Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Infect Immun ; 92(1): e0017923, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38014981

RESUMO

Chlamydia trachomatis and Neisseria gonorrhoeae are the most prevalent bacterial sexually transmitted infections (STIs) globally. Despite frequent co-infections in patients, few studies have investigated how mono-infections may differ from co-infections. We hypothesized that a symbiotic relationship between the pathogens could account for the high rates of clinical co-infection. During in vitro co-infection, we observed an unexpected phenotype where the C. trachomatis developmental cycle was impaired by N. gonorrhoeae. C. trachomatis is an obligate intracellular pathogen with a unique biphasic developmental cycle progressing from infectious elementary bodies (EB) to replicative reticulate bodies (RB), and back. After 12 hours of co-infection, we observed fewer EBs than in a mono-infection. Chlamydial genome copy number remained equivalent between mono- and co-infections. This is a hallmark of Chlamydial persistence. Chlamydial persistence alters inclusion morphology but varies depending on the stimulus/stress. We observed larger, but fewer, Chlamydia during co-infection. Tryptophan depletion can induce Chlamydial persistence, but tryptophan supplementation did not reverse the co-infection phenotype. Only viable and actively growing N. gonorrhoeae produced the inhibition phenotype in C. trachomatis. Piliated N. gonorrhoeae had the strongest effect on C. trachomatis, but hyperpiliated or non-piliated N. gonorrhoeae still produced the phenotype. EB development was modestly impaired when N. gonorrhoeae were grown in transwells above the infected monolayer. C. trachomatis serovar L2 was not impaired during co-infection. Chlamydial impairment could be due to cytoskeletal or osmotic stress caused by an as-yet-undefined mechanism. We conclude that N. gonorrhoeae induces a persistence-like state in C. trachomatis that is serovar dependent.


Assuntos
Infecções por Chlamydia , Coinfecção , Gonorreia , Humanos , Chlamydia trachomatis/genética , Neisseria gonorrhoeae , Infecções por Chlamydia/microbiologia , Triptofano
2.
J Bacteriol ; 204(4): e0059821, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-34928180

RESUMO

How proteins move through space and time is a fundamental question in biology. While great strides have been made toward a mechanistic understanding of protein movement, many questions remain. We discuss the biological implications of motion in the context of the peptidoglycan (PG) synthesis machines. We reviewed systems in several bacteria, including Escherichia coli, Bacillus subtilis, and Streptococcus pneumoniae, and present a comprehensive view of our current knowledge regarding movement dynamics. Discrepancies are also addressed because "one size does not fit all". For bacteria to divide, new PG is synthesized and incorporated into the growing cell wall by complex multiprotein nanomachines consisting of PG synthases (transglycosylases [TG] and/or transpeptidases [TP]) as well as a variety of regulators and cytoskeletal factors. Advances in imaging capabilities and labeling methods have revealed that these machines are not static but rather circumferentially transit the cell via directed motion perpendicular to the long axis of model rod-shaped bacteria such as E. coli and B. subtilis. The enzymatic activity of the TG:TPs drives motion in some species while motion is mediated by FtsZ treadmilling in others. In addition, both directed and diffusive motion of the PG synthases have been observed using single-particle tracking technology. Here, we examined the biological role of diffusion regarding transit. Lastly, findings regarding the monofunctional transglycosylases (RodA and FtsW) as well as the Class A PG synthases are discussed. This minireview serves to showcase recent advances, broach mechanistic unknowns, and stimulate future areas of study.


Assuntos
Escherichia coli , Peptidoglicano , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Peptidoglicano/metabolismo
3.
Environ Res ; 208: 112496, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-34902379

RESUMO

Wastewater-based epidemiology has been used to measure SARS-CoV-2 prevalence in cities worldwide as an indicator of community health, however, few longitudinal studies have followed SARS-CoV-2 in wastewater in small communities from the start of the pandemic or evaluated the influence of tourism on viral loads. Therefore the objective of this study was to use measurements of SARS-CoV-2 in wastewater to monitor viral trends and variants in a small island community over a twelve-month period beginning May 1, 2020, before the community re-opened to tourists. Wastewater samples were collected weekly and analyzed to detect and quantify SARS-CoV-2 genome copies. Sanger sequencing was used to determine genome sequences from total RNA extracted from wastewater samples positive for SARS-CoV-2. Visitor data was collected from the local Chamber of Commerce. We performed Poisson and linear regression to determine if visitors to the Cedar Key Chamber of Commerce were positively associated with SARS-CoV-2-positive wastewater samples and the concentration of SARS-CoV-2 RNA. Results indicated that weekly wastewater samples were negative for SARS-CoV-2 until mid-July when positive samples were recorded in four of five consecutive weeks. Additional positive results were recorded in November and December 2020, as well as January, March, and April 2021. Tourism data revealed that the SARS-CoV-2 RNA concentration in wastewater increased by 1.06 Log10 genomic copies/L per 100 tourists weekly. Sequencing from six positive wastewater samples yielded two complete sequences of SARS-CoV-2, two overlapping sequences, and two low yield sequences. They show arrival of a new variant SARS-CoV-2 in January 2021. Our results demonstrate the utility of wastewater surveillance for SARS-CoV-2 in a small community. Wastewater surveillance and viral genome sequencing suggest that population mobility likely plays an important role in the introduction and circulation of SARS-CoV-2 variants among communities experiencing high tourism and who have a small population size.


Assuntos
COVID-19 , Vigilância Epidemiológica Baseada em Águas Residuárias , COVID-19/epidemiologia , Humanos , Prevalência , RNA Viral/genética , SARS-CoV-2/genética , Turismo , Águas Residuárias
4.
PLoS Pathog ; 15(10): e1008078, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31622442

RESUMO

The antibiotic, fosmidomycin (FSM) targets the methylerythritol phosphate (MEP) pathway of isoprenoid synthesis by inhibiting the essential enzyme, 1-deoxy-D-xylulose 5-phosphate reductoisomerase (Dxr) and is lethal to intracellular parasites and bacteria. The obligate intracellular bacterial pathogen, Chlamydia trachomatis, alternates between two developmental forms: the extracellular, infectious elementary body (EB), and the intracellular, replicative form called the reticulate body (RB). Several stressful growth conditions including iron deprivation halt chlamydial cell division and cause development of a morphologically enlarged, but viable form termed an aberrant body (AB). This phenotype constitutes the chlamydial developmental state known as persistence. This state is reversible as removal of the stressor allows the chlamydiae to re-enter and complete the normal developmental cycle. Bioinformatic analysis indicates that C. trachomatis encodes a homolog of Dxr, but its function and the requirement for isoprenoid synthesis in chlamydial development is not fully understood. We hypothesized that chlamydial Dxr (DxrCT) is functional and that the methylerythritol phosphate (MEP) pathway is required for normal chlamydial development. Thus, FSM exposure should be lethal to C. trachomatis. Overexpression of chlamydial Dxr (DxrCT) in Escherichia coli under FSM exposure and in a conditionally lethal dxr mutant demonstrated that DxrCT functions similarly to E. coli Dxr. When Chlamydia-infected cultures were exposed to FSM, EB production was significantly reduced. However, titer recovery assays, electron microscopy, and peptidoglycan labeling revealed that FSM inhibition of isoprenoid synthesis is not lethal to C. trachomatis, but instead induces persistence. Bactoprenol is a critical isoprenoid required for peptidoglycan precursor assembly. We therefore conclude that FSM induces persistence in Chlamydia by preventing bactoprenol production necessary for peptidoglycan precursor assembly and subsequent cell division.


Assuntos
Antibacterianos/farmacologia , Chlamydia trachomatis/efeitos dos fármacos , Fosfomicina/análogos & derivados , Peptidoglicano/biossíntese , Terpenos/metabolismo , Aldose-Cetose Isomerases/antagonistas & inibidores , Aldose-Cetose Isomerases/genética , Aldose-Cetose Isomerases/metabolismo , Linhagem Celular Tumoral , Infecções por Chlamydia/patologia , Chlamydia trachomatis/enzimologia , Chlamydia trachomatis/fisiologia , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Fosfomicina/farmacologia , Células HeLa , Humanos
5.
BMC Public Health ; 21(1): 603, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33781220

RESUMO

BACKGROUND: Given the emerging literature regarding the impacts of lockdown measures on mental health, this study aims to describe the psychosocial health of school-aged children and adolescents during the COVID-19 Safer-at-Home School mandates. METHODS: A cross-sectional study was conducted in April 2020 (n = 280) among K-12 students at a research school in North Central Florida. Bivariate analysis and logistic and multinomial logistic regression models were used to examine socio-demographic and knowledge, attitude, and practice (KAP) predictors of indicators of anxiety-related, depressive, and obsessive-compulsive disorder(OCD)-related symptoms. Outcomes (anxiety, OCD, and depressive related symptoms) were measured by indices generated based on reported symptoms associated with each psychosocial outcome. RESULTS: Loss of household income was associated with increased risk for all three index-based outcomes: depressive symptoms [aOR = 3.130, 95% CI = (1.41-6.97)], anxiety-related symptoms [aOR = 2.531, 95%CI = (1.154-5.551)], and OCD-related symptoms [aOR = 2.90, 95%CI = (1.32-6.36)]. Being female was associated with being at higher risk for depressive symptoms [aOR = 1.72, 95% CI = (1.02-2.93)], anxiety-related symptoms [aOR = 1.75, 95% CI = (1.04-2.97)], and OCD-related symptoms [aOR = 1.764, 95%CI = (1.027-3.028)]. Parental practices protective against COVID-19 were associated with children being at higher risk of depressive symptoms [aOR = 1.55, 95% CI = (1.04-2.31)]. Lower school level was associated with children being at higher risk of anxiety-related and OCD-related symptoms. CONCLUSIONS: As the COVID-19 pandemic continues, schools should prioritize mental health interventions that target younger, female students, and children of families with income loss. Limiting the spread of COVID-19 through school closure may exacerbate negative psychosocial health outcomes in children, thus school administrators should move quickly to target those at greatest risk.


Assuntos
Ansiedade/psicologia , COVID-19/psicologia , Depressão/psicologia , Saúde Mental/estatística & dados numéricos , Pandemias , Adolescente , Ansiedade/epidemiologia , COVID-19/epidemiologia , COVID-19/prevenção & controle , Criança , Controle de Doenças Transmissíveis , Estudos Transversais , Depressão/epidemiologia , Feminino , Florida/epidemiologia , Humanos , Masculino , SARS-CoV-2 , Instituições Acadêmicas , Populações Vulneráveis
6.
Infect Immun ; 88(5)2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32094256

RESUMO

Peptidoglycan, the sugar-amino acid polymer that composes the bacterial cell wall, requires a significant expenditure of energy to synthesize and is highly immunogenic. To minimize the loss of an energetically expensive metabolite and avoid host detection, bacteria often recycle their peptidoglycan, transporting its components back into the cytoplasm, where they can be used for subsequent rounds of new synthesis. The peptidoglycan-recycling substrate binding protein (SBP) MppA, which is responsible for recycling peptidoglycan fragments in Escherichia coli, has not been annotated for most intracellular pathogens. One such pathogen, Chlamydia trachomatis, has a limited capacity to synthesize amino acids de novo and therefore must obtain oligopeptides from its host cell for growth. Bioinformatics analysis suggests that the putative C. trachomatis oligopeptide transporter OppABCDF (OppABCDF Ct ) encodes multiple SBPs (OppA1 Ct , OppA2 Ct , and OppA3 Ct ). Intracellular pathogens often encode multiple SBPs, while only one, OppA, is encoded in the E. coliopp operon. We hypothesized that the putative OppABCDF transporter of C. trachomatis functions in both oligopeptide transport and peptidoglycan recycling. We coexpressed the putative SBP genes (oppA1Ct , oppA2Ct , oppA3Ct ) along with oppBCDFCt in an E. coli mutant lacking the Opp transporter and determined that all three chlamydial OppA subunits supported oligopeptide transport. We also demonstrated the in vivo functionality of the chlamydial Opp transporter in C. trachomatis Importantly, we found that one chlamydial SBP, OppA3 Ct , possessed dual substrate recognition properties and is capable of transporting peptidoglycan fragments (tri-diaminopimelic acid) in E. coli and in C. trachomatis These findings suggest that Chlamydia evolved an oligopeptide transporter to facilitate the acquisition of oligopeptides for growth while simultaneously reducing the accumulation of immunostimulatory peptidoglycan fragments in the host cell cytosol. The latter property reflects bacterial pathoadaptation that dampens the host innate immune response to Chlamydia infection.


Assuntos
Chlamydia trachomatis/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Oligopeptídeos/metabolismo , Peptidoglicano/metabolismo , Aminoácidos/genética , Aminoácidos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico/genética , Transporte Biológico/fisiologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Parede Celular/genética , Parede Celular/metabolismo , Infecções por Chlamydia/metabolismo , Chlamydia trachomatis/genética , Citosol/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Genes Bacterianos/genética , Células HeLa , Humanos , Imunidade Inata/genética , Proteínas de Membrana Transportadoras/genética , Oligopeptídeos/genética , Óperon/genética , Peptidoglicano/genética
7.
Infect Immun ; 89(1)2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33106295

RESUMO

The Chlamydia trachomatis genome encodes multiple bifunctional enzymes, such as DapF, which is capable of both diaminopimelic acid (DAP) epimerase and glutamate racemase activity. Our previous work demonstrated the bifunctional activity of chlamydial DapF in vitro and in a heterologous system (Escherichia coli). In the present study, we employed a substrate competition strategy to demonstrate DapF Ct function in vivo in C. trachomatis We reasoned that, because DapF Ct utilizes a shared substrate-binding site for both racemase and epimerase activities, only one activity can occur at a time. Therefore, an excess of one substrate relative to another must determine which activity is favored. We show that the addition of excess l-glutamate or meso-DAP (mDAP) to C. trachomatis resulted in 90% reduction in bacterial titers, compared to untreated controls. Excess l-glutamate reduced in vivo synthesis of mDAP by C. trachomatis to undetectable levels, thus confirming that excess racemase substrate led to inhibition of DapF Ct DAP epimerase activity. We previously showed that expression of dapFCt in a murI (racemase) ΔdapF (epimerase) double mutant of E. coli rescues the d-glutamate auxotrophic defect. Addition of excess mDAP inhibited growth of this strain, but overexpression of dapFCt allowed the mutant to overcome growth inhibition. These results confirm that DapF Ct is the primary target of these mDAP and l-glutamate treatments. Our findings demonstrate that suppression of either the glutamate racemase or epimerase activity of DapF compromises the growth of C. trachomatis Thus, a substrate competition strategy can be a useful tool for in vivo validation of an essential bifunctional enzyme.


Assuntos
Isomerases de Aminoácido/metabolismo , Chlamydia trachomatis/fisiologia , Peptidoglicano/biossíntese , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Linhagem Celular , Infecções por Chlamydia/microbiologia , Ácido Diaminopimélico/metabolismo , Regulação Bacteriana da Expressão Gênica , Ácido Glutâmico/metabolismo , Interações Hospedeiro-Patógeno , Humanos
8.
PLoS Pathog ; 12(5): e1005590, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27144308

RESUMO

The peptidoglycan (PG) cell wall is a peptide cross-linked glycan polymer essential for bacterial division and maintenance of cell shape and hydrostatic pressure. Bacteria in the Chlamydiales were long thought to lack PG until recent advances in PG labeling technologies revealed the presence of this critical cell wall component in Chlamydia trachomatis. In this study, we utilize bio-orthogonal D-amino acid dipeptide probes combined with super-resolution microscopy to demonstrate that four pathogenic Chlamydiae species each possess a ≤ 140 nm wide PG ring limited to the division plane during the replicative phase of their developmental cycles. Assembly of this PG ring is rapid, processive, and linked to the bacterial actin-like protein, MreB. Both MreB polymerization and PG biosynthesis occur only in the intracellular form of pathogenic Chlamydia and are required for cell enlargement, division, and transition between the microbe's developmental forms. Our kinetic, molecular, and biochemical analyses suggest that the development of this limited, transient, PG ring structure is the result of pathoadaptation by Chlamydia to an intracellular niche within its vertebrate host.


Assuntos
Proteínas de Bactérias/metabolismo , Divisão Celular/fisiologia , Chlamydia trachomatis/fisiologia , Peptidoglicano/biossíntese , Adaptação Fisiológica/fisiologia , Parede Celular/química , Parede Celular/metabolismo , Chlamydia trachomatis/química , Cromatografia Líquida de Alta Pressão , Microscopia Confocal , Peptidoglicano/química
9.
Proc Natl Acad Sci U S A ; 112(37): 11660-5, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26290580

RESUMO

The "chlamydial anomaly," first coined by James Moulder, describes the inability of researchers to detect or purify peptidoglycan (PG) from pathogenic Chlamydiae despite genetic and biochemical evidence and antibiotic susceptibility data that suggest its existence. We recently detected PG in Chlamydia trachomatis by a new metabolic cell wall labeling method, however efforts to purify PG from pathogenic Chlamydiae have remained unsuccessful. Pathogenic chlamydial species are known to activate nucleotide-binding oligomerization domain-containing protein 2 (NOD2) innate immune receptors by as yet uncharacterized ligands, which are presumed to be PG fragments (muramyl di- and tripeptides). We used the NOD2-dependent activation of NF-κB by C. trachomatis-infected cell lysates as a biomarker for the presence of PG fragments within specific lysate fractions. We designed a new method of muropeptide isolation consisting of a double filtration step coupled with reverse-phase HPLC fractionation of Chlamydia-infected HeLa cell lysates. Fractions that displayed NOD2 activity were analyzed by electrospray ionization mass spectrometry, confirming the presence of muramyl di- and tripeptides in Chlamydia-infected cell lysate fractions. Moreover, the mass spectrometry data of large muropeptide fragments provided evidence that transpeptidation and transglycosylation reactions occur in pathogenic Chlamydiae. These results reveal the composition of chlamydial PG and disprove the "glycanless peptidoglycan" hypothesis.


Assuntos
Chlamydia trachomatis/química , Espectrometria de Massas , Peptidoglicano/química , Biomarcadores/metabolismo , Parede Celular/química , Células HEK293 , Células HeLa , Humanos , NF-kappa B/metabolismo , Peptídeos/química , Polissacarídeos/química , Espectrometria de Massas em Tandem
10.
Infect Immun ; 84(8): 2362-2371, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27271741

RESUMO

Enteroinvasive Escherichia coli (EIEC) is a unique pathovar that has a pathogenic mechanism nearly indistinguishable from that of Shigella species. In contrast to isolates of the four Shigella species, which are widespread and can be frequent causes of human illness, EIEC causes far fewer reported illnesses each year. In this study, we analyzed the genome sequences of 20 EIEC isolates, including 14 first described in this study. Phylogenomic analysis of the EIEC genomes demonstrated that 17 of the isolates are present in three distinct lineages that contained only EIEC genomes, compared to reference genomes from each of the E. coli pathovars and Shigella species. Comparative genomic analysis identified genes that were unique to each of the three identified EIEC lineages. While many of the EIEC lineage-specific genes have unknown functions, those with predicted functions included a colicin and putative proteins involved in transcriptional regulation or carbohydrate metabolism. In silico detection of the Shigella virulence plasmid (pINV), which is essential for the invasion of host cells, demonstrated that a form of pINV was present in nearly all EIEC genomes, but the Mxi-Spa-Ipa region of the plasmid that encodes the invasion-associated proteins was absent from several of the EIEC isolates. The comparative genomic findings in this study support the hypothesis that multiple EIEC lineages have evolved independently from multiple distinct lineages of E. coli via the acquisition of the Shigella virulence plasmid and, in some cases, the Shigella pathogenicity islands.


Assuntos
Escherichia coli Enteropatogênica/classificação , Escherichia coli Enteropatogênica/genética , Escherichia coli/classificação , Escherichia coli/genética , Genoma Bacteriano , Genômica , Shigella/classificação , Shigella/genética , Biologia Computacional/métodos , Escherichia coli Enteropatogênica/isolamento & purificação , Genes Bacterianos , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Fases de Leitura Aberta , Filogenia , Plasmídeos/genética , Virulência/genética
11.
Infect Immun ; 83(8): 3176-83, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26015484

RESUMO

An important question in the study of chlamydial genital tract disease is why some women develop severe upper tract disease while others have mild or even "silent" infections with or without pathology. Animal studies suggest that the pathological outcome of an infection is dependent upon both the composition of the infecting chlamydial population and the genotype of the host, along with host physiological effects, such as the cyclical production of reproductive hormones and even the size of the infecting inoculum or the number of repeated infections. In this study, we compared two variants of Chlamydia caviae, contrasting in virulence, with respect to their abilities to ascend the guinea pig genital tract. We then determined the effect of combining the two variants on the course of infection and on the bacterial loads of the two variants in the genital tract. Although the variants individually had similar infection kinetics in the cervix, SP6, the virulent variant, could be isolated from the oviducts more often and in greater numbers than the attenuated variant, AZ2. SP6 also elicited higher levels of interleukin 8 (IL-8) in the lower genital tract and increased leukocyte infiltration in the cervix and uterus compared to AZ2. When the two variants were combined in a mixed infection, SP6 outcompeted AZ2 in the lower genital tract; however, AZ2 was able to ascend the genital tract as readily as SP6. These data suggest that the ability of SP6 to elicit an inflammatory response in the lower genital tract facilitates the spread of both variants to the oviducts.


Assuntos
Infecções por Chlamydia/microbiologia , Chlamydia/fisiologia , Infecções do Sistema Genital/microbiologia , Animais , Chlamydia/classificação , Infecções por Chlamydia/imunologia , Modelos Animais de Doenças , Feminino , Cobaias , Humanos , Interleucina-8/imunologia , Infecções do Sistema Genital/imunologia
12.
Microbiology (Reading) ; 161(8): 1648-1658, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25998263

RESUMO

Chlamydia are Gram-negative, obligate intracellular bacteria responsible for significant diseases in humans and economically important domestic animals. These pathogens undergo a unique biphasic developmental cycle transitioning between the environmentally stable elementary body (EB) and the replicative intracellular reticulate body (RB), a conversion that appears to require extensive regulation of protein synthesis and function. However, Chlamydia possess a limited number of canonical mechanisms of transcriptional regulation. Ser/Thr/Tyr phosphorylation of proteins in bacteria has been increasingly recognized as an important mechanism of post-translational control of protein function. We utilized 2D gel electrophoresis coupled with phosphoprotein staining and MALDI-TOF/TOF analysis to map the phosphoproteome of the EB and RB forms of Chlamydia caviae. Forty-two non-redundant phosphorylated proteins were identified (some proteins were present in multiple locations within the gels). Thirty-four phosphorylated proteins were identified in EBs, including proteins found in central metabolism and protein synthesis, Chlamydia-specific hypothetical proteins and virulence-related proteins. Eleven phosphorylated proteins were identified in RBs, mostly involved in protein synthesis and folding and a single virulence-related protein. Only three phosphoproteins were found in both EB and RB phosphoproteomes. Collectively, 41 of 42 C. caviae phosphoproteins were present across Chlamydia species, consistent with the existence of a conserved chlamydial phosphoproteome. The abundance of stage-specific phosphoproteins suggests that protein phosphorylation may play a role in regulating the function of developmental-stage-specific proteins and/or may function in concert with other factors in directing EB-RB transitions.


Assuntos
Proteínas de Bactérias/metabolismo , Infecções por Chlamydia/microbiologia , Chlamydia/crescimento & desenvolvimento , Chlamydia/metabolismo , Fosfoproteínas/metabolismo , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Chlamydia/química , Chlamydia/genética , Eletroforese em Gel Bidimensional , Regulação Bacteriana da Expressão Gênica , Humanos , Camundongos , Fosfoproteínas/química , Fosfoproteínas/genética , Espectrometria de Massas em Tandem
13.
Emerg Infect Dis ; 20(10): 1669-77, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25271406

RESUMO

Shiga toxins (Stx) are cytotoxins involved in severe human intestinal disease. These toxins are commonly found in Shigella dysenteriae serotype 1 and Shiga-toxin-producing Escherichia coli; however, the toxin genes have been found in other Shigella species. We identified 26 Shigella flexneri serotype 2 strains isolated by public health laboratories in the United States during 2001-2013, which encode the Shiga toxin 1a gene (stx1a). These strains produced and released Stx1a as measured by cytotoxicity and neutralization assays using anti-Stx/Stx1a antiserum. The release of Stx1a into culture supernatants increased ≈100-fold after treatment with mitomycin C, suggesting that stx1a is carried by a bacteriophage. Infectious phage were found in culture supernatants and increased ≈1,000-fold with mitomycin C. Whole-genome sequencing of several isolates and PCR analyses of all strains confirmed that stx1a was carried by a lambdoid bacteriophage. Furthermore, all patients who reported foreign travel had recently been to Hispañiola, suggesting that emergence of these novel strains is associated with that region.


Assuntos
Disenteria Bacilar/epidemiologia , Disenteria Bacilar/microbiologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Toxina Shiga I/metabolismo , Shigella flexneri/metabolismo , Animais , Chlorocebus aethiops , República Dominicana/epidemiologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Haiti/epidemiologia , Humanos , Lisogenia , Mitomicina/farmacologia , Mutação , Prófagos , Sorogrupo , Toxina Shiga I/classificação , Toxina Shiga I/genética , Shigella flexneri/classificação , Shigella flexneri/genética , Shigella flexneri/patogenicidade , Siphoviridae/genética , Siphoviridae/fisiologia , Células Vero , Virulência
14.
J Bacteriol ; 195(15): 3381-6, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23708130

RESUMO

Obligate intracellular bacteria comprising the order Chlamydiales lack the ability to synthesize nucleotides de novo and must acquire these essential compounds from the cytosol of the host cell. The environmental protozoan endosymbiont Protochlamydia amoebophila UWE25 encodes five nucleotide transporters with specificities for different nucleotide substrates, including ATP, GTP, CTP, UTP, and NAD. In contrast, the human pathogen Chlamydia trachomatis encodes only two nucleotide transporters, the ATP/ADP translocase C. trachomatis Npt1 (Npt1(Ct)) and the nucleotide uniporter Npt2(Ct), which transports GTP, UTP, CTP, and ATP. The notable absence of a NAD transporter, coupled with the lack of alternative nucleotide transporters on the basis of bioinformatic analysis of multiple C. trachomatis genomes, led us to re-evaluate the previously characterized transport properties of Npt1(Ct). Using [adenylate-(32)P]NAD, we demonstrate that Npt1(Ct) expressed in Escherichia coli enables the transport of NAD with an apparent K(m) and V(max) of 1.7 µM and 5.8 nM mg(-1) h(-1), respectively. The K(m) for NAD transport is comparable to the K(m) for ATP transport of 2.2 µM, as evaluated in this study. Efflux and substrate competition assays demonstrate that NAD is a preferred substrate of Npt1(Ct) compared to ATP. These results suggest that during reductive evolution, the pathogenic chlamydiae lost individual nucleotide transporters, in contrast to their environmental endosymbiont relatives, without compromising their ability to obtain nucleotides from the host cytosol through relaxation of transport specificity. The novel properties of Npt1Ct and its conservation in chlamydiae make it a potential target for the development of antimicrobial compounds and a model for studying the evolution of transport specificity.


Assuntos
Proteínas de Bactérias/metabolismo , Chlamydia trachomatis/enzimologia , Chlamydia trachomatis/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Translocases Mitocondriais de ADP e ATP/metabolismo , NAD/metabolismo , Proteínas de Bactérias/genética , Chlamydia trachomatis/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Marcação por Isótopo , Cinética , Proteínas de Membrana Transportadoras/genética , Translocases Mitocondriais de ADP e ATP/genética , Modelos Biológicos , Radioisótopos de Fósforo/metabolismo , Especificidade por Substrato
15.
PLoS One ; 18(4): e0284370, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37043469

RESUMO

Wastewater-based epidemiology (WBE) has become a valuable tool for monitoring SARS-CoV-2 infection trends throughout the COVID-19 pandemic. Population biomarkers that measure the relative human fecal contribution to normalize SARS-CoV-2 wastewater concentrations are needed for improved analysis and interpretation of community infection trends. The Centers for Disease Control and Prevention National Wastewater Surveillance System (CDC NWSS) recommends using the wastewater flow rate or human fecal indicators as population normalization factors. However, there is no consensus on which normalization factor performs best. In this study, we provided the first multistate assessment of the effects of flow rate and human fecal indicators (crAssphage, F+ Coliphage, and PMMoV) on the correlation of SARS-CoV-2 wastewater concentrations and COVID-19 cases using the CDC NWSS dataset of 182 communities across six U.S. states. Flow normalized SARS-CoV-2 wastewater concentrations produced the strongest correlation with COVID-19 cases. The correlation from the three human fecal indicators were significantly lower than flow rate. Additionally, using reverse transcription droplet digital polymerase chain reaction (RT-ddPCR) significantly improved correlation values over samples that were analyzed with real-time reverse transcription quantitative polymerase chain reaction (rRT-qPCR). Our assessment shows that utilizing flow normalization with RT-ddPCR generate the strongest correlation between SARS-CoV-2 wastewater concentrations and COVID-19 cases.


Assuntos
COVID-19 , Estados Unidos/epidemiologia , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias , Pandemias , Reação em Cadeia da Polimerase em Tempo Real , RNA Viral
16.
ACS ES T Water ; 3(1): 16-29, 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-37552720

RESUMO

Wastewater-based epidemiology (WBE) has been utilized for outbreak monitoring and response efforts in university settings during the coronavirus disease 2019 (COVID-19) pandemic. However, few studies examined the impact of university policies on the effectiveness of WBE to identify cases and mitigate transmission. The objective of this study was to retrospectively assess relationships between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) wastewater outcomes and COVID-19 cases in residential buildings of a large university campus across two academic semesters (August 2020-May 2021) under different COVID-19 mitigation policies. Clinical case surveillance data of student residents were obtained from the university COVID-19 response program. We collected and processed building-level wastewater for detection and quantification of SARS-CoV-2 RNA by RT-qPCR. The odds of obtaining a positive wastewater sample increased with COVID-19 clinical cases in the fall semester (OR = 1.50, P value = 0.02), with higher odds in the spring semester (OR = 2.63, P value < 0.0001). We observed linear associations between SARS-CoV-2 wastewater concentrations and COVID-19 clinical cases (parameter estimate = 1.2, P value = 0.006). Our study demonstrated the effectiveness of WBE in the university setting, though it may be limited under different COVID-19 mitigation policies. As a complementary surveillance tool, WBE should be accompanied by robust administrative and clinical testing efforts for the COVID-19 pandemic response.

17.
Front Public Health ; 11: 1003923, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969651

RESUMO

Objectives: To identify risk factors associated with symptoms of anxiety, depression, and obsessive-compulsive disorder (OCD) among children during the 1st year of the COVID-19 pandemic. Methods: A longitudinal study with three cross-sectional timepoints [April 2020 (n = 273), October 2020 (n = 180), and April 2021 (n = 116)] was conducted at a K-12 public school in Florida. Infection and sero-positivity for SARS-CoV-2 was determined by molecular and serologic approaches. Adjusted odds ratios using mixed effect logistic regression models for symptom-derived indicators of anxiety, depression, and OCD in children in April 2021 are presented; past infection and seropositivity were included in the models. Results: The prevalence of anxiety, depression, or OCD moved from 47.1, to 57.2, to 42.2% across the three timepoints during the study. By endline of the study, in April 2021, non-white children were at higher risk for depression and OCD. Risk for anxiety, depression, and OCD was associated with students who lost a family member due to COVID-19 and who were identified as at-risk in previous timepoints. Rates of SARS-CoV-2 infection and seropositivity were low and not statistically associated with assessed outcomes. Conclusions: In situations like the COVID-19 pandemic, targeted mental health interventions and screenings are needed in children and adolescents, especially among minority children.


Assuntos
COVID-19 , Criança , Adolescente , Humanos , COVID-19/epidemiologia , Estudos Longitudinais , Pandemias , Estudos Transversais , Florida/epidemiologia , SARS-CoV-2
18.
Infect Immun ; 80(12): 4061-70, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23045475

RESUMO

The emergence of new pathogens and the exploitation of novel pathogenic niches by bacteria typically require the horizontal transfer of virulence factors and subsequent adaptation--a "fine-tuning" process--for the successful incorporation of these factors into the microbe's genome. The function of newly acquired virulence factors may be hindered by the expression of genes already present in the bacterium. Occasionally, certain genes must be inactivated or deleted for full expression of the pathogen phenotype to occur. These genes are known as antivirulence genes (AVGs). Originally identified in Shigella, AVGs have improved our understanding of pathogen evolution and provided a novel approach to drug and vaccine development. In this review, we revisit the AVG definition and update the list of known AVGs, which now includes genes from pathogens such as Salmonella, Yersinia pestis, and the virulent Francisella tularensis subspecies. AVGs encompass a wide variety of different roles within the microbe, including genes involved in metabolism, biofilm synthesis, lipopolysaccharide modification, and host vasoconstriction. More recently, the use of one of these AVGs (lpxL) as a potential vaccine candidate highlights the practical application of studying AVG inactivation in microbial pathogens.


Assuntos
Bactérias/patogenicidade , Evolução Molecular , Genes Bacterianos , Virulência/genética , Adaptação Biológica/genética , Animais , Bactérias/genética , Inativação Gênica , Humanos , Camundongos
19.
Infect Immun ; 80(2): 612-9, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22144478

RESUMO

In order to study the interaction of variants in in vivo infection, we employed an azithromycin-resistant mutant (AZ(2)) and its wild-type parent (SP(6)) in the guinea pig model of Chlamydia caviae conjunctival infection. When each strain was inoculated individually into conjunctiva, both attained the same level of growth, but AZ(2) elicited less pathology. However, when equal numbers of the two strains were inoculated together into the guinea pig conjunctiva, SP(6) produced a significantly greater number of inclusion-forming units than AZ(2), and the pathology reflected that of a SP(6) monoinfection. The goal of this study was to further characterize the dynamics of concomitant infection of these two distinct variants, with particular emphasis on the impact of the host response on the in vivo growth of each organism and the development of pathology. Animals infected with AZ(2) had reduced conjunctival infiltration with CD45(+) cells and neutrophils as well as a reduced interleukin-8 (IL-8) response. Gene expression of gamma interferon (IFN-γ), tumor necrosis factor alpha (TNF-α), CCL2, and CCL5 was also significantly lower in AZ(2)-infected animals. The lower inflammatory response induced by AZ(2) was associated with its decreased ability to activate NF-κB via Toll-like receptor 2 (TLR2). In general, the inflammatory response in animals infected with both variants was greater than in infection with AZ(2) alone, resulting in lower numbers of AZ(2) than those of SP(6) in the mixed infection. Our results suggest that the ability to elicit an inflammatory response is an important factor in the dynamics of mixed infection with strains that display different pathological phenotypes.


Assuntos
Infecções por Chlamydia/microbiologia , Infecções por Chlamydia/patologia , Chlamydia/classificação , Conjuntivite de Inclusão/microbiologia , Inflamação/microbiologia , Animais , Túnica Conjuntiva/metabolismo , Túnica Conjuntiva/patologia , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Cobaias , Tempo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo
20.
Proc Natl Acad Sci U S A ; 106(1): 292-7, 2009 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-19104068

RESUMO

To facilitate genetic investigations in the obligate intracellular pathogens Chlamydia, the ability to construct variants by homologous recombination was investigated in C. psittaci 6BC. The single rRNA operon was targeted with a synthetic 16S rRNA allele, harboring three nucleotide substitutions over 398 bp, which imparts resistance to kasugamycin (Ksm) and spectinomycin (Spc) and causes loss of one HpaI restriction site. A fourth, silent mutation was introduced 654 bp downstream in the beginning of the 23S rRNA gene. C. psittaci 6BC infectious particles were electroporated with various concentrations of circular or linearized plasmids containing different lengths of the rRNA region homologous to the chromosomal copy except for the four nucleotide substitutions. Ksm and Spc were added 18 h after inoculation onto confluent cell monolayers in the plaque assay. Resistant plaques were picked and expanded with selection 10 days later before collecting DNA for analysis by PCR, restriction mapping, sequencing, or Southern. Spontaneous resistance to Ksm and Spc was never observed in mock electroporated bacteria (frequency <6.2 x 10(-9)). Conversely, double resistance and replacement of the 16S rRNA gene were observed when C. psittaci was electroporated with the recombination substrates. Highest efficiency was obtained with 10 microg of circular vector prepared in a DNA methylase-deficient Escherichia coli (1.9 +/- 1.1 x 10(-6), n = 7). Coinheritance of the silent 23S rRNA mutation was seen in 46 of 67 recombinants analyzed, illustrating DNA exchange of up to 1,052 bp in length. These findings provide the first step toward genetic manipulation of Chlamydia.


Assuntos
Chlamydophila psittaci/genética , DNA Recombinante/genética , Eletroporação/métodos , Transfecção/métodos , Bactérias/genética , Sequência de Bases , Escherichia coli/genética , Dados de Sequência Molecular , Mutação , RNA Ribossômico 16S/genética , Recombinação Genética , Ensaio de Placa Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA