's choice of action.NEW & NOTEWORTHY While previous literature shows that both orbitofrontal cortex (OFC) and dorsomedial striatum (DMS) represent information relevant to selecting specific actions, few studies have directly compared neural signals between these areas. Here we compared OFC and DMS dynamics in mice performing a two-alternative choice task. We found that the animal's choice could be decoded more accurately from DMS population activity. This work provides among the first evidence that OFC and DMS differentially represent information about an animal's selected action.


Assuntos
Comportamento Animal/fisiologia , Comportamento de Escolha/fisiologia , Fenômenos Eletrofisiológicos/fisiologia , Atividade Motora/fisiologia , Neostriado/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Desempenho Psicomotor/fisiologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
5.
J Neurosci ; 38(27): 6223-6240, 2018 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-29915138

RESUMO

Familiarity of the environment changes the way we perceive and encode incoming information. However, the neural substrates underlying this phenomenon are poorly understood. Here we describe a new form of experience-dependent low-frequency oscillations in the primary visual cortex (V1) of awake adult male mice. The oscillations emerged in visually evoked potentials and single-unit activity following repeated visual stimulation. The oscillations were sensitive to the spatial frequency content of a visual stimulus and required the mAChRs for their induction and expression. Finally, ongoing visually evoked θ (4-8 Hz) oscillations boost the visually evoked potential amplitude of incoming visual stimuli if the stimuli are presented at the high excitability phase of the oscillations. Our results demonstrate that an oscillatory code can be used to encode familiarity and serves as a gate for oncoming sensory inputs.SIGNIFICANCE STATEMENT Previous experience can influence the processing of incoming sensory information by the brain and alter perception. However, the mechanistic understanding of how this process takes place is lacking. We have discovered that persistent low-frequency oscillations in the primary visual cortex encode information about familiarity and the spatial frequency of the stimulus. These familiarity evoked oscillations influence neuronal responses to the oncoming stimuli in a way that depends on the oscillation phase. Our work demonstrates a new mechanism of visual stimulus feature detection and learning.


Assuntos
Reconhecimento Psicológico/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia
6.
J Neurosci Res ; 97(12): 1678-1688, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31502290

RESUMO

The striatum plays an important role in learning, selecting, and executing actions. As a major input hub of the basal ganglia, it receives and processes a diverse array of signals related to sensory, motor, and cognitive information. Aberrant neural activity in this area is implicated in a wide variety of neurological and psychiatric disorders. It is therefore important to understand the hallmarks of disrupted striatal signal processing. This review surveys literature examining how in vivo striatal microcircuit dynamics are impacted in animal models of one of the most widely studied movement disorders, Parkinson's disease. The review identifies four major features of aberrant striatal dynamics: altered relative levels of direct and indirect pathway activity, impaired information processing by projection neurons, altered information processing by interneurons, and increased synchrony.


Assuntos
Corpo Estriado/fisiopatologia , Neurônios/fisiologia , Doença de Parkinson/fisiopatologia , Animais , Gânglios da Base/fisiopatologia , Comportamento Animal , Modelos Animais de Doenças , Humanos , Interneurônios/fisiologia , Vias Neurais/fisiologia
7.
J Neurosci ; 37(39): 9415-9423, 2017 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-28847808

RESUMO

Discrete cues can gain powerful control over behavior to help an animal anticipate and cope with upcoming events. This is important in conditions where understanding the relationship between complex stimuli provides a means to resolving situational ambiguity. However, it is unclear how cortical circuits generate and maintain these signals that conditionally regulate behavior. To address this, we established a Pavlovian serial feature-negative conditioning paradigm, where male mice are trained on a trial in which a conditioned stimulus (CS) is presented alone and followed by reward, or a feature-negative trial in which the CS is preceded by a feature cue indicating there is no reward. Mice learn to respond with anticipatory licking to a solitary CS, but significantly suppress their responding to the same cue during feature-negative trials. We show that the feature cue forms a selective association with its paired CS, because the ability of the feature to transfer its suppressive properties to a separately rewarded cue is limited. Next, to examine the underlying neural dynamics, we conduct recordings in the orbitofrontal cortex (OFC). We find that the feature cue significantly and selectively inhibits CS-evoked activity. Finally, we find that the feature triggers a distinct OFC network state during the delay period between the feature and CS, establishing a potential link between the feature and future events. Together, our findings suggest that OFC dynamics are modulated by the feature cue and its associated conditioned stimulus in a manner consistent with an occasion setting model.SIGNIFICANCE STATEMENT The ability of patterned cues to form an inhibitory relationship with ambiguously rewarded outcomes has been appreciated since early studies on learning and memory. However, it was often assumed that these cues, despite their hierarchical nature, still made direct associative links with neural rewarding events. This model was significantly challenged, largely by the work of Holland and colleagues, who demonstrated that under certain conditions cues can inherit occasion setting properties whereby they modulate the ability of a paired cue to elicit its conditioned response. Here we provide some of the first evidence that the activity of a cortical circuit is selectively modulated by such cues, thereby providing insight into the mechanisms of higher order learning.


Assuntos
Condicionamento Clássico , Córtex Pré-Frontal/fisiologia , Animais , Sinais (Psicologia) , Potenciais Evocados , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tempo de Reação , Recompensa
8.
J Neurosci ; 37(4): 854-870, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-28123021

RESUMO

Telling time is fundamental to many forms of learning and behavior, including the anticipation of rewarding events. Although the neural mechanisms underlying timing remain unknown, computational models have proposed that the brain represents time in the dynamics of neural networks. Consistent with this hypothesis, changing patterns of neural activity dynamically in a number of brain areas-including the striatum and cortex-has been shown to encode elapsed time. To date, however, no studies have explicitly quantified and contrasted how well different areas encode time by recording large numbers of units simultaneously from more than one area. Here, we performed large-scale extracellular recordings in the striatum and orbitofrontal cortex of mice that learned the temporal relationship between a stimulus and a reward and reported their response with anticipatory licking. We used a machine-learning algorithm to quantify how well populations of neurons encoded elapsed time from stimulus onset. Both the striatal and cortical networks encoded time, but the striatal network outperformed the orbitofrontal cortex, a finding replicated both in simultaneously and nonsimultaneously recorded corticostriatal datasets. The striatal network was also more reliable in predicting when the animals would lick up to ∼1 s before the actual lick occurred. Our results are consistent with the hypothesis that temporal information is encoded in a widely distributed manner throughout multiple brain areas, but that the striatum may have a privileged role in timing because it has a more accurate "clock" as it integrates information across multiple cortical areas. SIGNIFICANCE STATEMENT: The neural representation of time is thought to be distributed across multiple functionally specialized brain structures, including the striatum and cortex. However, until now, the neural code for time has not been compared quantitatively between these areas. Here, we performed large-scale recordings in the striatum and orbitofrontal cortex of mice trained on a stimulus-reward association task involving a delay period and used a machine-learning algorithm to quantify how well populations of simultaneously recorded neurons encoded elapsed time from stimulus onset. We found that, although both areas encoded time, the striatum consistently outperformed the orbitofrontal cortex. These results suggest that the striatum may refine the code for time by integrating information from multiple inputs.


Assuntos
Antecipação Psicológica/fisiologia , Corpo Estriado/fisiologia , Rede Nervosa/fisiologia , Córtex Pré-Frontal/fisiologia , Percepção do Tempo/fisiologia , Animais , Condicionamento Psicológico/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
9.
Nature ; 488(7411): 379-83, 2012 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-22878719

RESUMO

Inhibitory interneurons are essential components of the neural circuits underlying various brain functions. In the neocortex, a large diversity of GABA (γ-aminobutyric acid) interneurons has been identified on the basis of their morphology, molecular markers, biophysical properties and innervation pattern. However, how the activity of each subtype of interneurons contributes to sensory processing remains unclear. Here we show that optogenetic activation of parvalbumin-positive (PV+) interneurons in the mouse primary visual cortex (V1) sharpens neuronal feature selectivity and improves perceptual discrimination. Using multichannel recording with silicon probes and channelrhodopsin-2 (ChR2)-mediated optical activation, we found that increased spiking of PV+ interneurons markedly sharpened orientation tuning and enhanced direction selectivity of nearby neurons. These effects were caused by the activation of inhibitory neurons rather than a decreased spiking of excitatory neurons, as archaerhodopsin-3 (Arch)-mediated optical silencing of calcium/calmodulin-dependent protein kinase IIα (CAMKIIα)-positive excitatory neurons caused no significant change in V1 stimulus selectivity. Moreover, the improved selectivity specifically required PV+ neuron activation, as activating somatostatin or vasointestinal peptide interneurons had no significant effect. Notably, PV+ neuron activation in awake mice caused a significant improvement in their orientation discrimination, mirroring the sharpened V1 orientation tuning. Together, these results provide the first demonstration that visual coding and perception can be improved by increased spiking of a specific subtype of cortical inhibitory interneurons.


Assuntos
Interneurônios/fisiologia , Córtex Visual/citologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/deficiência , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Channelrhodopsins , Aprendizagem por Discriminação , Camundongos , Modelos Neurológicos , Inibição Neural/fisiologia , Parvalbuminas/metabolismo , Rodopsinas Microbianas/metabolismo , Vigília/fisiologia , Ácido gama-Aminobutírico/metabolismo
10.
J Neurosci ; 36(3): 670-84, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26791200

RESUMO

The performance of complex networks, like the brain, depends on how effectively their elements communicate. Despite the importance of communication, it is virtually unknown how information is transferred in local cortical networks, consisting of hundreds of closely spaced neurons. To address this, it is important to record simultaneously from hundreds of neurons at a spacing that matches typical axonal connection distances, and at a temporal resolution that matches synaptic delays. We used a 512-electrode array (60 µm spacing) to record spontaneous activity at 20 kHz from up to 500 neurons simultaneously in slice cultures of mouse somatosensory cortex for 1 h at a time. We applied a previously validated version of transfer entropy to quantify information transfer. Similar to in vivo reports, we found an approximately lognormal distribution of firing rates. Pairwise information transfer strengths also were nearly lognormally distributed, similar to reports of synaptic strengths. Some neurons transferred and received much more information than others, which is consistent with previous predictions. Neurons with the highest outgoing and incoming information transfer were more strongly connected to each other than chance, thus forming a "rich club." We found similar results in networks recorded in vivo from rodent cortex, suggesting the generality of these findings. A rich-club structure has been found previously in large-scale human brain networks and is thought to facilitate communication between cortical regions. The discovery of a small, but information-rich, subset of neurons within cortical regions suggests that this population will play a vital role in communication, learning, and memory. Significance statement: Many studies have focused on communication networks between cortical brain regions. In contrast, very few studies have examined communication networks within a cortical region. This is the first study to combine such a large number of neurons (several hundred at a time) with such high temporal resolution (so we can know the direction of communication between neurons) for mapping networks within cortex. We found that information was not transferred equally through all neurons. Instead, ∼70% of the information passed through only 20% of the neurons. Network models suggest that this highly concentrated pattern of information transfer would be both efficient and robust to damage. Therefore, this work may help in understanding how the cortex processes information and responds to neurodegenerative diseases.


Assuntos
Rede Nervosa/citologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Córtex Somatossensorial/citologia , Córtex Somatossensorial/fisiologia , Animais , Animais Recém-Nascidos , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Cultura de Órgãos
11.
J Neurophysiol ; 115(3): 1521-32, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26763779

RESUMO

As the major input to the basal ganglia, the striatum is innervated by a wide range of other areas. Overlapping input from these regions is speculated to influence temporal correlations among striatal ensembles. However, the network dynamics among behaviorally related neural populations in the striatum has not been extensively studied. We used large-scale neural recordings to monitor activity from striatal ensembles in mice undergoing Pavlovian reward conditioning. A subpopulation of putative medium spiny projection neurons (MSNs) was found to discriminate between cues that predicted the delivery of a reward and cues that predicted no specific outcome. These cells were preferentially located in lateral subregions of the striatum. Discriminating MSNs were more spontaneously active and more correlated than their nondiscriminating counterparts. Furthermore, discriminating fast spiking interneurons (FSIs) represented a highly prevalent group in the recordings, which formed a strongly correlated network with discriminating MSNs. Spike time cross-correlation analysis showed the existence of synchronized activity among FSIs and feedforward inhibitory modulation of MSN spiking by FSIs. These findings suggest that populations of functionally specialized (cue-discriminating) striatal neurons have distinct network dynamics that sets them apart from nondiscriminating cells, potentially to facilitate accurate behavioral responding during associative reward learning.


Assuntos
Condicionamento Clássico , Corpo Estriado/fisiologia , Discriminação Psicológica , Neurônios/fisiologia , Recompensa , Animais , Corpo Estriado/citologia , Sinais (Psicologia) , Masculino , Camundongos , Camundongos Endogâmicos C57BL
12.
J Neurophysiol ; 114(3): 2043-52, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26133801

RESUMO

The coordinated activity of neural ensembles across multiple interconnected regions has been challenging to study in the mammalian brain with cellular resolution using conventional recording tools. For instance, neural systems regulating learned behaviors often encompass multiple distinct structures that span the brain. To address this challenge we developed a three-dimensional (3D) silicon microprobe capable of simultaneously measuring extracellular spike and local field potential activity from 1,024 electrodes. The microprobe geometry can be precisely configured during assembly to target virtually any combination of four spatially distinct neuroanatomical planes. Here we report on the operation of such a device built for high-throughput monitoring of neural signals in the orbitofrontal cortex and several nuclei in the basal ganglia. We perform analysis on systems-level dynamics and correlations during periods of conditioned behavioral responding and rest, demonstrating the technology's ability to reveal functional organization at multiple scales in parallel in the mouse brain.


Assuntos
Gânglios da Base/fisiologia , Mapeamento Encefálico/instrumentação , Eletroencefalografia/instrumentação , Lobo Frontal/fisiologia , Potenciais de Ação , Animais , Mapeamento Encefálico/métodos , Eletrodos , Eletroencefalografia/métodos , Camundongos , Camundongos Endogâmicos C57BL , Silício
13.
bioRxiv ; 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-37873374

RESUMO

The striatum serves an important role in motor control, and neurons in this area encode the body's initiation, cessation, and speed of locomotion. However, it remains unclear whether the same neurons also encode the step-by-step rhythmic motor patterns of individual limbs that characterize gait. By combining high-speed video tracking, electrophysiology, and optogenetic tagging, we found that a sizable population of both D1 and D2 receptor expressing medium spiny projection neurons (MSNs) were phase-locked to the gait cycle of individual limbs in mice. Healthy animals showed balanced limb phase-locking between D1 and D2 MSNs, while dopamine depletion led to stronger phase-locking in D2 MSNs. These findings indicate that striatal neurons represent gait on a single-limb and step basis, and suggest that elevated limb phase-locking of D2 MSNs may underlie some of the gait impairments associated with dopamine loss.

14.
Nat Neurosci ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961230

RESUMO

Dopaminergic neurons play a crucial role in associative learning, but their capacity to regulate behavior on subsecond timescales remains debated. It is thought that dopaminergic neurons drive certain behaviors by rapidly modulating striatal spiking activity; however, a view has emerged that only artificially high (that is, supra-physiological) dopamine signals alter behavior on fast timescales. This raises the possibility that moment-to-moment striatal spiking activity is not strongly shaped by dopamine signals in the physiological range. To test this, we transiently altered dopamine levels while monitoring spiking responses in the ventral striatum of behaving mice. These manipulations led to only weak changes in striatal activity, except when dopamine release exceeded reward-matched levels. These findings suggest that dopaminergic neurons normally play a minor role in the subsecond modulation of striatal dynamics in relation to other inputs and demonstrate the importance of discerning dopaminergic neuron contributions to brain function under physiological and potentially nonphysiological conditions.

15.
Elife ; 122024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526916

RESUMO

The striatum serves an important role in motor control, and neurons in this area encode the body's initiation, cessation, and speed of locomotion. However, it remains unclear whether the same neurons also encode the step-by-step rhythmic motor patterns of individual limbs that characterize gait. By combining high-speed video tracking, electrophysiology, and optogenetic tagging, we found that a sizable population of both D1 and D2 receptor expressing medium spiny projection neurons (MSNs) were phase-locked to the gait cycle of individual limbs in mice. Healthy animals showed balanced limb phase-locking between D1 and D2 MSNs, while dopamine depletion led to stronger phase-locking in D2 MSNs. These findings indicate that striatal neurons represent gait on a single-limb and step basis, and suggest that elevated limb phase-locking of D2 MSNs may underlie some of the gait impairments associated with dopamine loss.


Assuntos
Dopamina , Receptores de Dopamina D1 , Camundongos , Animais , Receptores de Dopamina D1/metabolismo , Corpo Estriado/fisiologia , Neostriado/fisiologia , Marcha , Camundongos Transgênicos
16.
Elife ; 122024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38345922

RESUMO

The cerebellum has been implicated in the regulation of social behavior. Its influence is thought to arise from communication, via the thalamus, to forebrain regions integral in the expression of social interactions, including the anterior cingulate cortex (ACC). However, the signals encoded or the nature of the communication between the cerebellum and these brain regions is poorly understood. Here, we describe an approach that overcomes technical challenges in exploring the coordination of distant brain regions at high temporal and spatial resolution during social behavior. We developed the E-Scope, an electrophysiology-integrated miniature microscope, to synchronously measure extracellular electrical activity in the cerebellum along with calcium imaging of the ACC. This single coaxial cable device combined these data streams to provide a powerful tool to monitor the activity of distant brain regions in freely behaving animals. During social behavior, we recorded the spike timing of multiple single units in cerebellar right Crus I (RCrus I) Purkinje cells (PCs) or dentate nucleus (DN) neurons while synchronously imaging calcium transients in contralateral ACC neurons. We found that during social interactions a significant subpopulation of cerebellar PCs were robustly inhibited, while most modulated neurons in the DN were activated, and their activity was correlated with positively modulated ACC neurons. These distinctions largely disappeared when only non-social epochs were analyzed suggesting that cerebellar-cortical interactions were behaviorally specific. Our work provides new insights into the complexity of cerebellar activation and co-modulation of the ACC during social behavior and a valuable open-source tool for simultaneous, multimodal recordings in freely behaving mice.


Social behaviour is important for many animals, especially humans. It governs interactions between individuals and groups. One of the regions involved in social behaviour is the cerebellum, a part of the brain commonly known for controlling movement. It is likely that the cerebellum connects and influences other socially important areas in the brain, such as the anterior cingulate cortex. How exactly these regions communicate during social interaction is not well understood. One of the challenges studying communication between areas in the brain has been a lack of tools that can measure neural activity in multiple regions at once. To address this problem, Hur et al. developed a device called the E-Scope. The E-Scope can measure brain activity from two places in the brain at the same time. It can simultaneously record imaging and electrophysiological data of the different neurons. It is also small enough to be attached to animals without inhibiting their movements. Hur et al. tested the E-Scope by studying neurons in two regions of the cerebellum, called the right Crus I and the dentate nucleus, and in the anterior cingulate cortex during social interactions in mice. The E-Scope recorded from the animals as they interacted with other mice and compared them with those in mice that interacted with objects. During social interactions, Purkinje cells in the right Crus I were mostly less active, while neurons in the dentate nucleus and anterior cingulate cortex became overall more active. These results suggest that communication between the cerebellum and the anterior cingulate cortex is an important part of how the mouse brain coordinates social behaviour. The study of Hur et al. deepens our understanding of the function of the cerebellum in social behaviour. The E-Scope is an openly available tool to allow researchers to record communication between remote brain areas in small animals. This could be important to researchers trying to understand conditions like autism, which can involve difficulties in social interaction, or injuries to the cerebellum resulting in personality changes.


Assuntos
Cálcio , Giro do Cíngulo , Camundongos , Animais , Cerebelo , Comportamento Social , Prosencéfalo
17.
bioRxiv ; 2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37066345

RESUMO

The cerebellum has been implicated in the regulation of social behavior. Its influence is thought to arise from communication, via the thalamus, to forebrain regions integral in the expression of social interactions, including the anterior cingulate cortex (ACC). However, the signals encoded or the nature of the communication between the cerebellum and these brain regions is poorly understood. Here, we describe an approach that overcomes technical challenges in exploring the coordination of distant brain regions at high temporal and spatial resolution during social behavior. We developed the E-Scope, an electrophysiology-integrated miniature microscope, to synchronously measure extracellular electrical activity in the cerebellum along with calcium imaging of the ACC. This single coaxial cable device combined these data streams to provide a powerful tool to monitor the activity of distant brain regions in freely behaving animals. During social behavior, we recorded the spike timing of multiple single units in cerebellar right Crus I (RCrus I) Purkinje cells (PCs) or dentate nucleus (DN) neurons while synchronously imaging calcium transients in contralateral ACC neurons. We found that during social interactions a significant subpopulation of cerebellar PCs were robustly inhibited, while most modulated neurons in the DN were activated, and their activity was correlated with positively modulated ACC neurons. These distinctions largely disappeared when only non-social epochs were analyzed suggesting that cerebellar-cortical interactions were behaviorally specific. Our work provides new insights into the complexity of cerebellar activation and co-modulation of the ACC during social behavior and a valuable open-source tool for simultaneous, multimodal recordings in freely behaving mice.

18.
ACS Chem Neurosci ; 13(7): 946-958, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35312275

RESUMO

Targeting neurons with light-driven opsins is widely used to investigate cell-specific responses. We transfected midbrain dopamine neurons with the excitatory opsin Chrimson. Extracellular basal and stimulated neurotransmitter levels in the dorsal striatum were measured by microdialysis in awake mice. Optical activation of dopamine cell bodies evoked terminal dopamine release in the striatum. Multiplexed analysis of dialysate samples revealed that the evoked dopamine was accompanied by temporally coupled increases in striatal 3-methoxytyramine, an extracellular dopamine metabolite, and in serotonin. We investigated a mechanism for dopamine-serotonin interactions involving striatal dopamine receptors. However, the evoked serotonin associated with optical stimulation of dopamine neurons was not abolished by striatal D1- or D2-like receptor inhibition. Although the mechanisms underlying the coupling of striatal dopamine and serotonin remain unclear, these findings illustrate advantages of multiplexed measurements for uncovering functional interactions between neurotransmitter systems. Furthermore, they suggest that the output of optogenetic manipulations may extend beyond opsin-expressing neuronal populations.


Assuntos
Serotonina , Substância Negra , Animais , Corpo Estriado/metabolismo , Neurônios Dopaminérgicos/metabolismo , Mesencéfalo , Camundongos , Optogenética , Ratos , Ratos Sprague-Dawley , Serotonina/metabolismo , Substância Negra/metabolismo
19.
Nano Lett ; 10(5): 1769-73, 2010 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-20380440

RESUMO

Nanoscale integrated circuits and sensors will require methods for unobtrusive interconnection with the macroscopic world to fully realize their potential. We report on a nanoelectromechanical system that may present a solution to the wiring problem by enabling information from multisite sensors to be multiplexed onto a single output line. The basis for this method is a mechanical Fourier transform mediated by piezoelectrically coupled nanoscale resonators. Our technique allows sensitive, linear, and real-time measurement of electrical potentials from conceivably any voltage-sensitive device. With this method, we demonstrate the direct transduction of neuronal action potentials from an extracellular microelectrode. This approach to wiring nanoscale devices could lead to minimally invasive implantable sensors with thousands of channels for in vivo neuronal recording, medical diagnostics, and electrochemical sensing.


Assuntos
Técnicas Biossensoriais/instrumentação , Condutometria/instrumentação , Sistemas Microeletromecânicos/instrumentação , Nanotecnologia/instrumentação , Transdutores , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Vibração
20.
Neuron ; 108(4): 651-658.e5, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-32946745

RESUMO

Converging evidence suggests that the brain encodes time through dynamically changing patterns of neural activity, including neural sequences, ramping activity, and complex spatiotemporal dynamics. However, the potential computational significance and advantage of these different regimes have remained unaddressed. We combined large-scale recordings and modeling to compare population dynamics between premotor cortex and striatum in mice performing a two-interval timing task. Conventional decoders revealed that the dynamics within each area encoded time equally well; however, the dynamics in striatum exhibited a higher degree of sequentiality. Analysis of premotor and striatal dynamics, together with a large set of simulated prototypical dynamical regimes, revealed that regimes with higher sequentiality allowed a biologically constrained artificial downstream network to better read out time. These results suggest that, although different strategies exist for encoding time in the brain, neural sequences represent an ideal and flexible dynamical regime for enabling downstream areas to read out this information.


Assuntos
Corpo Estriado/fisiologia , Modelos Neurológicos , Córtex Motor/fisiologia , Percepção do Tempo/fisiologia , Potenciais de Ação/fisiologia , Animais , Simulação por Computador , Masculino , Camundongos , Neurônios/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA