Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Blood ; 121(8): 1345-56, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-23287865

RESUMO

Cytotoxic lymphocytes, encompassing cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells, kill pathogen-infected, neoplastic, or certain hematopoietic cells through the release of perforin-containing lytic granules. In the present study, we first performed probability-state modeling of differentiation and lytic granule markers on CD8(+) T cells to enable the comparison of bona fide CTLs with NK cells. Analysis identified CD57(bright) expression as a reliable phenotype of granule marker-containing CTLs. We then compared CD3(+)CD8(+)CD57(bright) CTLs with NK cells. Healthy adult peripheral blood CD3(+)CD8(+)CD57(bright) CTLs expressed more granzyme B but less perforin than CD3(-)CD56(dim) NK cells. On stimulation, such CTLs degranulated more readily than other T-cell subsets, but had a propensity to degranulate that was similar to NK cells. Remarkably, the CTLs produced cytokines more rapidly and with greater frequency than NK cells. In patients with biallelic mutations in UNC13D, STX11, or STXBP2 associated with familial hemophagocytic lymphohistiocytosis, CTL and NK cell degranulation were similarly impaired. Therefore, cytotoxic lymphocyte subsets have similar requirements for Munc13-4, syntaxin-11, and Munc18-2 in lytic granule exocytosis. The present results provide a detailed comparison of human CD3(+)CD8(+)CD57(bright) CTLs and NK cells and suggest that analysis of CD57(bright) CTL function may prove useful in the diagnosis of primary immunodeficiencies including familial hemophagocytic lymphohistiocytosis.


Assuntos
Antígenos CD57/metabolismo , Citocinas/metabolismo , Grânulos Citoplasmáticos/metabolismo , Síndromes de Imunodeficiência/metabolismo , Células Matadoras Naturais/metabolismo , Linfócitos T Citotóxicos/metabolismo , Adulto , Biomarcadores/metabolismo , Complexo CD3/metabolismo , Antígenos CD8/metabolismo , Degranulação Celular/imunologia , Citocinas/biossíntese , Grânulos Citoplasmáticos/imunologia , Exocitose/imunologia , Humanos , Síndromes de Imunodeficiência/diagnóstico , Síndromes de Imunodeficiência/imunologia , Imunofenotipagem , Células Matadoras Naturais/citologia , Células Matadoras Naturais/imunologia , Proteínas de Membrana/metabolismo , Proteínas Munc18/metabolismo , Perforina , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Proteínas Qa-SNARE/metabolismo , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T Citotóxicos/citologia , Linfócitos T Citotóxicos/imunologia
2.
Virus Evol ; 5(1): vez007, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31037220

RESUMO

Worldwide outbreaks of enterovirus D68 (EV-D68) in 2014 and 2016 have caused serious respiratory and neurological disease. To investigate diversity, spread, and evolution of EV-D68 we performed near full-length deep sequencing in fifty-four samples obtained in Sweden during the 2014 and 2016 outbreaks. In most samples, intrapatient variability was low and dominated by rare synonymous variants, but three patients showed evidence of dual infections with distinct EV-D68 variants from the same subclade. Interpatient evolution showed a very strong temporal signal, with an evolutionary rate of 0.0039 ± 0.0001 substitutions per site and year. Phylogenetic trees reconstructed from the sequences suggest that EV-D68 was introduced into Stockholm several times during the 2016 outbreak. Putative neutralization targets in the BC and DE loops of the VP1 protein were slightly more diverse within-host and tended to undergo more frequent substitution than other genomic regions. However, evolution in these loops did not appear to have been driven the emergence of the 2016 B3-subclade directly from the 2014 B1-subclade. Instead, the most recent ancestor of both clades was dated to 2009. The study provides a comprehensive description of the intra- and interpatient evolution of EV-D68, including the first report of intrapatient diversity and dual infections. The new data along with publicly available EV-D68 sequences are included in an interactive phylodynamic analysis on nextstrain.org/enterovirus/d68 to facilitate timely EV-D68 tracking in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA