Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Cell ; 185(21): 3992-4007.e16, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36198317

RESUMO

After the global spread of the SARS-CoV-2 Omicron BA.2, some BA.2 subvariants, including BA.2.9.1, BA.2.11, BA.2.12.1, BA.4, and BA.5, emerged in multiple countries. Our statistical analysis showed that the effective reproduction numbers of these BA.2 subvariants are greater than that of the original BA.2. Neutralization experiments revealed that the immunity induced by BA.1/2 infections is less effective against BA.4/5. Cell culture experiments showed that BA.2.12.1 and BA.4/5 replicate more efficiently in human alveolar epithelial cells than BA.2, and particularly, BA.4/5 is more fusogenic than BA.2. We further provided the structure of the BA.4/5 spike receptor-binding domain that binds to human ACE2 and considered how the substitutions in the BA.4/5 spike play roles in ACE2 binding and immune evasion. Moreover, experiments using hamsters suggested that BA.4/5 is more pathogenic than BA.2. Our multiscale investigations suggest that the risk of BA.2 subvariants, particularly BA.4/5, to global health is greater than that of original BA.2.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Anticorpos Antivirais , Humanos , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
2.
Cell ; 185(12): 2103-2115.e19, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35568035

RESUMO

Soon after the emergence and global spread of the SARS-CoV-2 Omicron lineage BA.1, another Omicron lineage, BA.2, began outcompeting BA.1. The results of statistical analysis showed that the effective reproduction number of BA.2 is 1.4-fold higher than that of BA.1. Neutralization experiments revealed that immunity induced by COVID vaccines widely administered to human populations is not effective against BA.2, similar to BA.1, and that the antigenicity of BA.2 is notably different from that of BA.1. Cell culture experiments showed that the BA.2 spike confers higher replication efficacy in human nasal epithelial cells and is more efficient in mediating syncytia formation than the BA.1 spike. Furthermore, infection experiments using hamsters indicated that the BA.2 spike-bearing virus is more pathogenic than the BA.1 spike-bearing virus. Altogether, the results of our multiscale investigations suggest that the risk of BA.2 to global health is potentially higher than that of BA.1.


Assuntos
COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Animais , COVID-19/virologia , Cricetinae , Células Epiteliais , Humanos , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/genética
3.
Nature ; 603(7902): 700-705, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35104835

RESUMO

The emergence of the Omicron variant of SARS-CoV-2 is an urgent global health concern1. In this study, our statistical modelling suggests that Omicron has spread more rapidly than the Delta variant in several countries including South Africa. Cell culture experiments showed Omicron to be less fusogenic than Delta and than an ancestral strain of SARS-CoV-2. Although the spike (S) protein of Delta is efficiently cleaved into two subunits, which facilitates cell-cell fusion2,3, the Omicron S protein was less efficiently cleaved compared to the S proteins of Delta and ancestral SARS-CoV-2. Furthermore, in a hamster model, Omicron showed decreased lung infectivity and was less pathogenic compared to Delta and ancestral SARS-CoV-2. Our multiscale investigations reveal the virological characteristics of Omicron, including rapid growth in the human population, lower fusogenicity and attenuated pathogenicity.


Assuntos
COVID-19/patologia , COVID-19/virologia , Fusão de Membrana , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Internalização do Vírus , Animais , COVID-19/epidemiologia , Linhagem Celular , Cricetinae , Humanos , Técnicas In Vitro , Pulmão/patologia , Pulmão/virologia , Masculino , Mesocricetus , Mutação , SARS-CoV-2/classificação , SARS-CoV-2/crescimento & desenvolvimento , África do Sul/epidemiologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Virulência , Replicação Viral
4.
PLoS Pathog ; 20(3): e1012101, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38502642

RESUMO

Emerging and reemerging tick-borne virus infections caused by orthonairoviruses (family Nairoviridae), which are genetically distinct from Crimean-Congo hemorrhagic fever virus, have been recently reported in East Asia. Here, we have established a mouse infection model using type-I/II interferon receptor-knockout mice (AG129 mice) both for a better understanding of the pathogenesis of these infections and validation of antiviral agents using Yezo virus (YEZV), a novel orthonairovirus causing febrile illnesses associated with tick bites in Japan and China. YEZV-inoculated AG129 mice developed hepatitis with body weight loss and died by 6 days post infection. Blood biochemistry tests showed elevated liver enzyme levels, similar to YEZV-infected human patients. AG129 mice treated with favipiravir survived lethal YEZV infection, demonstrating the anti-YEZV effect of this drug. The present mouse model will help us better understand the pathogenicity of the emerging tick-borne orthonairoviruses and the development of specific antiviral agents for their treatment.


Assuntos
Nairovirus , Doenças Transmitidas por Carrapatos , Animais , Camundongos , Antivirais/farmacologia , Antivirais/uso terapêutico , Modelos Animais de Doenças , Camundongos Knockout
5.
Proc Natl Acad Sci U S A ; 120(42): e2304139120, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37831739

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections are causing significant morbidity and mortality worldwide. Furthermore, over 1 million cases of newly emerging or re-emerging viral infections, specifically dengue virus (DENV), are known to occur annually. Because no virus-specific and fully effective treatments against these or many other viruses have been approved, there is an urgent need for novel, effective therapeutic agents. Here, we identified 2-thiouridine (s2U) as a broad-spectrum antiviral ribonucleoside analogue that exhibited antiviral activity against several positive-sense single-stranded RNA (ssRNA+) viruses, such as DENV, SARS-CoV-2, and its variants of concern, including the currently circulating Omicron subvariants. s2U inhibits RNA synthesis catalyzed by viral RNA-dependent RNA polymerase, thereby reducing viral RNA replication, which improved the survival rate of mice infected with DENV2 or SARS-CoV-2 in our animal models. Our findings demonstrate that s2U is a potential broad-spectrum antiviral agent not only against DENV and SARS-CoV-2 but other ssRNA+ viruses.


Assuntos
Nucleosídeos , Vírus de RNA de Cadeia Positiva , Animais , Camundongos , Nucleosídeos/farmacologia , Antivirais/farmacologia , SARS-CoV-2 , Replicação Viral , RNA
6.
Proc Natl Acad Sci U S A ; 119(36): e2206104119, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36037386

RESUMO

Viral hemorrhagic fevers caused by members of the order Bunyavirales comprise endemic and emerging human infections that are significant public health concerns. Despite the disease severity, there are few therapeutic options available, and therefore effective antiviral drugs are urgently needed to reduce disease burdens. Bunyaviruses, like influenza viruses (IFVs), possess a cap-dependent endonuclease (CEN) that mediates the critical cap-snatching step of viral RNA transcription. We screened compounds from our CEN inhibitor (CENi) library and identified specific structural compounds that are 100 to 1,000 times more active in vitro than ribavirin against bunyaviruses, including Lassa virus, lymphocytic choriomeningitis virus (LCMV), and Junin virus. To investigate their inhibitory mechanism of action, drug-resistant viruses were selected in culture. Whole-genome sequencing revealed that amino acid substitutions in the CEN region of drug-resistant viruses were located in similar positions as those of the CEN α3-helix loop of IFVs derived under drug selection. Thus, our studies suggest that CENi compounds inhibit both bunyavirus and IFV replication in a mechanistically similar manner. Structural analysis revealed that the side chain of the carboxyl group at the seventh position of the main structure of the compound was essential for the high antiviral activity against bunyaviruses. In LCMV-infected mice, the compounds significantly decreased blood viral load, suppressed symptoms such as thrombocytopenia and hepatic dysfunction, and improved survival rates. These data suggest a potential broad-spectrum clinical utility of CENis for the treatment of both severe influenza and hemorrhagic diseases caused by bunyaviruses.


Assuntos
Antivirais , Endonucleases , Orthobunyavirus , Animais , Antivirais/farmacologia , Avaliação Pré-Clínica de Medicamentos , Farmacorresistência Viral/efeitos dos fármacos , Farmacorresistência Viral/genética , Endonucleases/antagonistas & inibidores , Humanos , Camundongos , Orthobunyavirus/efeitos dos fármacos , Orthobunyavirus/genética , Orthobunyavirus/metabolismo , Replicação Viral/efeitos dos fármacos
7.
Arch Virol ; 169(2): 29, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216710

RESUMO

Genetic reassortment of avian, swine, and human influenza A viruses (IAVs) poses potential pandemic risks. Surveillance is important for influenza pandemic preparedness, but the susceptibility of zoonotic IAVs to the cap-dependent endonuclease inhibitor baloxavir acid (BXA) has not been thoroughly researched. Although an amino acid substitution at position 38 in the polymerase acidic protein (PA/I38) in seasonal IAVs reduces BXA susceptibility, PA polymorphisms at position 38 are rarely seen in zoonotic IAVs. Here, we examined the impact of PA/I38 substitutions on the BXA susceptibility of recombinant A(H5N1) viruses. PA mutants that harbored I38T, F, and M were 48.2-, 24.0-, and 15.5-fold less susceptible, respectively, to BXA than wild-type A(H5N1) but were susceptible to the neuraminidase inhibitor oseltamivir acid and the RNA polymerase inhibitor favipiravir. PA mutants exhibited significantly impaired replicative fitness in Madin-Darby canine kidney cells at 24 h postinfection. In addition, in order to investigate new genetic markers for BXA susceptibility, we screened geographically and temporally distinct IAVs isolated worldwide from birds and pigs. The results showed that BXA exhibited antiviral activity against avian and swine viruses with similar levels to seasonal isolates. All viruses tested in the study lacked the PA/I38 substitution and were susceptible to BXA. Isolates harboring amino acid polymorphisms at positions 20, 24, and 37, which have been implicated in the binding of BXA to the PA endonuclease domain, were also susceptible to BXA. These results suggest that monitoring of the PA/I38 substitution in animal-derived influenza viruses is important for preparedness against zoonotic influenza virus outbreaks.


Assuntos
Dibenzotiepinas , Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Humana , Morfolinas , Orthomyxoviridae , Piridonas , Tiepinas , Triazinas , Animais , Cães , Humanos , Suínos , Vírus da Influenza A/genética , Oxazinas/farmacologia , Piridinas/farmacologia , Piridinas/uso terapêutico , Virus da Influenza A Subtipo H5N1/genética , Tiepinas/farmacologia , Tiepinas/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Orthomyxoviridae/genética , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Substituição de Aminoácidos , Endonucleases/genética , Farmacorresistência Viral/genética
8.
Microbiol Immunol ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38961765

RESUMO

In middle to late 2023, a sublineage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron XBB, EG.5.1 (a progeny of XBB.1.9.2), is spreading rapidly around the world. We performed multiscale investigations, including phylogenetic analysis, epidemic dynamics modeling, infection experiments using pseudoviruses, clinical isolates, and recombinant viruses in cell cultures and experimental animals, and the use of human sera and antiviral compounds, to reveal the virological features of the newly emerging EG.5.1 variant. Our phylogenetic analysis and epidemic dynamics modeling suggested that two hallmark substitutions of EG.5.1, S:F456L and ORF9b:I5T are critical to its increased viral fitness. Experimental investigations on the growth kinetics, sensitivity to clinically available antivirals, fusogenicity, and pathogenicity of EG.5.1 suggested that the virological features of EG.5.1 are comparable to those of XBB.1.5. However, cryo-electron microscopy revealed structural differences between the spike proteins of EG.5.1 and XBB.1.5. We further assessed the impact of ORF9b:I5T on viral features, but it was almost negligible in our experimental setup. Our multiscale investigations provide knowledge for understanding the evolutionary traits of newly emerging pathogenic viruses, including EG.5.1, in the human population.

9.
J Infect Dis ; 228(8): 1060-1065, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37369369

RESUMO

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variants has led to concerns that ancestral SARS-CoV-2-based vaccines may not be effective against newly emerging Omicron subvariants. The concept of "imprinted immunity" suggests that individuals vaccinated with ancestral virus-based vaccines may not develop effective immunity against newly emerging Omicron subvariants, such as BQ.1.1 and XBB.1. In this study, we investigated this possibility using hamsters. Although natural infection induced effective antiviral immunity, breakthrough infections in hamsters with BQ.1.1 and XBB.1 Omicron subvariants after receiving the 3-dose mRNA-lipid nanoparticle vaccine resulted in only faintly induced humoral immunity, supporting the possibility of imprinted immunity.


Assuntos
COVID-19 , Animais , Cricetinae , Humanos , COVID-19/prevenção & controle , SARS-CoV-2 , Modelos Animais , Vacinas contra COVID-19 , RNA Mensageiro/genética , Vacinação , Anticorpos Neutralizantes , Anticorpos Antivirais
10.
J Virol ; 96(5): e0212021, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35044215

RESUMO

Influenza A viruses (IAV) initiate infection by binding to glycans with terminal sialic acids on the cell surface. Hosts of IAV variably express two major forms of sialic acid, N-acetylneuraminic acid (NeuAc) and N-glycolylneuraminic acid (NeuGc). NeuGc is produced in most mammals, including horses and pigs, but is absent in humans, ferrets, and birds. The only known naturally occurring IAV that exclusively bind NeuGc are extinct highly pathogenic equine H7N7 viruses. We determined the crystal structure of a representative equine H7 hemagglutinin (HA) in complex with NeuGc and observed high similarity in the receptor-binding domain with an avian H7 HA. To determine the molecular basis for NeuAc and NeuGc specificity, we performed systematic mutational analyses, based on the structural insights, on two distant avian H7 HAs and an H15 HA. We found that the A135E mutation is key for binding α2,3-linked NeuGc but does not abolish NeuAc binding. The additional mutations S128T, I130V, T189A, and K193R converted the specificity from NeuAc to NeuGc. We investigated the residues at positions 128, 130, 135, 189, and 193 in a phylogenetic analysis of avian and equine H7 HAs. This analysis revealed a clear distinction between equine and avian residues. The highest variability was observed at key position 135, of which only the equine glutamic acid led to NeuGc binding. These results demonstrate that genetically distinct H7 and H15 HAs can be switched from NeuAc to NeuGc binding and vice versa after the introduction of several mutations, providing insights into the adaptation of H7 viruses to NeuGc receptors. IMPORTANCE Influenza A viruses cause millions of cases of severe illness and deaths annually. To initiate infection and replicate, the virus first needs to bind to a structure on the cell surface, like a key fitting in a lock. For influenza A viruses, these "keys" (receptors) on the cell surface are chains of sugar molecules (glycans). The terminal sugar on these glycans is often either N-acetylneuraminic acid (NeuAc) or N-glycolylneuraminic acid (NeuGc). Most influenza A viruses bind NeuAc, but a small minority bind NeuGc. NeuGc is present in species like horses, pigs, and mice but not in humans, ferrets, and birds. Here, we investigated the molecular determinants of NeuGc specificity and the origin of viruses that bind NeuGc.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vírus da Influenza A Subtipo H7N7 , Ácidos Neuramínicos , Animais , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Cavalos , Humanos , Vírus da Influenza A Subtipo H7N7/química , Vírus da Influenza A Subtipo H7N7/metabolismo , Ácido N-Acetilneuramínico , Ácidos Neuramínicos/química , Ácidos Neuramínicos/metabolismo , Filogenia , Polissacarídeos/metabolismo , Ligação Proteica
11.
Uirusu ; 72(1): 19-30, 2022.
Artigo em Japonês | MEDLINE | ID: mdl-37899226

RESUMO

Crimean-Congo hemorrhagic fever (CCHF) is an acute febrile illness with a high case fatality rate caused by the infection with Crimean-Congo hemorrhagic fever virus (CCHFV). The disease is endemic to a wide regions from the African continent to Asia through Europe. CCHFV is maintained in nature between Hyalomma species ticks and some species of animals. Humans are infected with CCHFV from CCHFV-positive tick bite or through a close contact with viremic animals in clucling hum am patients with CCHF. The CCHF-endemic regions depend on the distribution of the species of ticks such as Hyalomma species ticks, main vectors for CCHFV. There have been no confirmed cases of CCHF patients in Japan so far. CCHF is one of the zoonotic virus infections. Main clinical signs of the disease in humans are fever with nonspecific symptoms, and hemorrhage and deterioration in consciousness appear in severe cases. CCHF is classified in the disease category of viral hemorrhagic fevers, which include ebolavirus disease. Viral tick-borne diseases including tick-borne encephalitis, severe fever with thrombocytopenia syndrome, and Yezo virus infection, which has recently been discovered as a novel bunyavirus infection in Hokkaido, Japan, are becoming major concerns for public health in Japan. Trends of CCHF in terms of epidemiology should closely be monitored.

12.
J Gen Virol ; 102(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33416463

RESUMO

The genus Flavivirus includes a range of mosquito-specific viruses in addition to well-known medically important arboviruses. Isolation and comprehensive genomic analyses of viruses in mosquitoes collected in Bolivia resulted in the identification of three novel flavivirus species. Psorophora flavivirus (PSFV) was isolated from Psorophora albigenu. The coding sequence of the PSFV polyprotein shares 60 % identity with that of the Aedes-associated lineage II insect-specific flavivirus (ISF), Marisma virus. Isolated PSFV replicates in both Aedes albopictus- and Aedes aegypti-derived cells, but not in mammalian Vero or BHK-21 cell lines. Two other flaviviruses, Ochlerotatus scapularis flavivirus (OSFV) and Mansonia flavivirus (MAFV), which were identified from Ochlerotatus scapularis and Mansonia titillans, respectively, group with the classical lineage I ISFs. The protein coding sequences of these viruses share only 60 and 40 % identity with the most closely related of known lineage I ISFs, including Xishuangbanna aedes flavivirus and Sabethes flavivirus, respectively. Phylogenetic analysis suggests that MAFV is clearly distinct from the groups of the current known Culicinae-associated lineage I ISFs. Interestingly, the predicted amino acid sequence of the MAFV capsid protein is approximately two times longer than that of any of the other known flaviviruses. Our results indicate that flaviviruses with distinct features can be found at the edge of the Bolivian Amazon basin at sites that are also home to dense populations of human-biting mosquitoes.


Assuntos
Culicidae/virologia , Flavivirus/genética , Flavivirus/isolamento & purificação , Aedes/virologia , Animais , Bolívia , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Linhagem Celular , Flavivirus/classificação , Flavivirus/fisiologia , Genoma Viral , Mosquitos Vetores/virologia , Filogenia , Poliproteínas/química , Poliproteínas/genética , RNA Viral/genética , Análise de Sequência de RNA , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Proteínas Estruturais Virais/química , Proteínas Estruturais Virais/genética , Replicação Viral , Sequenciamento Completo do Genoma
13.
Uirusu ; 71(2): 117-124, 2021.
Artigo em Japonês | MEDLINE | ID: mdl-37245974

RESUMO

A new etiological agent of an acute febrile illness following tick bite has been found in Hokkaido, Japan, in 2019 and designated as Yezo virus. Seven cases of Yezo virus infection were identified from 2014 to 2020 by passive and retrospective surveillance. Yezo virus is classified into the genus Orthonairovirus, family Nairoviridae and forms Sulina genogroup together with Sulina virus, which was identified in ticks in Romania. The Sulina genogroup viruses are closely related to the Tamdy genogroup viruses recently reported as causative agents of febrile illness in China and distant from known orthonairovirus pathogens, such as Crimean-Congo hemorrhagic fever virus. Since only limited information is available for the emerging orthonairovirus diseases, including Yezo virus infection, their occurrence should be carefully monitored.

14.
Artigo em Inglês | MEDLINE | ID: mdl-32284377

RESUMO

Attention has been paid to H5N6 highly pathogenic avian influenza virus (HPAIV) because of its heavy burden on the poultry industry and human mortality. Since an influenza A virus carrying N6 neuraminidase (NA) has never spread in humans, the potential for H5N6 HPAIV to cause disease in humans and the efficacy of antiviral drugs against the virus need to be urgently assessed. We used nonhuman primates to elucidate the pathogenesis of H5N6 HPAIV as well as to determine the efficacy of antiviral drugs against the virus. H5N6 HPAIV infection led to high fever in cynomolgus macaques. The lung injury caused by the virus was severe, with diffuse alveolar damage and neutrophil infiltration. In addition, an increase in interferon alpha (IFN-α) showed an inverse correlation with virus titers during the infection process. Oseltamivir was effective for reducing H5N6 HPAIV propagation, and continuous treatment with peramivir reduced virus propagation and the severity of symptoms in the early stage. This study also showed pathologically severe lung injury states in cynomolgus macaques infected with H5N6 HPAIV, even in those that received early antiviral drug treatments, indicating the need for close monitoring and further studies on virus pathogenicity and new antiviral therapies.


Assuntos
Vírus da Influenza A , Influenza Aviária , Influenza Humana , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Influenza Humana/tratamento farmacológico , Neuraminidase , Filogenia , Primatas
15.
Int Immunol ; 31(12): 811-821, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31367737

RESUMO

Double-stranded RNA (dsRNA) is well characterized as an inducer of anti-viral interferon responses. We previously reported that dsRNA extracted from a specific edible plant possesses an immune-modulating capacity to confer, in mice, resistance against respiratory viruses, including the H1N1 strain of the influenza A virus (IAV). We report here that the systemic immune-activating capacity of the plant-derived dsRNA protected mice from infection by a highly virulent H5N1 strain of the IAV. In addition, subcutaneous inoculation of the dsRNA together with the inactivated virion of the H5N1 strain of the IAV suppressed the lethality of the viral infection as compared with individual inoculation of either dsRNA or HA protein, suggesting its potential usage as a vaccination adjuvant. Moreover, intra-peritoneal inoculation of the dsRNA limited the growth of B16-F10 melanoma cells through the activation of NK cells in murine models. Taken together, this study demonstrated the systemic immune-modulating capacity of a plant-derived dsRNA and its potential for nucleic acid-based clinical applications.


Assuntos
Capsicum/química , RNA de Cadeia Dupla/imunologia , Animais , Capsicum/imunologia , Células Cultivadas , Interferon Tipo I/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA de Cadeia Dupla/isolamento & purificação , RNA de Cadeia Dupla/metabolismo , Ribonucleases/metabolismo
16.
Arch Virol ; 165(1): 87-96, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31707455

RESUMO

In May 2017, high mortality of chickens and Muscovy ducks due to the H5N8 highly pathogenic avian influenza virus (HPAIV) was reported in the Democratic Republic of Congo (DR Congo). In this study, we assessed the molecular, antigenic, and pathogenic features in poultry of the H5N8 HPAIV from the 2017 Congolese outbreaks. Phylogenetic analysis of the eight viral gene segments revealed that all 12 DR Congo isolates clustered in clade 2.3.4.4B together with other H5N8 HPAIVs isolated in Africa and Eurasia, suggesting a possible common origin of these viruses. Antigenically, a slight difference was observed between the Congolese isolates and a representative virus from group C in the same clade. After intranasal inoculation with a representative DR Congo virus, high pathogenicity was observed in chickens and Muscovy ducks but not in Pekin ducks. Viral replication was higher in chickens than in Muscovy duck and Pekin duck organs; however, neurotropism was pronounced in Muscovy ducks. Our data confirmed the high pathogenicity of the DR Congo virus in chickens and Muscovy ducks, as observed in the field. National awareness and strengthening surveillance in the region are needed to better control HPAIVs.


Assuntos
Antígenos Virais/metabolismo , Vírus da Influenza A Subtipo H5N8/classificação , Vírus da Influenza A Subtipo H5N8/patogenicidade , Influenza Aviária/imunologia , Doenças das Aves Domésticas/virologia , África , Animais , Ásia , Galinhas , República Democrática do Congo , Patos/classificação , Patos/virologia , Europa (Continente) , Sequenciamento de Nucleotídeos em Larga Escala , Vírus da Influenza A Subtipo H5N8/genética , Vírus da Influenza A Subtipo H5N8/isolamento & purificação , Influenza Aviária/virologia , Filogenia , Filogeografia , Doenças das Aves Domésticas/imunologia , Especificidade da Espécie , Replicação Viral
17.
Microbiol Immunol ; 64(4): 304-312, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31943329

RESUMO

Avian influenza viruses (AIVs) recognize sialic acid linked α2,3 to galactose (SAα2,3Gal) glycans as receptors. In this study, the interactions between hemagglutinins (HAs) of AIVs and sulfated SAα2,3Gal glycans were analyzed to clarify the molecular basis of interspecies transmission of AIVs from ducks to chickens. It was revealed that E190V and N192D substitutions of the HA increased the recovery of viruses derived from an H6 duck virus isolate, A/duck/Hong Kong/960/1980 (H6N2), in chickens. Recombinant HAs from an H6 chicken virus, A/chicken/Tainan/V156/1999 (H6N1), bound to sulfated SAα2,3Gal glycans, whereas the HAs from an H6 duck virus did not. Binding preference of mutant HAs revealed that an E190V substitution is critical for the recognition of sulfated SAα2,3Gal glycans. These results suggest that the binding of the HA from H6 AIVs to sulfated SAα2,3Gal glycans explains a part of mechanisms of interspecies transmission of AIVs from ducks to chickens.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A/patogenicidade , Influenza Aviária/transmissão , Ácido N-Acetilneuramínico/metabolismo , Polissacarídeos/metabolismo , Receptores Virais/metabolismo , Animais , Galinhas , Cães , Patos , Células HEK293 , Humanos , Influenza Aviária/virologia , Células Madin Darby de Rim Canino , Óvulo , Ligação Proteica
18.
Virus Genes ; 56(4): 472-479, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32430568

RESUMO

The circulation of highly pathogenic avian influenza viruses (HPAIVs) of various subtypes (e.g., H5N1, H5N6, H5N8, and H7N9) in poultry remains a global concern for animal and public health. Migratory waterfowls play important roles in the transmission of these viruses across countries. To monitor virus spread by wild birds, active surveillance for avian influenza in migratory waterfowl was conducted in Mongolia from 2015 to 2019. In total, 5000 fecal samples were collected from lakesides in central Mongolia, and 167 influenza A viruses were isolated. Two H5N3, four H7N3, and two H7N7 viruses were characterized in this study. The amino acid sequence at hemagglutinin (HA) cleavage site of those isolates suggested low pathogenicity in chickens. Phylogenetic analysis revealed that all H5 and H7 viruses were closely related to recent H5 and H7 low pathogenic avian influenza viruses (LPAIVs) isolated from wild birds in Asia and Europe. Antigenicity of H7Nx was similar to those of typical non-pathogenic avian influenza viruses (AIVs). While HPAIVs or A/Anhui/1/2013 (H7N9)-related LPAIVs were not detected in migratory waterfowl in Mongolia, sporadic introductions of AIVs including H5 and H7 viruses into Mongolia through the wild bird migration were identified. Thus, continued monitoring of H5 and H7 AIVs in both domestic and wild birds is needed for the early detection of HPAIVs spread into the country.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Virus da Influenza A Subtipo H5N1/genética , Vírus da Influenza A Subtipo H5N8/genética , Subtipo H7N9 do Vírus da Influenza A/genética , Influenza Aviária/genética , Migração Animal , Animais , Animais Selvagens/genética , Animais Selvagens/imunologia , Animais Selvagens/virologia , Ásia , Galinhas/virologia , Patos/genética , Patos/imunologia , Patos/virologia , Europa (Continente) , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Virus da Influenza A Subtipo H5N1/patogenicidade , Vírus da Influenza A Subtipo H5N8/imunologia , Vírus da Influenza A Subtipo H5N8/patogenicidade , Subtipo H7N9 do Vírus da Influenza A/imunologia , Subtipo H7N9 do Vírus da Influenza A/patogenicidade , Influenza Aviária/imunologia , Influenza Aviária/transmissão , Influenza Aviária/virologia , Mongólia , Filogenia , Aves Domésticas/virologia
19.
Uirusu ; 70(1): 3-14, 2020.
Artigo em Japonês | MEDLINE | ID: mdl-33967110

RESUMO

"Arbovirus" is a term for a virus transmitted to mammals by hematophagous arthropods; arboviruses; replicate in both mammals and arthropods. Since the life cycle of arboviruses is highly dependent on arthropods, control of the arthropods (vectors) is generally considered important for the control of arbovirus infection. Various pathogens that cause diseases in the medical and veterinary fields are grouped into arboviruses with a history of their discoveries since the early 20th century. Furthermore, because of recent advances in sequencing technology, new arboviruses have been discovered one after another. Here we would like to overview the known arboviruses and their infections.


Assuntos
Infecções por Arbovirus , Arbovírus , Artrópodes , Animais , Estágios do Ciclo de Vida
20.
Emerg Infect Dis ; 24(9): 1726-1729, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30124411

RESUMO

Two captive cheetahs from a zoo in Japan died of a severe fever with thrombocytopenia syndrome-like illness. Severe fever with thrombocytopenia syndrome virus, an endemic tickborne phlebovirus, was detected systemically with secretion of infectious viruses into the saliva. These cases highlight the risk for exposure of captive animals to endemic arthropodborne pathogens.


Assuntos
Acinonyx , Infecções por Bunyaviridae/veterinária , Phlebovirus/isolamento & purificação , Doenças Transmitidas por Carrapatos/veterinária , Animais , Animais de Zoológico , Infecções por Bunyaviridae/diagnóstico , Diagnóstico Diferencial , Evolução Fatal , Feminino , Japão , Masculino , Phlebovirus/genética , Filogenia , Doenças Transmitidas por Carrapatos/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA