RESUMO
The combination of NiIIX2 salts with a bipyridine-type ligand and aromatic carbonyl-based chromophores has emerged as a benchmark precatalytic system to efficiently conduct cross-couplings mediated by light. Mechanistic studies have led to two scenarios in which Ni0 is proposed as the catalytic species. Nonetheless, in none of these studies has a NiII to Ni0 photoreduction been evidenced. By exploiting UV-visible, nuclear magnetic resonance, resonance Raman, electron paramagnetic resonance, and dynamic light scattering spectroscopies and also transmission electron microscopy, we report that, when photolyzed by UVA in alcohols, the structurally defined [NiII2(µ-OH2)(dtbbpy)2(BPCO2)4] complex 1 integrating a benzophenone chromophore is reduced into a diamagnetic NiI dimer of the general formula [NiI2(dtbbpy)2(BPCO2)2]. In marked contrast, in THF, photolysis led to the fast formation of Ni0, which accumulates in the form of metallic ultrathin Ni nanosheets characterized by a mean size of â¼100 nm and a surface plasmon resonance at 505 nm. Finally, it is shown that 1 combined with UVA irradiation catalyzes cross-couplings, that is, C(sp3)-H arylation of THF and O-arylation of methanol. These results are discussed in light of the mechanisms proposed for these cross-couplings with a focus on the oxidation state of the catalytic species.
RESUMO
Pyridine- and quinoline-stabilized silyl cations have been prepared, and their structure in condensed phases unambiguously assigned using 1H, 13C, 15N, 29Si, and 1H DOSY NMR as well as X-ray diffraction studies. Solid state structures thus show in both cases a stabilization of the cationic silicon center through an N-Si interaction and formation of a highly strained four-membered ring system. Chiral memory at the silicon atom in these heterocycle-stabilized silyl cations was also established, leading to various levels of selectivity depending on the nature of the heterocycle. Lowest energy conformations of the starting silanes obtained through DFT calculations, along with the isolation and characterization of the Si-centered chiral silyl cation intermediates, finally allowed to propose a plausible hypothesis as to the configurational stability of these silyl cations.
RESUMO
Identification of a common Diels-Alder pattern in three classes of bioactive natural products led us to study the synthesis and cycloaddition of a new class of cyclic dienes readily available from ß,γ-unsaturated lactams. A practical and readily scalable route to the parent p-methoxybenzyl-protected 6- and 7-membered ß,γ-unsaturated lactams was developed. These were readily transformed into the corresponding O-silylated dienes, which were reacted with dimethyl and diethyl fumarate to yield stereoselectively highly functionalized bicyclic adducts. These exhibited unexpected and versatile transformations upon acid hydrolysis depending on the nature of the dienophile substituents and the acid catalyst. All reactions have been performed on multigram quantities. These transformations provide a convenient, economical, and easily scalable pathway for the rapid construction of functionally and stereochemically dense privileged scaffolds for the construction of libraries of natural products-inspired molecules of pharmacological relevance.
Assuntos
Produtos Biológicos , Produtos Biológicos/síntese química , Produtos Biológicos/química , Catálise , Reação de Cicloadição , Hidrólise , Lactamas/químicaRESUMO
A general access to the spiroimine skeleton of gymnodimine and spirolides is described, relying on the construction of the cyclohexene fragment using an enantiocontrolled Diels-Alder reaction, the installation of the all-carbon quaternary stereocenter through a stereocontrolled alkylation or aldolisation and the elaboration of the lateral chains at C7 and C22 using Wittig-Horner olefinations. The spiroimine core of gymnodimine is made available through a 16-step linear sequence in a 21 % overall yield.
RESUMO
The facile and convenient preparation of both enantiomers of a [7]helicene scaffold from inexpensive (l)-(+)-tartaric acid and 4-methylstyrene is described. These helical structures were transformed into bis-iodinated ether derivatives in order to explore their potential as precursors of novel chiral organoiodane reagents or as iodoarene pre-catalysts. Promising results were obtained in hydroxylative phenol dearomatization/[4+2] cycloaddition cascade and dearomative spirolactonization reactions with encouraging enantiomeric excesses.
RESUMO
The so-called Securinega alkaloids constitute a class of tetracyclic biologically active specialised metabolites isolated principally from subtropical plants belonging to the Phyllanthaceae family. Following a strategy based on alternative hypotheses for their biosynthesis, an easy and time-efficient divergent synthesis enabled access to twelve of those alkaloids featuring (neo)(nor)securinane skeletons. Moreover, this work permitted to reassign the absolute configurations of (+)-virosineâ B and (-)-episecurinolâ A.
Assuntos
Alcaloides/biossíntese , Alcaloides/química , Euphorbiaceae/química , Euphorbiaceae/metabolismo , Mesilatos/química , Conformação Molecular , EstereoisomerismoRESUMO
Nearly isosteric oxo to thioxo substitution was employed to interrogate the structure of foldamers with a urea backbone and explore the relationship between helical folding and hydrogen-bonding interactions. A series of oligomers with urea bonds substituted by thiourea bonds at discrete or all positions in the sequence have been prepared and their folding propensity was studied by using a combination of spectroscopic methods and X-ray diffraction. The outcome of oxo to thioxo replacements on the helical folding was found to depend on whether central or terminal ureas were modified. The canonical helix geometry was not affected upon insertion of thioureas close to the negative end of the helix dipole, whereas thioureas close to the positive pole were found to increase the terminal flexibility and cause helix fraying. Perturbation was amplified when a selenourea was incorporated instead, leading to a structure that is only partly folded.
Assuntos
Compostos Organosselênicos/química , Tioureia/química , Ureia/análogos & derivados , Ureia/química , Dicroísmo Circular , Modelos Moleculares , Estrutura MolecularRESUMO
Herein a novel access to functionalizable 6-substituted imidazo[1,2-a]imidazole scaffolds is described. The reactivity of this heterobicyclic unit toward direct C-H arylation was studied, and conditions allowing regioselective arylation at position 3 were successfully developed. The practicability of this method is manifested by the ligandless conditions and low catalyst loading. The strategy is functional group tolerant and provides rapid access to a large variety of 3,6-di(hetero)arylated imidazo[1,2-a]imidazole derivatives. A second arylation at position 2 was then carried out, and a library of diversified 2,3,6-tri(hetero)arylated imidazo[1,2-a]imidazoles was generated in good yields. A one-pot, two-step procedure was finally developed.
RESUMO
The search for copper catalysts able to perform effectively click reactions in water in the absence of sodium ascorbate is an active area of current research with strong potential for applications in bioconjugation. The water-soluble and photoreducible copper(II)-EDA (EDA = ethylenediamine) complex 1, which has two 4-benzoylbenzoates acting as both counterion and photosensitizer, has been synthesized and characterized by different techniques including single crystal X-ray diffraction. Highly efficient photoreduction was demonstrated when solutions of 1 in hydrogen atom donating solvents, such as THF or MeOH, were exposed to UVA radiation (350-400 nm) provided by a low pressure mercury lamp (type TLC = thin-layer chromatography, 365 nm), or by a 23 W fluorescent bulb, or by ambient/sunlight. In water, a much poorer hydrogen atom donating solvent, the photoreduction of 1 proved inefficient. Interestingly, EPR studies revealed that complex 1 could nonetheless be effectively photoreduced in water when alkynes were present in solution. The catalytic activity of 1 for click reactions involving a range of water-soluble alkynes and azides, in particular saccharides, was tested under various illumination conditions. Complex 1 was found to exhibit a photolatent character, the photogenerated copper(I) being very reactive. On irradiating aqueous reaction mixtures containing 1 mol % of 1 at 365 nm (TLC lamp) for 1 h, click reactions were shown to proceed to full conversion.
RESUMO
α-Halogenoacetanilides (X=F, Cl, Br) were examined as H-bonding organocatalysts designed for the double activation of CO bonds through NH and CH donor groups. Depending on the halide substituents, the double H-bond involved a nonconventional CHâ â â O interaction with either a HCXn (n=1-2, X=Cl, Br) or a HCAr bond (X=F), as shown in the solid-state crystal structures and by molecular modeling. In addition, the catalytic properties of α-halogenoacetanilides were evaluated in the ring-opening polymerization of lactide, in the presence of a tertiary amine as cocatalyst. The α-dichloro- and α-dibromoacetanilides containing electron-deficient aromatic groups afforded the most attractive double H-bonding properties towards CO bonds, with a NHâ â â Oâ â â HCX2 interaction.
Assuntos
Acetanilidas/química , Bromo/química , Cloro/química , Fluoretos/química , Flúor/química , Hidrocarbonetos Halogenados/química , Catálise , Ligação de Hidrogênio , Modelos Moleculares , Teoria QuânticaRESUMO
The synthesis of a variety of 9-functionalized 1,8-diazaanthracene diesters and amino acids is described. Derivatization at the 9-position relies on facile reactions performed on the 9-chloro and 9-bromomethyl precursors. This has allowed the incorporation of nucleophilic or sensitive functional groups that otherwise cannot be incorporated under standard methods for synthesizing these compounds. Additionally, the synthesis of the protected amino acids via a high-yielding monosaponification and subsequent Curtius rearrangement has been accomplished on a multigram scale. These units, together with the functionalized derivatives, should prove to be useful monomers in the synthesis of aromatic oligoamide foldamers.
Assuntos
Amidas/química , Aminoácidos/química , Antracenos/síntese química , Antracenos/química , Ácidos Carboxílicos/química , Espectroscopia de Ressonância Magnética , Estrutura MolecularRESUMO
Dancing with diversity: The synthesis of diverse pyrido[2',1':2,3]imidazo[4,5-b]quinolines bearing several substitution patterns was developed based on combining a multicomponent reaction (Groebke-Blackburn-Bienaymé reaction) with an original cyclization as a secondary transformation (see scheme; DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene).
Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/química , Compostos Bicíclicos Heterocíclicos com Pontes/síntese química , Metais/química , Quinolinas/química , Quinolinas/síntese química , CiclizaçãoRESUMO
This study describes the preparation, characterization, and influence of the enantiopure vs. racemic coformer on the physico-chemical properties of a pharmaceutical cocrystal. For that purpose, two new 1:1 cocrystals, namely lidocaine:dl-menthol and lidocaine:d-menthol, were prepared. The menthol racemate-based cocrystal was evaluated by means of X-ray diffraction, infrared spectroscopy, Raman, thermal analysis, and solubility experiments. The results were exhaustively compared with the first menthol-based pharmaceutical cocrystal, i.e., lidocaine:l-menthol, discovered in our group 12 years ago. Furthermore, the stable lidocaine/dl-menthol phase diagram has been screened, thoroughly evaluated, and compared to the enantiopure phase diagram. Thus, it has been proven that the racemic vs. enantiopure coformer leads to increased solubility and improved dissolution of lidocaine due to the low stable form induced by menthol molecular disorder in the lidocaine:dl-menthol cocrystal. To date, the 1:1 lidocaine:dl-menthol cocrystal is the third menthol-based pharmaceutical cocrystal, after the 1:1 lidocaine:l-menthol and the 1:2 lopinavir:l-menthol cocrystals reported in 2010 and 2022, respectively. Overall, this study shows promising potential for designing new materials with both improved characteristics and functional properties in the fields of pharmaceutical sciences and crystal engineering.
RESUMO
Highly regioselective: An efficient synthesis of the imidazo[1,2-b]pyrazole core has been developed, and the first regioselective palladium-catalyzed direct arylation of the C-3 position is described (see scheme). Good to excellent yields were obtained for a wide range of aryl partners with electron-rich and electron-poor substituents. This methodology allows rapid access to a large variety of imidazo[1,2-b]pyrazole products and could open the way to the design of new biologically active compounds.
Assuntos
Pirazóis/química , Pirazóis/síntese química , Estrutura Molecular , Compostos Organometálicos/química , Paládio/química , EstereoisomerismoRESUMO
The de novo design and synthesis of large and well-organized, tertiary-like, α-peptidic folded architectures is difficult because it relies on multiple cooperative interactions within and between secondary folded motifs of relatively weak intrinsic stability. The very stable helical structures of oligoamides of 8-amino-2-quinoline carboxylic acid offer a way to circumvent this difficulty thanks to their ability to fold into predictable and stable secondary motifs. Branched architectures comprised of two pairs of tetrameric (1), pentameric (2), or octameric (3) oligomers connected via an ethylene glycol spacer were designed and synthesized. The short spacer holds two helices in close proximity, thus enabling interactions between them. Degrees of freedom allowed in the system are well-defined: the relative P or M handedness of the two helices; the relative orientation of the helix axes; and the gauche or anti conformation of the ethylene spacer. Investigating the structures of 1-3 in the solid state and in solution allowed a detailed picture to be drawn of their conformational preferences and dynamics. The high variability of the solid state structures provides many snapshots of possible solution conformations. Helix-helix handedness communication was evidenced and shown to depend both on solvent and on a defined set of side chains at the helix-helix interface. Interdigitation of the side chains was found to restrict free rotation about the ethylene spacer. One solid state structure shows a high level of symmetry and provides a firm basis to further design specific side chain/side chain directional interactions.
Assuntos
Amidas/química , Peptídeos/química , Quinolinas/química , Materiais Biomiméticos/química , Etilenoglicol/química , Modelos Moleculares , Dobramento de Proteína , Estrutura Secundária de ProteínaRESUMO
A novel series of isoindolo[2,1-a]quinoxaline and indolo[1,2-a]quinoxaline derivatives was synthesized and evaluated in vitro against various human cancer cell lines for antiproliferative activity. These new compounds displayed activity against leukemia and breast cancer cell lines in the 3- to 18-µM concentration range.
Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Quinoxalinas/síntese química , Quinoxalinas/farmacologia , Antineoplásicos/química , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Concentração Inibidora 50 , Leucemia/tratamento farmacológico , Modelos Moleculares , Estrutura Molecular , Quinoxalinas/química , Relação Estrutura-AtividadeRESUMO
In the title compound, C(25)H(23)N(3)O(3), the seven-membered diazepine ring adopts a boat conformation with the hydroxy-substituted C atom at the prow and fused-ring C atoms at the stern. The crystal packing features C-Hâ¯O, C-Hâ¯π and N-H â¯π inter-actions.
RESUMO
In the crystal structure of the title compound, C(11)H(11)NO(3)S, the mol-ecules are linked by inter-molecular C-Hâ¯O hydrogen-bond inter-actions. The heterocyclic thia-zine ring adopts a conformation inter-mediate between twist and boat.
RESUMO
In the title compound, C(10)H(7)NO(2)S, the dihedral angle between the benzimidazole and malonaldehyde group is 1.41â (2)°. An intra-molecular hydrogen bond is formed between the NH group and one of the adjacent carbonyl O atoms. In addition, the NH group forms an inter-molecular hydrogen bond to a symmetry equivalent of this carbonyl O atom, connecting the mol-ecules into centrosymmetric dimers. The structure also contains C-Hâ¯O inter-molecular inter-actions.
RESUMO
The title compound, C(17)H(14)N(2)O, crystallizes with two mol-ecules in the asymmetric unit. The dihedral angles between the mean planes of the quinoxaline ring system and the phenyl ring in the two mol-ecules are 38.27â (10) and 37.14â (8)°. In the crystal, π-stacking along the b axis contributes to the crystal cohesion with an average distance between quinoxaline units of 3.397â (3)â Å. Weak C-Hâ¯O interactions also occur.