Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemphyschem ; 24(17): e202300355, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37341973

RESUMO

We investigated the adsorption behavior of a mixture of six 2H-tetrakis-(3, 5-di-tert-butylphenyl)(x)benzoporphyrins (2H-diTTBP(x)BPs, x=0, 1, 2-cis, 2-trans, 3, and 4) on Ag(111), Cu(111) and Cu(110) at room temperature by scanning tunneling microscopy (STM) under ultra-high vacuum conditions. On Ag(111), we observe an ordered two-dimensional square phase, which is stable up to 400 K. On Cu(111), the same square phase coexists with a stripe phase, which disappears at 400 K. In contrast, on Cu(110), 2H-diTTBP(x)BPs adsorb as immobile isolated molecules or dispersed short chains along the [1 1 ‾ ${\bar{1}}$ 0] substrate direction, which remain intact up to 450 K. The stabilization of the 2D supramolecular structures on Ag(111) and Cu(111), and of the 1D short chains on Cu(110) is attributed to van der Waals interactions between the tert-butyl and phenyl groups of neighboring molecules. From high-resolution STM, we can assign all six 2H-diTTBP(x)BPs within the ordered structures. Moreover, we deduce a crown shape quadratic conformation on Ag(111) and Cu(111), an additional saddle-shape on Cu(111), and an inverted structure and a quadratic appearance on Cu(110). The different conformations are attributed to the different degree of interaction of the iminic nitrogen atoms of the isoindole and pyrrole groups with the substrate atoms.

2.
Chemphyschem ; 24(17): e202300539, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37655959

RESUMO

The front cover artwork is provided by the groups of Prof. Dr. Hans-Peter Steinrück and Prof. Dr. Norbert Jux at the Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg. The image shows a mixture of six 2H-tetrakis-(3, 5-di-tert-butyl-phenyl)(x)benzoporphyrins (2H-diTTBP(x)BPs, x = 0, 1, 2-cis, 2-trans, 3, or 4) molecules forming a porous square structure on Ag(111) as observed in scanning tunneling microscopy (STM) at room temperature. Read the full text of the Research Article at 10.1002/cphc.202300355.

3.
Phys Chem Chem Phys ; 25(41): 27953-27966, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37655794

RESUMO

In the context of ionic liquid (IL)-assisted catalysis, we have investigated the adsorption and thermal evolution of the IL 1,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide ([C1C1Im][Tf2N]) on Pt(111) between 100 and 800 K by angle-resolved X-ray photoelectron spectroscopy and scanning tunneling microscopy. Defined amounts of IL in the coverage range of a complete first wetting layer were deposited at low temperature (100-200 K), and subsequently heated to 300 K, or directly at 300 K. At 100 K, the IL adsorbs as an intact disordered layer. Upon heating to 200 K, the IL stays intact, but forms an ordered and well-oriented structure. Upon heating to 250 K, the surface order increases, but at the same time STM and XPS indicate the onset of decomposition. Upon heating to 300 K, decomposition progresses, such that 50-60% of the IL is decomposed. The anion-related reaction products desorb instantaneously, and the cation-related products remain on the surface. Thereby, the surface is partly passivated, enabling the remaining IL to still be adsorbed intact at 300 K. For IL deposition directly at 300 K, a fraction of the IL instantaneously decomposes, with the anion-related products desorbing, opening free space for further deposition of IL. Hence, cation-related species accumulate at the expense of anions, until one fully closed wetting layer is formed. As a consequence, a higher dose is required to reach this coverage at 300 K, compared to 100-200 K.

4.
Chemistry ; 28(28): e202200167, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35363397

RESUMO

We investigated the adsorption, surface enrichment, ion exchange, and on-surface metathesis of ultrathin mixed IL films on Ag(111). We stepwise deposited 0.5 ML of the protic IL diethylmethylammonium trifluoromethanesulfonate ([dema][TfO]) and 1.0 ML of the aprotic IL 1-methyl-3-octylimidazolium hexafluorophosphate ([C8 C1 Im][PF6 ]) at around 90 K. Thereafter, the resulting layered frozen film was heated to 550 K, and the thermally induced phenomena were monitored in situ by angle-resolved X-ray photoelectron spectroscopy. Between 135 and 200 K, [TfO]- anions at the Ag(111) surface are exchanged by [PF6 ]- anions and enriched together with [C8 C1 Im]+ cations at the IL/vacuum interface. Upon further heating, [dema][PF6 ] and [OMIm][PF6 ] desorb selectively at ∼235 and ∼380 K, respectively. Hereby, a wetting layer of pure [C8 C1 Im][TfO] is formed by on-surface metathesis at the IL/metal interface, which completely desorbs at ∼480 K. For comparison, ion enrichment at the vacuum/IL interface was also studied in macroscopic IL mixtures, where no influence of the solid support is expected.

5.
Chemphyschem ; 22(4): 396-403, 2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33285027

RESUMO

We study the interaction and metalation reaction of a free base 5,10,15,20-terakis(4-cyanophenyl)porphyrin (2HTCNPP) with post-deposited Zn atoms and the targeted reaction product Zn-5,10,15,20-terakis(4-cyanophenyl)porphyrin (ZnTCNPP) on a Ag(111) surface. The investigations are performed with scanning tunneling microscopy at room temperature after Zn deposition and subsequent heating. The goal is to obtain further insights in the metalation reaction and the influence of the cyanogroups on this reaction. The interaction of 2HTCNPP with post-deposited Zn leads to the formation of three different 2D ordered island types that coexist on the surface. All contain a new species with a bright appearance, which increases with the amount of post-deposited Zn. We attribute this to metastable SAT ("sitting atop") complexes formed by Zn and the macrocycle, that is, an intermediate in the metalation reaction to ZnTCNPP, which occurs upon heating to 500 K. Interestingly, the activation barrier for the successive reaction of the SAT complex to the metalated ZnTCNPP species can also be overcome by a voltage pulse applied to the STM tip.

6.
Langmuir ; 37(39): 11552-11560, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34569794

RESUMO

We have studied the adsorption, wetting, growth, and thermal evolution of the protic IL diethylmethylammonium trifluoromethanesulfonate ([dema][TfO]) on Au(111) and Ag(111). Ultrathin films were deposited at room temperature (RT) and at 90 K, and were characterized in situ by angle-resolved X-ray photoelectron spectroscopy. For both surfaces, we observe that independent of temperature, initially, a closed 2D wetting layer forms. While the film thickness does not increase past this wetting layer at RT, at 200 K and below, "moderate" 3D island growth occurs on top of the wetting layer. Upon heating, on Au(111), the [dema][TfO] multilayers desorb at 292 K, leaving an intact [dema][TfO] wetting layer, which desorbs intact at 348 K. The behavior on Ag(111) is much more complex. Upon heating [dema][TfO] deposited at 90 K, the [dema]+ cations deprotonate in two steps at 185 and 305 K, yielding H[TfO] and volatile [dema]0. At 355 K, the formed H[TfO] wetting layer partly desorbs (∼50%) and partly decomposes to form an F-containing surface species, which is stable up to 570 K.

7.
Chemphyschem ; 21(5): 423-427, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-31808603

RESUMO

The adsorption behavior and the mobility of 2H-Tetranaphthylporphyrin (2HTNP) on Cu(111) was investigated by scanning tunneling microscopy (STM) at room temperature (RT). The molecules adsorb, like the structurally related 2HTPP, in the "inverted" structure with the naphthyl plane restricted to an orientation parallel to the Cu surface. The orientation of the four naphthyl groups yields altogether 16 possible conformations. Due to the existence of rotamer pairs, 10 different appearances are expected on the surface, and all of them are identified by STM at RT. Most interestingly, the orientation of the naphthyl groups significantly influences the diffusion behavior of the molecules on Cu(111). We identify three different groups of conformers, which are either immobile, medium or fast diffusing at RT. The mobility seems to decrease with increasing size of the footprint of the conformers on the surface.

8.
J Phys Chem C Nanomater Interfaces ; 123(49): 29708-29721, 2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31867088

RESUMO

In light of increasing interest in the development of organic-organic multicomponent heterostructures on metals, this molecular-scale study investigates prototypical composite systems of ultrathin porphyrin and ionic liquid (IL) films on metallic supports under well-defined ultrahigh vacuum conditions. By means of angle-resolved X-ray photoelectron spectroscopy, we investigated the adsorption, stability, and thermal exchange of the resulting films after sequential physical vapor deposition of the free-base porphyrin 5,10,15,20-tetraphenylporphyrin, 2H-TPP, and the IL 1-methyl-3-octylimidazolium hexafluorophosphate, [C8C1Im][PF6], on Ag(111) and Au(111). 2H-TPP shows two-dimensional growth of up to two closed molecular layers on Ag(111) and Au(111) and three-dimensional island growth for thicker films. IL films on top of a monolayer of 2H-TPP exhibit Stranski-Krastanov-like growth and are stable up to 385 K. The 2H-TPP layer leads to destabilization of the IL films, compared to the IL in direct contact with the bare metals, by inhibiting the specific adsorption of the ions on the metal surfaces. When the porphyrin is deposited on top of [C8C1Im][PF6] at low temperature, the 2H-TPP molecules adsorb on top of the IL film at first but replace the IL at the IL/metal interfaces upon heating above 240 K. This exchange process is most likely driven by the higher adsorption energy of 2H-TPP on Ag(111) and Au(111) surfaces, as compared to the IL. The behavior observed on Ag(111) and Au(111) is identical. The results are highly relevant for the stability of porphyrin/IL-based thin film catalyst systems and molecular devices, and more generally, stacked organic multilayer architectures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA