Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Glia ; 72(8): 1418-1434, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38591259

RESUMO

Increasing pieces of evidence have suggested that astrocyte function has a strong influence on neuronal activity and plasticity, both in physiological and pathophysiological situations. In epilepsy, astrocytes have been shown to respond to epileptic neuronal seizures; however, whether they can act as a trigger for seizures has not been determined. Here, using the copper implantation method, spontaneous neuronal hyperactivity episodes were reliably induced during the week following implantation. With near 24-h continuous recording for over 1 week of the local field potential with in vivo electrophysiology and astrocyte cytosolic Ca2+ with the fiber photometry method, spontaneous occurrences of seizure episodes were captured. Approximately 1 day after the implantation, isolated aberrant astrocyte Ca2+ events were often observed before they were accompanied by neuronal hyperactivity, suggesting the role of astrocytes in epileptogenesis. Within a single developed episode, astrocyte Ca2+ increase preceded the neuronal hyperactivity by ~20 s, suggesting that actions originating from astrocytes could be the trigger for the occurrence of epileptic seizures. Astrocyte-specific stimulation by channelrhodopsin-2 or deep-brain direct current stimulation was capable of inducing neuronal hyperactivity. Injection of an astrocyte-specific metabolic inhibitor, fluorocitrate, was able to significantly reduce the magnitude of spontaneously occurring neuronal hyperactivity. These results suggest that astrocytes have a role in triggering individual seizures and the reciprocal astrocyte-neuron interactions likely amplify and exacerbate seizures. Therefore, future epilepsy treatment could be targeted at astrocytes to achieve epilepsy control.


Assuntos
Astrócitos , Neurônios , Astrócitos/fisiologia , Astrócitos/metabolismo , Animais , Neurônios/fisiologia , Masculino , Cálcio/metabolismo , Convulsões/fisiopatologia , Epilepsia/fisiopatologia , Epilepsia/patologia , Cobre/metabolismo , Camundongos , Modelos Animais de Doenças , Citratos
2.
Brain ; 146(2): 576-586, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36423658

RESUMO

Plastic change of the neuronal system has traditionally been assumed to be governed primarily by the long-term potentiation/depression mechanisms of synaptic transmission. However, a rather simple shift in the ambient ion, transmitter and metabolite concentrations could have a pivotal role in generating plasticity upon the physiological process of learning and memory. Local brain environment and metabolic changes could also be the cause and consequences of the pathogenesis leading to epilepsy. Governing of the local brain environment is the primal function of astrocytes. The metabolic state of the entire brain is strongly linked to the activity of the lateral hypothalamus. In this study, plastic change of astrocyte reactions in the lateral hypothalamus was examined using epileptogenesis as an extreme form of plasticity. Fluorescent sensors for calcium or pH expressed in astrocytes were examined for up to one week by in vivo fibre photometry in freely moving transgenic male mice. Optical fluctuations on a timescale of seconds is difficult to assess because these signals are heavily influenced by local brain blood volume changes and pH changes. Using a newly devised method for the analysis of the optical signals, changes in Ca2+ and pH in astrocytes and changes in local brain blood volume associated with hippocampal-stimulated epileptic seizures were extracted. Following a transient alkaline shift in the astrocyte triggered by neuronal hyperactivity, a prominent acidic shift appeared in response to intensified seizure which developed with kindling. The acidic shift was unexpected as transient increase in local brain blood volume was observed in response to intensified seizures, which should lead to efficient extrusion of the acidic CO2. The acidic shift could be a result of glutamate transporter activity and/or due to the increased metabolic load of astrocytes leading to increased CO2 and lactate production. This acidic shift may trigger additional gliotransmitter release from astrocytes leading to the exacerbation of epilepsy. As all cellular enzymic reactions are influenced by Ca2+ and pH, changes in these parameters could also have an impact on the neuronal circuit activity. Thus, controlling the astrocyte pH and/or Ca2+ could be a new therapeutic target for treatment of epilepsy or prevention of undesired plasticity associated with epileptogenesis.


Assuntos
Cálcio , Epilepsia , Camundongos , Animais , Masculino , Cálcio/metabolismo , Dióxido de Carbono/metabolismo , Encéfalo/patologia , Convulsões/etiologia , Epilepsia/patologia , Astrócitos/metabolismo
3.
Brain ; 146(6): 2431-2442, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36866512

RESUMO

It is usually assumed that individuals rest during sleep. However, coordinated neural activity that presumably requires high energy consumption is increased during REM sleep. Here, using freely moving male transgenic mice, the local brain environment and astrocyte activity during REM sleep were examined using the fibre photometry method with an optical fibre inserted deep into the lateral hypothalamus, a region that is linked with controlling sleep and metabolic state of the entire brain. Optical fluctuations of endogenous autofluorescence of the brain parenchyma or fluorescence of sensors for Ca2+ or pH expressed in astrocytes were examined. Using a newly devised method for analysis, changes in cytosolic Ca2+ and pH in astrocytes and changes in the local brain blood volume (BBV) were extracted. On REM sleep, astrocytic Ca2+ decreases, pH decreases (acidification) and BBV increases. Acidification was unexpected, as an increase in BBV would result in efficient carbon dioxide and/or lactate removal, which leads to alkalinization of the local brain environment. Acidification could be a result of increased glutamate transporter activity due to enhanced neuronal activity and/or aerobic metabolism in astrocytes. Notably, optical signal changes preceded the onset of the electrophysiological property signature of REM sleep by ∼20-30 s. This suggests that changes in the local brain environment have strong control over the state of neuronal cell activity. With repeated stimulation of the hippocampus, seizure response gradually develops through kindling. After a fully kindled state was obtained with multiple days of stimuli, the optical properties of REM sleep at the lateral hypothalamus were examined again. Although a negative deflection of the detected optical signal was observed during REM sleep after kindling, the estimated component changed. The decrease in Ca2+ and increase in BBV were minimal, and a large decrease in pH (acidification) emerged. This acidic shift may trigger an additional gliotransmitter release from astrocytes, which could lead to a state of hyperexcitable brain. As the properties of REM sleep change with the development of epilepsy, REM sleep analysis may serve as a biomarker of epileptogenesis severity. REM sleep analysis may also predict whether a specific REM sleep episode triggers post-sleep seizures.


Assuntos
Epilepsia , Sono REM , Animais , Camundongos , Masculino , Sono REM/fisiologia , Cálcio , Sono/fisiologia , Convulsões
4.
Glia ; 71(10): 2401-2417, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37364894

RESUMO

Actions from glial cells could affect the readiness and efficacy of learning and memory. Using a mouse cerebellar-dependent horizontal optokinetic response motor learning paradigm, short-term memory (STM) formation during the online training period and long-term memory (LTM) formation during the offline rest period were studied. A large variability of online and offline learning efficacies was found. The early bloomers with booming STM often had a suppressed LTM formation and late bloomers with no apparent acute training effect often exhibited boosted offline learning performance. Anion channels containing LRRC8A are known to release glutamate. Conditional knockout of LRRC8A specifically in astrocytes including cerebellar Bergmann glia resulted in a complete loss of STM formation while the LTM formation during the rest period remained. Optogenetic manipulation of glial activity by channelrhodopsin-2 or archaerhodopsin-T (ArchT) during the online training resulted in enhancement or suppression of STM formation, respectively. STM and LTM are likely to be triggered simultaneously during online training, but LTM is expressed later during the offline period. STM appears to be volatile and the achievement during the online training is not handed over to LTM. In addition, we found that glial ArchT photoactivation during the rest period resulted in the augmentation of LTM formation. These data suggest that STM formation and LTM formation are parallel separate processes. Strategies to weigh more on the STM or the LTM could depend on the actions of the glial cells.


Assuntos
Aprendizagem , Memória de Curto Prazo , Memória de Curto Prazo/fisiologia , Aprendizagem/fisiologia , Memória de Longo Prazo , Neuroglia
5.
Int J Mol Sci ; 24(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36835209

RESUMO

N-acetylcysteine (NAC) is an antioxidant that prevents tumor necrosis factor (TNF)-α-induced cell death, but it also acts as a pro-oxidant, promoting reactive oxygen species independent apoptosis. Although there is plausible preclinical evidence for the use of NAC in the treatment of psychiatric disorders, deleterious side effects are still of concern. Microglia, key innate immune cells in the brain, play an important role in inflammation in psychiatric disorders. This study aimed to investigate the beneficial and deleterious effects of NAC on microglia and stress-induced behavior abnormalities in mice, and its association with microglial TNF-α and nitric oxide (NO) production. The microglial cell line MG6 was stimulated by Escherichia coli lipopolysaccharide (LPS) using NAC at varying concentrations for 24 h. NAC inhibited LPS-induced TNF-α and NO synthesis, whereas high concentrations (≥30 mM) caused MG6 mortality. Intraperitoneal injections of NAC did not ameliorate stress-induced behavioral abnormalities in mice, but high-doses induced microglial mortality. Furthermore, NAC-induced mortality was alleviated in microglial TNF-α-deficient mice and human primary M2 microglia. Our findings provide ample evidence for the use of NAC as a modulating agent of inflammation in the brain. The risk of side effects from NAC on TNF-α remains unclear and merits further mechanistic investigations.


Assuntos
Acetilcisteína , Inflamação , Microglia , Fator de Necrose Tumoral alfa , Animais , Humanos , Camundongos , Acetilcisteína/farmacologia , Inflamação/metabolismo , Inflamação/patologia , Lipopolissacarídeos/farmacologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
6.
J Neurosci ; 41(25): 5440-5452, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34006590

RESUMO

Neural activity is diverse, and varies depending on brain regions and sleep/wakefulness states. However, whether astrocyte activity differs between sleep/wakefulness states, and whether there are differences in astrocyte activity among brain regions remain poorly understood. Therefore, in this study, we recorded astrocyte intracellular calcium (Ca2+) concentrations of mice during sleep/wakefulness states in the cortex, hippocampus, hypothalamus, cerebellum, and pons using fiber photometry. For this purpose, male transgenic mice expressing the genetically encoded ratiometric Ca2+ sensor YCnano50 specifically in their astrocytes were used. We demonstrated that Ca2+ levels in astrocytes substantially decrease during rapid eye movement (REM) sleep, and increase after the onset of wakefulness. In contrast, differences in Ca2+ levels during non-REM (NREM) sleep were observed among the different brain regions, and no significant decrease was observed in the hypothalamus and pons. Further analyses focusing on the transition between sleep/wakefulness states and correlation analysis with the duration of REM sleep showed that Ca2+ dynamics differs among brain regions, suggesting the existence of several clusters, i.e., the first comprising the cortex and hippocampus, the second comprising the hypothalamus and pons, and the third comprising the cerebellum. Our study thus demonstrated that astrocyte Ca2+ levels change substantially according to sleep/wakefulness states. These changes were consistent in general unlike neural activity. However, we also clarified that Ca2+ dynamics varies depending on the brain region, implying that astrocytes may play various physiological roles in sleep.SIGNIFICANCE STATEMENT Sleep is an instinctive behavior of many organisms. In the previous five decades, the mechanism of the neural circuits controlling sleep/wakefulness states and the neural activities associated with sleep/wakefulness states in various brain regions have been elucidated. However, whether astrocytes, which are a type of glial cell, change their activity during different sleep/wakefulness states was poorly understood. Here, we demonstrated that dynamic changes in astrocyte Ca2+ concentrations occur in the cortex, hippocampus, hypothalamus, cerebellum, and pons of mice during natural sleep. Further analyses demonstrated that Ca2+ dynamics slightly differ among different brain regions, implying that the physiological roles of astrocytes in sleep/wakefulness might vary depending on the brain region.


Assuntos
Astrócitos/metabolismo , Encéfalo/metabolismo , Cálcio/metabolismo , Sono/fisiologia , Vigília/fisiologia , Animais , Masculino , Camundongos , Camundongos Transgênicos
7.
J Neurosci ; 41(10): 2106-2118, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33478985

RESUMO

Seizures invite seizures. At the initial stage of epilepsy, seizures intensify with each episode; however, the mechanisms underlying this exacerbation remain to be solved. Astrocytes have a strong control over neuronal excitability and the mode of information processing. This control is accomplished by adjusting the levels of various ions in the extracellular space. The network of astrocytes connected via gap junctions allows a wider or more confined distribution of these ions depending on the open probability of the gap junctions. K+ clearance relies on the K+ uptake by astrocytes and the subsequent diffusion of K+ through the astrocyte network. When astrocytes become uncoupled, K+ clearance becomes hindered. Accumulation of extracellular K+ leads to hyperexcitability of neurons. Here, using acute hippocampal slices from mice, we uncovered that brief periods of epileptiform activity result in gap junction uncoupling. In slices that experienced short-term epileptiform activity, extracellular K+ transients in response to glutamate became prolonged. Na+ imaging with a fluorescent indicator indicated that intercellular diffusion of small cations in the astrocytic syncytium via gap junctions became rapidly restricted after epileptiform activity. Using a transgenic mouse with astrocyte-specific expression of a pH sensor (Lck-E2GFP), we confirmed that astrocytes react to epileptiform activity with intracellular alkalization. Application of Na+/HCO3- cotransporter blocker led to the suppression of intracellular alkalization of astrocytes and to the prevention of astrocyte uncoupling and hyperactivity intensification both in vitro and in vivo Therefore, the inhibition of astrocyte alkalization could become a promising therapeutic strategy for countering epilepsy development.SIGNIFICANCE STATEMENT We aimed to understand the mechanisms underlying the plastic change of forebrain circuits associated with the intensification of epilepsy. Here, we demonstrate that first-time exposure to only brief periods of epileptiform activity results in acute disturbance of the intercellular astrocyte network formed by gap junctions in hippocampal tissue slices from mice. Moreover, rapid clearance of K+ from the extracellular space was impaired. Epileptiform activity activated inward Na+/HCO3- cotransport in astrocytes by cell depolarization, resulting in their alkalization. Our data suggest that alkaline pH shifts in astrocytes lead to gap junction uncoupling, hampering K+ clearance, and thereby to exacerbation of epilepsy. Pharmacological intervention could become a promising new strategy to dampen neuronal hyperexcitability and epileptogenesis.


Assuntos
Astrócitos/metabolismo , Epilepsia/metabolismo , Epilepsia/fisiopatologia , Junções Comunicantes/metabolismo , Animais , Hipocampo , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Potássio/metabolismo
8.
Neurobiol Dis ; 163: 105602, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34954320

RESUMO

Unlike an electrical circuit, the hardware of the brain is susceptible to change. Repeated electrical brain stimulation mimics epileptogenesis. After such "kindling" process, a moderate stimulus would become sufficient in triggering a severe seizure. Here, we report that optogenetic neuronal stimulation can also convert the rat brain to a hyperexcitable state. However, continued stimulation once again converted the brain to a state that was strongly resistant to seizure induction. Histochemical examinations showed that moderate astrocyte activation was coincident with resilience acquisition. Administration of an adenosine A1 receptor antagonist instantly reverted the brain back to a hyperexcitable state, suggesting that hyperexcitability was suppressed by adenosine. Furthermore, an increase in basal adenosine was confirmed using in vivo microdialysis. Daily neuron-to-astrocyte signaling likely prompted a homeostatic increase in the endogenous actions of adenosine. Our data suggest that a certain stimulation paradigm could convert the brain circuit resilient to epilepsy without exogenous drug administration.


Assuntos
Encéfalo/fisiopatologia , Excitação Neurológica/fisiologia , Optogenética , Convulsões/fisiopatologia , Adenosina/metabolismo , Animais , Encéfalo/metabolismo , Eletroencefalografia , Ratos , Ratos Transgênicos , Ratos Wistar , Convulsões/metabolismo
9.
J Physiol ; 599(7): 2085-2102, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33527421

RESUMO

KEY POINTS: Recent studies have repeatedly demonstrated the cross-talk of heterogeneous signals between neuronal and glial circuits. Here, we investigated the mechanism and the influence of physiological interactions between neurons and glia in the cerebellum. We found that the cerebellar astrocytes, Bergmann glial cells, react to exogenously applied glutamate, glutamate transporter substrate (d-aspartate) and synaptically released glutamate. In response, the Bergmann glial cells release glutamate through volume-regulated anion channels. It is generally assumed that all of the postsynaptic current is mediated by presynaptically released glutamate. However, we showed that a part of the postsynaptic current is mediated by glutamate released from Bergmann glial cells. Optogenetic manipulation of Bergmann glial state with archaerhodpsin-T or channelrhodopsin-2 reduced or augmented the amount of glial glutamate release, respectively. Our data indicate that glutamate-induced glutamate release in Bergmann glia serves as an effective amplifier of excitatory information processing in the brain. ABSTRACT: Transmitter released from presynaptic neurons has been considered to be the sole generator of postsynaptic excitatory signals. However, astrocytes of the glial cell population have also been shown to release transmitter that can react on postsynaptic receptors. Therefore, we investigated whether astrocytes take part in generation of at least a part of the synaptic current. In this study, mice cerebellar acute slices were prepared and whole cell patch clamp recordings were performed. We found that Bergmann glial cells (BGs), a type of astrocyte in the cerebellum, reacts to a glutamate transporter substrate, d-aspartate (d-Asp) and an anion conductance is generated and glutamate is released from the BGs. Glutamate release was attenuated or augmented by modulating the state of BGs with activation of light-sensitive proteins, archaerhodopsin-T (ArchT) or channelrhodopsin-2 (ChR2) expressed on BGs, respectively. Glutamate release appears to be mediated by anion channels that can be blocked by a volume-regulated anion channel-specific blocker. Synaptic response to a train of parallel fibre stimulation was recorded from Purkinje cells. The latter part of the response was also attenuated or augmented by glial modulation with ArchT or ChR2, respectively. Thus, BGs effectively function as an excitatory signal amplifier, and a part of the 'synaptic' current is actually mediated by glutamate released from BGs. These data show that the state of BGs have potential for having direct and fundamental consequences on the functioning of information processing in the brain.


Assuntos
Neuroglia , Células de Purkinje , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Animais , Cerebelo/metabolismo , Ácido Glutâmico , Camundongos , Neuroglia/metabolismo , Células de Purkinje/metabolismo
10.
J Infect Chemother ; 26(7): 736-740, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32201195

RESUMO

BACKGROUND: Febrile neonates and young infants presenting with seizure require immediate evaluation and treatment. Herein we experienced two young infants with parechovirus-A3 (PeV-A3) encephalitis, initially presented with focal seizure suspecting herpes simplex virus (HSV) encephalitis. CASES: We have experienced 2 infantile cases, initially presented with focal seizure. At presentation, HSV encephalitis was strongly suspected and empiric acyclovir therapy was started; however, serum and/or cerebrospinal fluid (CSF) PCR for HSV were negative. Instead, serum and/or CSF PCR for parechovirus-A was positive. PeV-A3 infection was confirmed by genetic sequence analyses. Both cases required multiple anticonvulsant therapy and intensive care for intractable seizure. Diffusion-weighted imaging of brain magnetic resonance imaging (MRI) showed distinct findings; high-intensity lesions in the gray matter of parietal and occipital lobes in Case 1, and bilateral decreased diffusion of the deep white matter and corpus callosum in Case 2. We have followed two cases more than four years; Case 1 developed epilepsy, has been on an anticonvulsant to control her seizure. Case 2 has significant neurodevelopmental delay, unable to stand or communicate with language. CONCLUSIONS: PeV-A3 encephalitis needs to be in differential diagnosis when neonates and young infants present with focal seizure, mimicking HSV encephalitis. Special attention may be necessary in patients with PeV-A3 encephalitis given it could present with intractable seizure with high morbidity in a long-term.


Assuntos
Encefalite por Herpes Simples/diagnóstico , Encefalite Viral/diagnóstico , Parechovirus/isolamento & purificação , Infecções por Picornaviridae/diagnóstico , Convulsões/virologia , Encéfalo/diagnóstico por imagem , DNA Viral/isolamento & purificação , Diagnóstico Diferencial , Imagem de Difusão por Ressonância Magnética , Encefalite por Herpes Simples/virologia , Encefalite Viral/líquido cefalorraquidiano , Encefalite Viral/complicações , Encefalite Viral/virologia , Epilepsia/tratamento farmacológico , Epilepsia/virologia , Feminino , Humanos , Lactente , Recém-Nascido Prematuro , Masculino , Transtornos do Neurodesenvolvimento/virologia , Parechovirus/genética , Infecções por Picornaviridae/líquido cefalorraquidiano , Infecções por Picornaviridae/complicações , Infecções por Picornaviridae/virologia , Reação em Cadeia da Polimerase , RNA Viral/sangue , RNA Viral/líquido cefalorraquidiano , RNA Viral/isolamento & purificação , Convulsões/sangue , Convulsões/líquido cefalorraquidiano , Convulsões/diagnóstico , Simplexvirus/genética , Simplexvirus/isolamento & purificação
11.
Glia ; 66(9): 2013-2023, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29845643

RESUMO

Functional magnetic resonance imaging (fMRI) based on the blood oxygenation level-dependent (BOLD) signal has been used to infer sites of neuronal activation in the brain. A recent study demonstrated, however, unexpected BOLD signal generation without neuronal excitation, which led us to hypothesize the presence of another cellular source for BOLD signal generation. Collective assessment of optogenetic activation of astrocytes or neurons, fMRI in awake mice, electrophysiological measurements, and histochemical detection of neuronal activation, coherently suggested astrocytes as another cellular source. Unexpectedly, astrocyte-evoked BOLD signal accompanied oxygen consumption without modulation of neuronal activity. Imaging mass spectrometry of brain sections identified synthesis of acetyl-carnitine via oxidative glucose metabolism at the site of astrocyte-, but not neuron-evoked BOLD signal. Our data provide causal evidence that astrocytic activation alone is able to evoke BOLD signal response, which may lead to reconsideration of current interpretation of BOLD signal as a marker of neuronal activation.


Assuntos
Astrócitos/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Imageamento por Ressonância Magnética , Neurônios/fisiologia , Oxigênio/sangue , Animais , Encéfalo/irrigação sanguínea , Glucose/metabolismo , Camundongos Transgênicos , Microeletrodos , Optogenética , Consumo de Oxigênio , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA Mensageiro/metabolismo , Vigília
12.
Proc Natl Acad Sci U S A ; 112(32): E4465-74, 2015 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-26224839

RESUMO

Neurodegeneration correlates with Alzheimer's disease (AD) symptoms, but the molecular identities of pathogenic amyloid ß-protein (Aß) oligomers and their targets, leading to neurodegeneration, remain unclear. Amylospheroids (ASPD) are AD patient-derived 10- to 15-nm spherical Aß oligomers that cause selective degeneration of mature neurons. Here, we show that the ASPD target is neuron-specific Na(+)/K(+)-ATPase α3 subunit (NAKα3). ASPD-binding to NAKα3 impaired NAKα3-specific activity, activated N-type voltage-gated calcium channels, and caused mitochondrial calcium dyshomeostasis, tau abnormalities, and neurodegeneration. NMR and molecular modeling studies suggested that spherical ASPD contain N-terminal-Aß-derived "thorns" responsible for target binding, which are distinct from low molecular-weight oligomers and dodecamers. The fourth extracellular loop (Ex4) region of NAKα3 encompassing Asn(879) and Trp(880) is essential for ASPD-NAKα3 interaction, because tetrapeptides mimicking this Ex4 region bound to the ASPD surface and blocked ASPD neurotoxicity. Our findings open up new possibilities for knowledge-based design of peptidomimetics that inhibit neurodegeneration in AD by blocking aberrant ASPD-NAKα3 interaction.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/toxicidade , ATPase Trocadora de Sódio-Potássio/metabolismo , Doença de Alzheimer/patologia , Sequência de Aminoácidos , Animais , Cálcio/metabolismo , Morte Celular/efeitos dos fármacos , Células Cultivadas , Células HEK293 , Homeostase/efeitos dos fármacos , Humanos , Espectrometria de Massas , Modelos Biológicos , Modelos Moleculares , Imagem Molecular , Dados de Sequência Molecular , Peso Molecular , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Peptídeos/metabolismo , Agregados Proteicos , Ligação Proteica/efeitos dos fármacos , Ratos , Transdução de Sinais/efeitos dos fármacos , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/química
13.
Pharm Res ; 33(9): 2259-68, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27301372

RESUMO

PURPOSE: The aim of this study was to enhance the dissolution and oral absorption of poorly water-soluble active pharmaceutical ingredients (APIs) using nanoparticle suspensions prepared with a PureNano™ continuous crystallizer (PCC). METHOD: Nanoparticle suspensions were prepared with a PCC, which is based on microfluidics reaction technology and solvent-antisolvent crystallization. Phenytoin, bezafibrate, flurbiprofen, and miconazole were used as model APIs. These APIs were dissolved in ethanol and precipitated by the addition of water and polyvinyl alcohol. Batch crystallization (BC) using a beaker was also performed to prepare the suspensions. Both PCC and BC formulations were freeze-dried before being characterized in vitro and in vivo. RESULTS: The particle sizes of the nanoparticle suspensions prepared with the PCC were smaller than those prepared by BC. The dissolution rate of each API in vitro significantly increased after crystallization. Reducing the particle size of either the BC or PCC formulation led to increased API flux across Caco-2 cell monolayers. PCC preparations showed higher plasma concentrations after oral administration, demonstrating the advantages of a fast dissolution rate and increased interaction with the gastrointestinal tract owing to the smaller particle size. CONCLUSIONS: PCC can continuously produce nanoparticle APIs and is an efficient approach for improving their oral bioavailability.


Assuntos
Nanopartículas/química , Preparações Farmacêuticas/química , Preparações Farmacêuticas/metabolismo , Água/química , Administração Oral , Animais , Disponibilidade Biológica , Células CACO-2 , Linhagem Celular Tumoral , Química Farmacêutica/métodos , Cristalização/métodos , Portadores de Fármacos/química , Liofilização , Humanos , Masculino , Nanopartículas/metabolismo , Tamanho da Partícula , Álcool de Polivinil/química , Ratos , Ratos Wistar , Solubilidade , Solventes/química , Suspensões/química , Suspensões/metabolismo
14.
Proc Natl Acad Sci U S A ; 109(50): 20720-5, 2012 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-23185019

RESUMO

Dynamic activity of glia has repeatedly been demonstrated, but if such activity is independent from neuronal activity, glia would not have any role in the information processing in the brain or in the generation of animal behavior. Evidence for neurons communicating with glia is solid, but the signaling pathway leading back from glial-to-neuronal activity was often difficult to study. Here, we introduced a transgenic mouse line in which channelrhodopsin-2, a light-gated cation channel, was expressed in astrocytes. Selective photostimulation of these astrocytes in vivo triggered neuronal activation. Using slice preparations, we show that glial photostimulation leads to release of glutamate, which was sufficient to activate AMPA receptors on Purkinje cells and to induce long-term depression of parallel fiber-to-Purkinje cell synapses through activation of metabotropic glutamate receptors. In contrast to neuronal synaptic vesicular release, glial activation likely causes preferential activation of extrasynaptic receptors that appose glial membrane. Finally, we show that neuronal activation by glial stimulation can lead to perturbation of cerebellar modulated motor behavior. These findings demonstrate that glia can modulate the tone of neuronal activity and behavior. This animal model is expected to be a potentially powerful approach to study the role of glia in brain function.


Assuntos
Neuroglia/fisiologia , Animais , Astrócitos/fisiologia , Comportamento Animal/fisiologia , Channelrhodopsins , Ácido Glutâmico/metabolismo , Depressão Sináptica de Longo Prazo/fisiologia , Camundongos , Camundongos Transgênicos , Vias Neurais/fisiologia , Plasticidade Neuronal/fisiologia , Optogenética , Estimulação Luminosa , Células de Purkinje/fisiologia , Receptores de AMPA/fisiologia , Transmissão Sináptica/fisiologia
15.
J Neurosci ; 33(8): 3668-78, 2013 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-23426693

RESUMO

P/Q-type voltage-dependent calcium channels play key roles in transmitter release, integration of dendritic signals, generation of dendritic spikes, and gene expression. High intracellular calcium concentration transient produced by these channels is restricted to tens to hundreds of nanometers from the channels. Therefore, precise localization of these channels along the plasma membrane was long sought to decipher how each neuronal cell function is controlled. Here, we analyzed the distribution of Ca(v)2.1 subunit of the P/Q-type channel using highly sensitive SDS-digested freeze-fracture replica labeling in the rat cerebellar Purkinje cells. The labeling efficiency was such that the number of immunogold particles in each parallel fiber active zone was comparable to that of functional channels calculated from previous reports. Two distinct patterns of Ca(v)2.1 distribution, scattered and clustered, were found in Purkinje cells. The scattered Ca(v)2.1 had a somatodendritic gradient with the density of immunogold particles increasing 2.5-fold from soma to distal dendrites. The other population with 74-fold higher density than the scattered particles was found within clusters of intramembrane particles on the P-face of soma and primary dendrites. Both populations of Ca(v)2.1 were found as early as P3 and increased in the second postnatal week to a mature level. Using double immunogold labeling, we found that virtually all of the Ca(v)2.1 clusters were colocalized with two types of calcium-activated potassium channels, BK and SK2, with the nearest neighbor distance of ∼40 nm. Calcium nanodomain created by the opening of Ca(v)2.1 channels likely activates the two channels that limit the extent of depolarization.


Assuntos
Canais de Cálcio Tipo N/metabolismo , Dendritos/metabolismo , Células de Purkinje/química , Animais , Animais Recém-Nascidos , Canais de Cálcio Tipo N/ultraestrutura , Citoplasma/química , Citoplasma/ultraestrutura , Dendritos/ultraestrutura , Técnica de Fratura por Congelamento/métodos , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/ultraestrutura , Camundongos , Camundongos Knockout , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/ultraestrutura , Células de Purkinje/ultraestrutura , Ratos , Ratos Wistar , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/ultraestrutura
16.
Nihon Rinsho ; 72(12): 2243-9, 2014 Dec.
Artigo em Japonês | MEDLINE | ID: mdl-25518365

RESUMO

Astrocytes respond to neuronal activity. However, whether astrocytic activity has any significance in brain function is unknown. Signaling pathway leading from astrocytes to neurons would be required for astrocytes to participate in neuronal functions and, here, we investigated the presence of such pathway. Optogenetics was used to manipulate astrocytic activity. A light-sensitive protein, channelrhodopsin-2 (ChR2), was selectively expressed in astrocytes. Photostimulation of these astrocytes induced glutamate release which modulated neuronal activity and animal behavior. Such glutamate release was triggered by intracellular acidification produced by ChR2 photoactivation. Astrocytic acidification occurs upon brain ischemia, and we found that another optogenetic tool, archaerhodopsin (ArchT), could counter the acidification and suppress astrocytic glutamate release. Controlling of astrocytic pH may become a therapeutic strategy upon ischemia.


Assuntos
Astrócitos/metabolismo , Optogenética , Animais , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Ácido Glutâmico/metabolismo , Humanos , Terapia de Alvo Molecular
17.
Elife ; 132024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629828

RESUMO

The presence of global synchronization of vasomotion induced by oscillating visual stimuli was identified in the mouse brain. Endogenous autofluorescence was used and the vessel 'shadow' was quantified to evaluate the magnitude of the frequency-locked vasomotion. This method allows vasomotion to be easily quantified in non-transgenic wild-type mice using either the wide-field macro-zoom microscopy or the deep-brain fiber photometry methods. Vertical stripes horizontally oscillating at a low temporal frequency (0.25 Hz) were presented to the awake mouse, and oscillatory vasomotion locked to the temporal frequency of the visual stimulation was induced not only in the primary visual cortex but across a wide surface area of the cortex and the cerebellum. The visually induced vasomotion adapted to a wide range of stimulation parameters. Repeated trials of the visual stimulus presentations resulted in the plastic entrainment of vasomotion. Horizontally oscillating visual stimulus is known to induce horizontal optokinetic response (HOKR). The amplitude of the eye movement is known to increase with repeated training sessions, and the flocculus region of the cerebellum is known to be essential for this learning to occur. Here, we show a strong correlation between the average HOKR performance gain and the vasomotion entrainment magnitude in the cerebellar flocculus. Therefore, the plasticity of vasomotion and neuronal circuits appeared to occur in parallel. Efficient energy delivery by the entrained vasomotion may contribute to meeting the energy demand for increased coordinated neuronal activity and the subsequent neuronal circuit reorganization.


Assuntos
Encéfalo , Cerebelo , Camundongos , Animais , Cerebelo/fisiologia , Nistagmo Optocinético , Neurônios , Aprendizagem , Estimulação Luminosa/métodos
18.
Neurosci Res ; 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38311032

RESUMO

The potential role of astrocytes in lateral habenula (LHb) in modulating anxiety was explored in this study. The habenula are a pair of small nuclei located above the thalamus, known for their involvement in punishment avoidance and anxiety. Herein, we observed an increase in theta-band oscillations of local field potentials (LFPs) in the LHb when mice were exposed to anxiety-inducing environments. Electrical stimulation of LHb at theta-band frequency promoted anxiety-like behavior. Calcium (Ca2+) levels and pH in the cytosol of astrocytes and local brain blood volume changes were studied in mice expressing either a Ca2+ or a pH sensor protein specifically in astrocytes and mScarlet fluorescent protein in the blood plasma using fiber photometry. An acidification response to anxiety was observed. Photoactivation of archaerhopsin-T (ArchT), an optogenetic tool that acts as an outward proton pump, results in intracellular alkalinization. Photostimulation of LHb in astrocyte-specific ArchT-expressing mice resulted in dissipation of theta-band LFP oscillation in an anxiogenic environment and suppression of anxiety-like behavior. These findings provide evidence that LHb astrocytes modulate anxiety and may offer a new target for treatment of anxiety disorders.

19.
Pediatr Infect Dis J ; 43(7): 708-710, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38451987

RESUMO

Human rhinovirus (HRV) has been sporadically detected in patients with acute flaccid myelitis (AFM). We report a case of AFM in a 2-year-old boy with severe neurologic sequelae, whose nasopharyngeal and stool samples tested positive for HRV-A19. Clinical information related to AFM with HRV is limited. Further study of the association of AFM with HRV is warranted.


Assuntos
Viroses do Sistema Nervoso Central , Mielite , Doenças Neuromusculares , Infecções por Picornaviridae , Rhinovirus , Humanos , Masculino , Mielite/virologia , Mielite/diagnóstico , Pré-Escolar , Infecções por Picornaviridae/diagnóstico , Infecções por Picornaviridae/virologia , Doenças Neuromusculares/virologia , Doenças Neuromusculares/diagnóstico , Rhinovirus/isolamento & purificação , Rhinovirus/genética , Viroses do Sistema Nervoso Central/virologia , Viroses do Sistema Nervoso Central/diagnóstico , Fezes/virologia , Nasofaringe/virologia
20.
J Neurosci ; 32(7): 2357-76, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22396411

RESUMO

Visual information must be relayed through the lateral geniculate nucleus before it reaches the visual cortex. However, not all spikes created in the retina lead to postsynaptic spikes and properties of the retinogeniculate synapse contribute to this filtering. To understand the mechanisms underlying this filtering process, we conducted electrophysiology to assess the properties of signal transmission in the Long-Evans rat. We also performed SDS-digested freeze-fracture replica labeling to quantify the receptor and transporter distribution, as well as EM reconstruction to describe the 3D structure. To analyze the impact of transmitter diffusion on the activity of the receptors, simulations were integrated. We identified that a large contributor to the filtering is the marked paired-pulse depression at this synapse, which was intensified by the morphological characteristics of the contacts. The broad presynaptic and postsynaptic contact area restricts transmitter diffusion two dimensionally. Additionally, the presence of multiple closely arranged release sites invites intersynaptic spillover, which causes desensitization of AMPA receptors. The presence of AMPA receptors that slowly recover from desensitization along with the high presynaptic release probability and multivesicular release at each synapse also contribute to the depression. These features contrast with many other synapses where spatiotemporal spread of transmitter is limited by rapid transmitter clearance allowing synapses to operate more independently. We propose that the micrometer-order structure can ultimately affect the visual information processing.


Assuntos
Potenciais Pós-Sinápticos Excitadores/fisiologia , Transdução de Sinais/fisiologia , Sinapses/fisiologia , Animais , Animais Recém-Nascidos , Eletrofisiologia/instrumentação , Eletrofisiologia/métodos , Corpos Geniculados/fisiologia , Camundongos , Camundongos Knockout , Vias Neurais/fisiologia , Ratos , Ratos Long-Evans , Receptores de AMPA/fisiologia , Sinapses/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA