Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
EMBO J ; 42(10): e112234, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36970857

RESUMO

The interferon-induced transmembrane proteins (IFITM) are implicated in several biological processes, including antiviral defense, but their modes of action remain debated. Here, taking advantage of pseudotyped viral entry assays and replicating viruses, we uncover the requirement of host co-factors for endosomal antiviral inhibition through high-throughput proteomics and lipidomics in cellular models of IFITM restriction. Unlike plasma membrane (PM)-localized IFITM restriction that targets infectious SARS-CoV2 and other PM-fusing viral envelopes, inhibition of endosomal viral entry depends on lysines within the conserved IFITM intracellular loop. These residues recruit Phosphatidylinositol 3,4,5-trisphosphate (PIP3) that we show here to be required for endosomal IFITM activity. We identify PIP3 as an interferon-inducible phospholipid that acts as a rheostat for endosomal antiviral immunity. PIP3 levels correlated with the potency of endosomal IFITM restriction and exogenous PIP3 enhanced inhibition of endocytic viruses, including the recent SARS-CoV2 Omicron variant. Together, our results identify PIP3 as a critical regulator of endosomal IFITM restriction linking it to the Pi3K/Akt/mTORC pathway and elucidate cell-compartment-specific antiviral mechanisms with potential relevance for the development of broadly acting antiviral strategies.


Assuntos
Antivirais , COVID-19 , Humanos , Interferons/metabolismo , Fosfolipídeos , Fosfatidilinositol 3-Quinases/metabolismo , RNA Viral , Proteínas de Ligação a RNA/metabolismo , SARS-CoV-2/metabolismo , Internalização do Vírus , Proteínas de Membrana/metabolismo
2.
J Neurochem ; 166(2): 346-366, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37303123

RESUMO

Astrocytes associate with amyloid plaques in Alzheimer's disease (AD). Astrocytes react to changes in the brain environment, including increasing concentrations of amyloid-ß (Aß). However, the precise response of astrocytes to soluble small Aß oligomers at concentrations similar to those present in the human brain has not been addressed. In this study, we exposed astrocytes to media from neurons that express the human amyloid precursor protein (APP) transgene with the double Swedish mutation (APPSwe), and which contains APP-derived fragments, including soluble human Aß oligomers. We then used proteomics to investigate changes in the astrocyte secretome. Our data show dysregulated secretion of astrocytic proteins involved in the extracellular matrix and cytoskeletal organization and increase secretion of proteins involved in oxidative stress responses and those with chaperone activity. Several of these proteins have been identified in previous transcriptomic and proteomic studies using brain tissue from human AD and cerebrospinal fluid (CSF). Our work highlights the relevance of studying astrocyte secretion to understand the brain response to AD pathology and the potential use of these proteins as biomarkers for the disease.


Assuntos
Doença de Alzheimer , Astrócitos , Humanos , Astrócitos/metabolismo , Proteômica , Secretoma , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo
3.
EMBO Rep ; 21(9): e50446, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32749065

RESUMO

Melanoma progression is generally associated with increased transcriptional activity mediated by the Yes-associated protein (YAP). Mechanical signals from the extracellular matrix are sensed by YAP, which then activates the expression of proliferative genes, promoting melanoma progression and drug resistance. Which extracellular signals induce mechanotransduction, and how this is mediated, is not completely understood. Here, using secretome analyses, we reveal the extracellular accumulation of amyloidogenic proteins, i.e. premelanosome protein (PMEL), in metastatic melanoma, together with proteins that assist amyloid maturation into fibrils. We also confirm the accumulation of amyloid-like aggregates, similar to those detected in Alzheimer disease, in metastatic cell lines, as well as in human melanoma biopsies. Mechanistically, beta-secretase 2 (BACE2) regulates the maturation of these aggregates, which in turn induce YAP activity. We also demonstrate that recombinant PMEL fibrils are sufficient to induce mechanotransduction, triggering YAP signaling. Finally, we demonstrate that BACE inhibition affects cell proliferation and increases drug sensitivity, highlighting the importance of amyloids for melanoma survival, and the use of beta-secretase inhibitors as potential therapeutic approach for metastatic melanoma.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Melanoma , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Amiloidogênicas , Humanos , Mecanotransdução Celular , Melanoma/tratamento farmacológico , Melanoma/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Anal Chem ; 92(13): 8874-8882, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32501676

RESUMO

Metabolomics and lipidomics studies are becoming increasingly popular but available tools for automated data analysis are still limited. The major issue in untargeted metabolomics is linked to the lack of efficient ranking methods allowing accurate identification of metabolites. Herein, we provide a user-friendly open-source software, named SMfinder, for the robust identification and quantification of small molecules. The software introduces an MS2 false discovery rate approach, which is based on single spectral permutation and increases identification accuracy. SMfinder can be efficiently applied to shotgun and targeted analysis in metabolomics and lipidomics without requiring extensive in-house acquisition of standards as it provides accurate identification by using available MS2 libraries in instrument independent manner. The software, downloadable at www.ifom.eu/SMfinder, is suitable for untargeted, targeted, and flux analysis.


Assuntos
Lipidômica/métodos , Metabolômica/métodos , Interface Usuário-Computador , Isótopos de Carbono/química , Isótopos de Carbono/metabolismo , Linhagem Celular Tumoral , Humanos , Lipídeos/análise , Metaboloma
5.
J Neurochem ; 145(3): 245-257, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29315582

RESUMO

Peripheral myelin protein 22 (PMP22) is a component of compact myelin in the peripheral nervous system. The amount of PMP22 in myelin is tightly regulated, and PMP22 over or under-expression cause Charcot-Marie-Tooth 1A (CMT1A) and Hereditary Neuropathy with Pressure Palsies (HNPP). Despite the importance of PMP22, its function remains largely unknown. It was reported that PMP22 interacts with the ß4 subunit of the laminin receptor α6ß4 integrin, suggesting that α6ß4 integrin and laminins may contribute to the pathogenesis of CMT1A or HNPP. Here we asked if the lack of α6ß4 integrin in Schwann cells influences myelin stability in the HNPP mouse model. Our data indicate that PMP22 and ß4 integrin may not interact directly in myelinating Schwann cells, however, ablating ß4 integrin delays the formation of tomacula, a characteristic feature of HNPP. In contrast, ablation of integrin ß4 worsens nerve conduction velocities and non-compact myelin organization in HNPP animals. This study demonstrates that indirect interactions between an extracellular matrix receptor and a myelin protein influence the stability and function of myelinated fibers.


Assuntos
Artrogripose/metabolismo , Neuropatia Hereditária Motora e Sensorial/metabolismo , Integrina alfa6beta4/metabolismo , Células de Schwann/metabolismo , Animais , Artrogripose/patologia , Neuropatia Hereditária Motora e Sensorial/patologia , Camundongos , Camundongos Knockout , Proteínas da Mielina/metabolismo , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Células de Schwann/patologia
6.
J Proteome Res ; 16(4): 1719-1727, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28282139

RESUMO

In global proteomic analysis, it is estimated that proteins span from millions to less than 100 copies per cell. The challenge of protein quantitation by classic shotgun proteomic techniques relies on the presence of missing values in peptides belonging to low-abundance proteins that lowers intraruns reproducibility affecting postdata statistical analysis. Here, we present a new analytical workflow MvM (missing value monitoring) able to recover quantitation of missing values generated by shotgun analysis. In particular, we used confident data-dependent acquisition (DDA) quantitation only for proteins measured in all the runs, while we filled the missing values with data-independent acquisition analysis using the library previously generated in DDA. We analyzed cell cycle regulated proteins, as they are low abundance proteins with highly dynamic expression levels. Indeed, we found that cell cycle related proteins are the major components of the missing values-rich proteome. Using the MvM workflow, we doubled the number of robustly quantified cell cycle related proteins, and we reduced the number of missing values achieving robust quantitation for proteins over ∼50 molecules per cell. MvM allows lower quantification variance among replicates for low abundance proteins with respect to DDA analysis, which demonstrates the potential of this novel workflow to measure low abundance, dynamically regulated proteins.


Assuntos
Proteínas de Ciclo Celular/isolamento & purificação , Peptídeos/isolamento & purificação , Proteoma/genética , Proteômica , Proteínas de Ciclo Celular/genética , Peptídeos/genética , Espectrometria de Massas em Tandem
7.
J Neurosci ; 33(46): 17995-8007, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24227711

RESUMO

During development, Schwann cells extend lamellipodia-like processes to segregate large- and small-caliber axons during the process of radial sorting. Radial sorting is a prerequisite for myelination and is arrested in human neuropathies because of laminin deficiency. Experiments in mice using targeted mutagenesis have confirmed that laminins 211, 411, and receptors containing the ß1 integrin subunit are required for radial sorting; however, which of the 11 α integrins that can pair with ß1 forms the functional receptor is unknown. Here we conditionally deleted all the α subunits that form predominant laminin-binding ß1 integrins in Schwann cells and show that only α6ß1 and α7ß1 integrins are required and that α7ß1 compensates for the absence of α6ß1 during development. The absence of either α7ß1 or α6ß1 integrin impairs the ability of Schwann cells to spread and to bind laminin 211 or 411, potentially explaining the failure to extend cytoplasmic processes around axons to sort them. However, double α6/α7 integrin mutants show only a subset of the abnormalities found in mutants lacking all ß1 integrins, and a milder phenotype. Double-mutant Schwann cells can properly activate all the major signaling pathways associated with radial sorting and show normal Schwann cell proliferation and survival. Thus, α6ß1 and α7ß1 are the laminin-binding integrins required for axonal sorting, but other Schwann cell ß1 integrins, possibly those that do not bind laminins, may also contribute to radial sorting during peripheral nerve development.


Assuntos
Axônios/fisiologia , Integrina alfa6beta1/fisiologia , Integrinas/fisiologia , Células de Schwann/fisiologia , Animais , Animais Recém-Nascidos , Axônios/ultraestrutura , Proliferação de Células , Células Cultivadas , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Células de Schwann/ultraestrutura
8.
Nucleic Acids Res ; 40(22): 11756-68, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23074189

RESUMO

Mutations in autoimmune regulator (AIRE) gene cause autoimmune polyendocrinopathy candidiasis ectodermal dystrophy. AIRE is expressed in thymic medullary epithelial cells, where it promotes the expression of peripheral-tissue antigens to mediate deletional tolerance, thereby preventing self-reactivity. AIRE contains two plant homeodomains (PHDs) which are sites of pathological mutations. AIRE-PHD fingers are important for AIRE transcriptional activity and presumably play a crucial role in the formation of multimeric protein complexes at chromatin level which ultimately control immunological tolerance. As a step forward the understanding of AIRE-PHD fingers in normal and pathological conditions, we investigated their structure and used a proteomic SILAC approach to assess the impact of patient mutations targeting AIRE-PHD fingers. Importantly, both AIRE-PHD fingers are structurally independent and mutually non-interacting domains. In contrast to D297A and V301M on AIRE-PHD1, the C446G mutation on AIRE-PHD2 destroys the structural fold, thus causing aberrant AIRE localization and reduction of AIRE target genes activation. Moreover, mutations targeting AIRE-PHD1 affect the formation of a multimeric protein complex at chromatin level. Overall our results reveal the importance of AIRE-PHD domains in the interaction with chromatin-associated nuclear partners and gene regulation confirming the role of PHD fingers as versatile protein interaction hubs for multiple binding events.


Assuntos
Cromatina/metabolismo , Fatores de Transcrição/química , Células HEK293 , Humanos , Modelos Moleculares , Mutação , Estrutura Terciária de Proteína , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína AIRE
9.
Cell Rep ; 43(6): 114281, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38805395

RESUMO

Survival from UV-induced DNA lesions relies on nucleotide excision repair (NER) and the Mec1ATR DNA damage response (DDR). We study DDR and NER in aging cells and find that old cells struggle to repair DNA and activate Mec1ATR. We employ pharmacological and genetic approaches to rescue DDR and NER during aging. Conditions activating Snf1AMPK rescue DDR functionality, but not NER, while inhibition of the TORC1-Sch9S6K axis restores NER and enhances DDR by tuning PP2A activity, specifically in aging cells. Age-related repair deficiency depends on Snf1AMPK-mediated phosphorylation of Sch9S6K on Ser160 and Ser163. PP2A activity in old cells is detrimental for DDR and influences NER by modulating Snf1AMPK and Sch9S6K. Hence, the DDR and repair pathways in aging cells are influenced by the metabolic tuning of opposing AMPK and TORC1 networks and by PP2A activity. Specific Sch9S6K phospho-isoforms control DDR and NER efficiency, specifically during aging.


Assuntos
Senescência Celular , Dano ao DNA , Reparo do DNA , Proteínas de Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fosforilação , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteína Fosfatase 2/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Envelhecimento/metabolismo
10.
Genome Med ; 16(1): 15, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243308

RESUMO

BACKGROUND: Immunotherapy based on checkpoint inhibitors is highly effective in mismatch repair deficient (MMRd) colorectal cancer (CRC). These tumors carry a high number of mutations, which are predicted to translate into a wide array of neoepitopes; however, a systematic classification of the neoantigen repertoire in MMRd CRC is lacking. Mass spectrometry peptidomics has demonstrated the existence of MHC class I associated peptides (MAPs) originating from non-coding DNA regions. Based on these premises we investigated DNA genomic regions responsible for generating MMRd-induced peptides. METHODS: We exploited mouse CRC models in which the MMR gene Mlh1 was genetically inactivated. Isogenic cell lines CT26 Mlh1+/+ and Mlh1-/- were inoculated in immunocompromised and immunocompetent mice. Whole genome and RNA sequencing data were generated from samples obtained before and after injection in murine hosts. First, peptide databases were built from transcriptomes of isogenic cell lines. We then compiled a database of peptides lost after tumor cells injection in immunocompetent mice, likely due to immune editing. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) and matched next-generation sequencing databases were employed to identify the DNA regions from which the immune-targeted MAPs originated. Finally, we adopted in vitro T cell assays to verify whether MAP-specific T cells were part of the in vivo immune response against Mlh1-/- cells. RESULTS: Whole genome sequencing analyses revealed an unbalanced distribution of immune edited alterations across the genome in Mlh1-/- cells grown in immunocompetent mice. Specifically, untranslated (UTR) and coding regions exhibited the largest fraction of mutations leading to highly immunogenic peptides. Moreover, the integrated computational and LC-MS/MS analyses revealed that MAPs originate mainly from atypical translational events in both Mlh1+/+ and Mlh1-/- tumor cells. In addition, mutated MAPs-derived from UTRs and out-of-frame translation of coding regions-were highly enriched in Mlh1-/- cells. The MAPs trigger T-cell activation in mice primed with Mlh1-/- cells. CONCLUSIONS: Our results suggest that-in comparison to MMR proficient CRC-MMRd tumors generate a significantly higher number of non-canonical mutated peptides able to elicit T cell responses. These results reveal the importance of evaluating the diversity of neoepitope repertoire in MMRd tumors.


Assuntos
Neoplasias Encefálicas , Neoplasias do Colo , Neoplasias Colorretais , Síndromes Neoplásicas Hereditárias , Animais , Camundongos , Reparo de Erro de Pareamento de DNA/genética , Cromatografia Líquida , Espectrometria de Massas em Tandem , Neoplasias Colorretais/patologia , Peptídeos , Antígenos de Histocompatibilidade Classe I/genética , DNA
11.
Cell Death Dis ; 15(1): 28, 2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38199984

RESUMO

The tumor microenvironment is a complex ecosystem that plays a critical role in cancer progression and treatment response. Recently, extracellular amyloid fibrils have emerged as novel components of the tumor microenvironment; however, their function remains elusive. In this study, we establish a direct connection between the presence of amyloid fibrils in the secretome and the activation of YAP, a transcriptional co-activator involved in cancer proliferation and drug resistance. Furthermore, we uncover a shared mechano-signaling mechanism triggered by amyloid fibrils in both melanoma and pancreatic ductal adenocarcinoma cells. Our findings highlight the crucial role of the glycocalyx protein Agrin which binds to extracellular amyloid fibrils and acts as a necessary factor in driving amyloid-dependent YAP activation. Additionally, we reveal the involvement of the HIPPO pathway core kinase LATS1 in this signaling cascade. Finally, we demonstrate that extracellular amyloid fibrils enhance cancer cell migration and invasion. In conclusion, our research expands our knowledge of the tumor microenvironment by uncovering the role of extracellular amyloid fibrils in driving mechano-signaling and YAP activation. This knowledge opens up new avenues for developing innovative strategies to modulate YAP activation and mitigate its detrimental effects during cancer progression.


Assuntos
Melanoma , Neoplasias Pancreáticas , Humanos , Amiloide , Ecossistema , Transdução de Sinais , Neoplasias Pancreáticas/genética , Microambiente Tumoral
12.
Sci Transl Med ; 16(736): eadf9874, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38416843

RESUMO

Targeting aromatase deprives ER+ breast cancers of estrogens and is an effective therapeutic approach for these tumors. However, drug resistance is an unmet clinical need. Lipidomic analysis of long-term estrogen-deprived (LTED) ER+ breast cancer cells, a model of aromatase inhibitor resistance, revealed enhanced intracellular lipid storage. Functional metabolic analysis showed that lipid droplets together with peroxisomes, which we showed to be enriched and active in the LTED cells, controlled redox homeostasis and conferred metabolic adaptability to the resistant tumors. This reprogramming was controlled by acetyl-CoA-carboxylase-1 (ACC1), whose targeting selectively impaired LTED survival. However, the addition of branched- and very long-chain fatty acids reverted ACC1 inhibition, a process that was mediated by peroxisome function and redox homeostasis. The therapeutic relevance of these findings was validated in aromatase inhibitor-treated patient-derived samples. Last, targeting ACC1 reduced tumor growth of resistant patient-derived xenografts, thus identifying a targetable hub to combat the acquisition of estrogen independence in ER+ breast cancers.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Inibidores da Aromatase/farmacologia , Inibidores da Aromatase/uso terapêutico , Peroxissomos/metabolismo , Peroxissomos/patologia , Acetil-CoA Carboxilase , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/patologia , Linhagem Celular Tumoral , Estrogênios/metabolismo , Resistencia a Medicamentos Antineoplásicos
13.
Blood Purif ; 36(1): 7-11, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23736085

RESUMO

BACKGROUND: Discovery of the ideal biomarker for clinical care remains a major challenge. Recent progress in genomic and proteomic technologies has allowed the identification of thousands of potential markers, although the benefits of these findings in clinical routine use are not completely evident yet. METHODS: Major genomics and proteomics approaches are outlined and their clinical applications are described. Future developments in clinical nephrology are discussed. CONCLUSION: Genomics and proteomics technologies, used to measure gene expression at the transcript and at the protein levels, provide complementary information, which paves the way for systems biology. The fields of genomics and proteomics continue to develop rapidly, and it is evident that there is great potential for their ability to predict diseases and outcomes. However, there are several tasks that must be accomplished to convert all these '-omics' approaches into clinical practice. Collaboration between clinicians, scientists and healthcare funding organizations together with specific guideline development and high-throughput analytical automation will be crucial to reach the final potential of these technologies.


Assuntos
Genômica , Nefropatias/genética , Nefropatias/metabolismo , Proteômica , Biomarcadores , Perfilação da Expressão Gênica , Genótipo , Humanos , Nefropatias/diagnóstico , Fenótipo , Proteoma
14.
Cell Rep ; 42(12): 113555, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38088930

RESUMO

Ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3-related (ATR) DNA damage response (DDR) kinases contain elastic domains. ATM also responds to reactive oxygen species (ROS) and ATR to nuclear mechanical stress. Mre11 mediates ATM activation following DNA damage; ATM mutations cause ataxia telangiectasia (A-T). Here, using in vivo imaging, electron microscopy, proteomic, and mechano-biology approaches, we study how ATM responds to mechanical stress. We report that cytoskeleton and ROS, but not Mre11, mediate ATM activation following cell deformation. ATM deficiency causes hyper-stiffness, stress fiber accumulation, Yes-associated protein (YAP) nuclear enrichment, plasma and nuclear membrane alterations during interstitial migration, and H3 hyper-methylation. ATM locates to the actin cytoskeleton and, following cytoskeleton stress, promotes phosphorylation of key cytoskeleton and chromatin regulators. Our data contribute to explain some clinical features of patients with A-T and pinpoint the existence of an integrated mechano-response in which ATM and ATR have distinct roles unrelated to their canonical DDR functions.


Assuntos
Ataxia Telangiectasia , Proteínas Serina-Treonina Quinases , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Cromatina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteômica , Proteínas de Ligação a DNA/metabolismo , Fosforilação , Dano ao DNA , Citoesqueleto/metabolismo
15.
Cell Rep ; 42(3): 112215, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36917609

RESUMO

Drugs targeting microtubules rely on the mitotic checkpoint to arrest cell proliferation. The prolonged mitotic arrest induced by such drugs is followed by a G1 arrest. Here, we follow for several weeks the fate of G1-arrested human cells after treatment with nocodazole. We find that a small fraction of cells escapes from the arrest and resumes proliferation. These escaping cells experience reduced DNA damage and p21 activation. Cells surviving treatment are enriched for anti-apoptotic proteins, including Triap1. Increasing Triap1 levels allows cells to survive the first treatment with reduced DNA damage and lower levels of p21; accordingly, decreasing Triap1 re-sensitizes cells to nocodazole. We show that Triap1 upregulation leads to the retention of cytochrome c in the mitochondria, opposing the partial activation of caspases caused by nocodazole. In summary, our results point to a potential role of Triap1 upregulation in the emergence of resistance to drugs that induce prolonged mitotic arrest.


Assuntos
Apoptose , Mitose , Humanos , Nocodazol/farmacologia , Regulação para Cima , Proliferação de Células , Fase G1 , Peptídeos e Proteínas de Sinalização Intracelular/genética
16.
Sci Adv ; 9(37): eadh4184, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37713487

RESUMO

Cancers feature substantial intratumoral heterogeneity of genetic and phenotypically distinct lineages. Although interactions between coexisting lineages are emerging as a potential contributor to tumor evolution, the extent and nature of these interactions remain largely unknown. We postulated that tumors develop ecological interactions that sustain diversity and facilitate metastasis. Using a combination of fluorescent barcoding, mathematical modeling, metabolic analysis, and in vivo models, we show that the Allee effect, i.e., growth dependency on population size, is a feature of tumor lineages and that cooperative ecological interactions between lineages alleviate the Allee barriers to growth in a model of triple-negative breast cancer. Soluble metabolite exchange formed the basis for these cooperative interactions and catalyzed the establishment of a polyclonal community that displayed enhanced metastatic dissemination and outgrowth in xenograft models. Our results highlight interclonal metabolite exchange as a key modulator of tumor ecology and a contributing factor to overcoming Allee effect-associated growth barriers to metastasis.


Assuntos
Corantes , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Modelos Animais de Doenças , Densidade Demográfica
17.
J Exp Bot ; 63(17): 6237-51, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23105132

RESUMO

Downy mildew is caused by the oomycete Plasmopara viticola and is one of the most serious diseases of grapevine. The beneficial microorganism Trichoderma harzianum T39 (T39) has previously been shown to induce plant-mediated resistance and to reduce the severity of downy mildew in susceptible grapevines. In order to better understand the cellular processes associated with T39-induced resistance, the proteomic and histochemical changes activated by T39 in grapevine were investigated before and 1 day after P. viticola inoculation. A comprehensive proteomic analysis of T39-induced resistance in grapevine was performed using an eight-plex iTRAQ protocol, resulting in the identification and quantification of a total of 800 proteins. Most of the proteins directly affected by T39 were found to be involved in signal transduction, indicating activation of a complete microbial recognition machinery. Moreover, T39-induced resistance was associated with rapid accumulation of reactive oxygen species and callose at infection sites, as well as changes in abundance of proteins involved in response to stress and redox balance, indicating an active defence response to downy mildew. On the other hand, proteins affected by P. viticola in control plants mainly decreased in abundance, possibly reflecting the establishment of a compatible interaction. Finally, the high-throughput iTRAQ protocol allowed de novo peptide sequencing, which will be used to improve annotation of the Vitis vinifera cv. Pinot Noir proteome.


Assuntos
Oomicetos/fisiologia , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Proteômica , Trichoderma/fisiologia , Vitis/metabolismo , Análise por Conglomerados , Regulação da Expressão Gênica de Plantas , Glucanos/metabolismo , Interações Hospedeiro-Parasita , Anotação de Sequência Molecular , Doenças das Plantas/parasitologia , Imunidade Vegetal , Folhas de Planta/citologia , Folhas de Planta/metabolismo , Folhas de Planta/parasitologia , Folhas de Planta/fisiologia , Estômatos de Plantas/citologia , Estômatos de Plantas/metabolismo , Estômatos de Plantas/parasitologia , Estômatos de Plantas/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Estresse Fisiológico , Vitis/citologia , Vitis/imunologia , Vitis/parasitologia , Vitis/fisiologia
18.
J Exp Clin Cancer Res ; 41(1): 34, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35073946

RESUMO

BACKGROUND: Acute myeloid leukemia (AML) is characterized by accumulation of aberrantly differentiated hematopoietic myeloid progenitor cells. The karyotyping-silent NUP98-NSD1 fusion is a molecular hallmark of pediatric AML and is associated with the activating FLT3-ITD mutation in > 70% of the cases. NUP98-NSD1 fusion protein promotes myeloid progenitor self-renewal in mice via unknown molecular mechanism requiring both the NUP98 and the NSD1 moieties. METHODS: We used affinity purification coupled to label-free mass spectrometry (AP-MS) to examine the effect of NUP98-NSD1 structural domain deletions on nuclear interactome binding. We determined their functional relevance in NUP98-NSD1 immortalized primary murine hematopoietic stem and progenitor cells (HSPC) by inducible knockdown, pharmacological targeting, methylcellulose assay, RT-qPCR analysis and/or proximity ligation assays (PLA). Fluorescence recovery after photobleaching and b-isoxazole assay were performed to examine the phase transition capacity of NUP98-NSD1 in vitro and in vivo. RESULTS: We show that NUP98-NSD1 core interactome binding is largely dependent on the NUP98 phenylalanine-glycine (FG) repeat domains which mediate formation of liquid-like phase-separated NUP98-NSD1 nuclear condensates. We identified condensate constituents including imitation switch (ISWI) family member SMARCA5 and BPTF (bromodomain PHD finger transcription factor), both members of the nucleosome remodeling factor complex (NURF). We validated the interaction with SMARCA5 in NUP98-NSD1+ patient cells and demonstrated its functional role in NUP98-NSD1/FLT3-ITD immortalized primary murine hematopoietic cells by genetic and pharmacological targeting. Notably, SMARCA5 inhibition did not affect NUP98-NSD1 condensates suggesting that functional activity rather than condensate formation per se is crucial to maintain the transformed phenotype. CONCLUSIONS: NUP98-NSD1 interacts and colocalizes on the genome with SMARCA5 which is an essential mediator of the NUP98-NSD1 transformation in hematopoietic cells. Formation of NUP98-NSD1 phase-separated nuclear condensates is not sufficient for the maintenance of transformed phenotype, which suggests that selective targeting of condensate constituents might represent a new therapeutic strategy for NUP98-NSD1 driven AML.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Hematopoese/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteômica/métodos , Animais , Humanos , Camundongos
19.
J Biol Chem ; 285(45): 34518-27, 2010 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-20801874

RESUMO

Reversible proline-directed phosphorylation at Ser/Thr-Pro motifs has an essential role in myogenesis, a multistep process strictly regulated by several signaling pathways that impinge on two families of myogenic effectors, the basic helix-loop-helix myogenic transcription factors and the MEF2 (myocyte enhancer factor 2) proteins. The question of how these signals are deciphered by the myogenic effectors remains largely unaddressed. In this study, we show that the peptidyl-prolyl isomerase Pin1, which catalyzes the isomerization of phosphorylated Ser/Thr-Pro peptide bonds to induce conformational changes of its target proteins, acts as an inhibitor of muscle differentiation because its knockdown in myoblasts promotes myotube formation. With the aim of clarifying the mechanism of Pin1 function in skeletal myogenesis, we investigated whether MEF2C, a critical regulator of the myogenic program that is the end point of several signaling pathways, might serve as a/the target for the inhibitory effects of Pin1 on muscle differentiation. We show that Pin1 interacts selectively with phosphorylated MEF2C in skeletal muscle cells, both in vitro and in vivo. The interaction with Pin1 requires two novel critical phospho-Ser/Thr-Pro motifs in MEF2C, Ser(98) and Ser(110), which are phosphorylated in vivo. Overexpression of Pin1 decreases MEF2C stability and activity and its ability to cooperate with MyoD to activate myogenic conversion. Collectively, these findings reveal a novel role for Pin1 as a regulator of muscle terminal differentiation and suggest that Pin1-mediated repression of MEF2C function could contribute to this function.


Assuntos
Proliferação de Células , Desenvolvimento Muscular/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Fatores de Regulação Miogênica/metabolismo , Peptidilprolil Isomerase/metabolismo , Transdução de Sinais/fisiologia , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Humanos , Fatores de Transcrição MEF2 , Camundongos , Proteína MyoD/genética , Proteína MyoD/metabolismo , Fatores de Regulação Miogênica/genética , Peptidilprolil Isomerase de Interação com NIMA , Peptídeos/genética , Peptídeos/metabolismo , Peptidilprolil Isomerase/genética , Fosforilação/fisiologia , Estabilidade Proteica
20.
Mol Cell Proteomics ; 8(10): 2243-55, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19596686

RESUMO

Many cellular processes are regulated by the coordination of several post-translational modifications that allow a very fine modulation of substrates. Recently it has been reported that there is a relationship between sumoylation and ubiquitination. Here we propose that the nucleolus is the key organelle in which SUMO-1 conjugates accumulate in response to proteasome inhibition. We demonstrated that, upon proteasome inhibition, the SUMO-1 nuclear dot localization is redirected to nucleolar structures. To better understand this process we investigated, by quantitative proteomics, the effect of proteasome activity on endogenous nucleolar SUMO-1 targets. 193 potential SUMO-1 substrates were identified, and interestingly in several purified SUMO-1 conjugates ubiquitin chains were found to be present, confirming the coordination of these two modifications. 23 SUMO-1 targets were confirmed by an in vitro sumoylation reaction performed on nuclear substrates. They belong to protein families such as small nuclear ribonucleoproteins, heterogeneous nuclear ribonucleoproteins, ribosomal proteins, histones, RNA-binding proteins, and transcription factor regulators. Among these, histone H1, histone H3, and p160 Myb-binding protein 1A were further characterized as novel SUMO-1 substrates. The analysis of the nature of the SUMO-1 targets identified in this study strongly indicates that sumoylation, acting in coordination with the ubiquitin-proteasome system, regulates the maintenance of nucleolar integrity.


Assuntos
Nucléolo Celular/metabolismo , Inibidores de Proteassoma , Processamento de Proteína Pós-Traducional , Proteômica/métodos , Proteína SUMO-1/metabolismo , Animais , Nucléolo Celular/química , Inibidores de Cisteína Proteinase/metabolismo , Células HeLa , Humanos , Marcação por Isótopo , Leupeptinas/metabolismo , Dados de Sequência Molecular , Proteína SUMO-1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA