Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Biol Chem ; 405(1): 79-89, 2024 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-37786927

RESUMO

Infections remain the most common cause of death after traumatic spinal cord injury, likely due to a developing immune deficiency syndrome. This, together with a somewhat contradictory development of autoimmunity in many patients, are two major components of the maladaptive systemic immune response. Although the local non-resolving inflammation in the lesioned spinal cord may lead to an antibody formation against autoantigens of the injured spinal cord tissue, there are also natural (pre-existing) autoantibodies independent of the injury. The way in which these autoantibodies with different origins affect the neuronal and functional outcome of spinal cord-injured patients is still controversial.


Assuntos
Autoanticorpos , Traumatismos da Medula Espinal , Humanos , Neurônios , Inflamação , Autoimunidade , Medula Espinal
2.
Immunity ; 43(4): 817-29, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26488817

RESUMO

Growing empirical evidence suggests that nutrition and bacterial metabolites might impact the systemic immune response in the context of disease and autoimmunity. We report that long-chain fatty acids (LCFAs) enhanced differentiation and proliferation of T helper 1 (Th1) and/or Th17 cells and impaired their intestinal sequestration via p38-MAPK pathway. Alternatively, dietary short-chain FAs (SCFAs) expanded gut T regulatory (Treg) cells by suppression of the JNK1 and p38 pathway. We used experimental autoimmune encephalomyelitis (EAE) as a model of T cell-mediated autoimmunity to show that LCFAs consistently decreased SCFAs in the gut and exacerbated disease by expanding pathogenic Th1 and/or Th17 cell populations in the small intestine. Treatment with SCFAs ameliorated EAE and reduced axonal damage via long-lasting imprinting on lamina-propria-derived Treg cells. These data demonstrate a direct dietary impact on intestinal-specific, and subsequently central nervous system-specific, Th cell responses in autoimmunity, and thus might have therapeutic implications for autoimmune diseases such as multiple sclerosis.


Assuntos
Autoimunidade/efeitos dos fármacos , Sistema Nervoso Central/imunologia , Gorduras na Dieta/farmacologia , Duodeno/imunologia , Encefalomielite Autoimune Experimental/etiologia , Ácidos Graxos/farmacologia , Linfopoese/efeitos dos fármacos , Subpopulações de Linfócitos T/efeitos dos fármacos , Animais , Gorduras na Dieta/toxicidade , Duodeno/metabolismo , Duodeno/microbiologia , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Ácidos Graxos/química , Ácidos Graxos/toxicidade , Transplante de Microbiota Fecal , Microbioma Gastrointestinal/fisiologia , Regulação da Expressão Gênica/imunologia , Ácidos Láuricos/toxicidade , Receptores X do Fígado , Sistema de Sinalização das MAP Quinases , Camundongos , Peso Molecular , Receptores Nucleares Órfãos/biossíntese , Receptores Nucleares Órfãos/genética , Receptores Acoplados a Proteínas G/biossíntese , Receptores Acoplados a Proteínas G/genética , Baço/imunologia , Baço/patologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T Reguladores/imunologia , Células Th1/imunologia , Células Th17/imunologia , Transcriptoma
3.
Haematologica ; 106(3): 708-717, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32193251

RESUMO

The immunoglobulin (Ig) heavy and light chain variable gene mutational pattern of the B cell receptor (BCR) in primary central nervous system (CNS) lymphoma (PCNSL) cells suggests antigenic selection to drive pathogenesis and confinement to the CNS. This hypothesis is supported by the observation that the tumor B cell receptor (tBCR) of PCNSL is polyreactive and may be stimulated by CNS proteins. To obtain further insight into the role of the germinal center (GC) reaction on BCR reactivity, we constructed recombinant antibodies (recAb) with Ig heavy and light chain sequences of the corresponding naive BCR (nBCR) by reverting tBCR somatic mutations in 10 PCNSL. Analysis of nBCR-derived recAb reactivity by a protein microarray and immunoprecipitation demonstrated auto- and polyreactivity in all cases. Self-/polyreactivity was not lost during the GC reaction; surprisingly, tBCR significantly increased self-/polyreactivity. In addition to proteins recognized by both the nBCR and tBCR, tBCR gained self-/polyreactivity particularly for proteins expressed in the CNS including proteins of oligodendrocytes/myelin, the S100 protein family, and splicing factors. Thus, in PCNSL pathogenesis, a faulty GC reaction may increase self-/polyreactivity, hereby facilitating BCR signaling via multiple CNS antigens, and may ultimately foster tumor cell survival in the CNS.


Assuntos
Neoplasias do Sistema Nervoso Central , Cadeias Pesadas de Imunoglobulinas , Sistema Nervoso Central , Neoplasias do Sistema Nervoso Central/genética , Centro Germinativo , Humanos , Receptores de Antígenos de Linfócitos B/genética
4.
Neurocrit Care ; 35(1): 139-152, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33236290

RESUMO

BACKGROUND: Diagnosis of intensive care unit acquired weakness (ICUAW) is challenging. Pathogenesis of underlying critical illness polyneuromyopathy (CIPNM) remains incompletely understood. This exploratory study investigated whether longitudinal neuromuscular ultrasound examinations and cytokine analyses in correlation to classical clinical and electrophysiological assessment contribute to the understanding of CIPNM. METHODS: Intensive care unit patients were examined every 7 days until discharge from hospital. Clinical status, nerve conduction studies, electromyography as well as ultrasound of peripheral nerves and tibial anterior muscle were performed. Cytokine levels were analyzed by a bead-based multiplex assay system. RESULTS: Of 248 screened patients, 35 patients were included at median of 6 days (IQR: 8) after admission to intensive care unit. Axonal damage was the main feature of CIPNM. At the peak of CIPNM (7 days after inclusion), nerve ultrasound showed cross-sectional area increase of tibial nerve as a sign of inflammatory edema as well as hypoechoic nerves as a possible sign of inflammation. Cytokine analyses showed signs of monocyte and macrophage activation at this stage. Fourteen days after inclusion, cytokines indicated systemic immune response as well as profiles associated to neovascularization and regeneration. CONCLUSIONS: Exploratory neuromuscular ultrasound and cytokine analyses showed signs of inflammation like macrophage and monocyte activation at the peak of CIPNM followed by a systemic immune response parallel to axonal damage. This underlines the role of both axonal damage and inflammation in pathogenesis of CIPNM.


Assuntos
Doenças Musculares , Polineuropatias , Estado Terminal , Citocinas , Humanos , Unidades de Terapia Intensiva , Debilidade Muscular , Polineuropatias/diagnóstico por imagem , Ultrassonografia
5.
J Cell Mol Med ; 24(20): 11814-11827, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32885592

RESUMO

Mesenchymal stromal cells are promising candidates for regenerative applications upon treatment of bone defects. Bone marrow-derived stromal cells (BMSCs) are limited by yield and donor morbidity but show superior osteogenic capacity compared to adipose-derived stromal cells (ASCs), which are highly abundant and easy to harvest. The underlying reasons for this difference on a proteomic level have not been studied yet. Human ASCs and BMSCs were characterized by FACS analysis and tri-lineage differentiation, followed by an intraindividual comparative proteomic analysis upon osteogenic differentiation. Results of the proteomic analysis were followed by functional pathway analysis. 29 patients were included with a total of 58 specimen analysed. In these, out of 5148 identified proteins 2095 could be quantified in >80% of samples of both cell types, 427 in >80% of ASCs only and 102 in >80% of BMSCs only. 281 proteins were differentially regulated with a fold change of >1.5 of which 204 were higher abundant in BMSCs and 77 in ASCs. Integrin cell surface interactions were the most overrepresented pathway with 5 integrins being among the proteins with highest fold change. Integrin 11a, a known key protein for osteogenesis, could be identified as strongly up-regulated in BMSC confirmed by Western blotting. The integrin expression profile is one of the key distinctive features of osteogenic differentiated BMSCs and ASCs. Thus, they represent a promising target for modifications of ASCs aiming to improve their osteogenic capacity and approximate them to that of BMSCs.


Assuntos
Tecido Adiposo/citologia , Diferenciação Celular , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteogênese , Proteômica , Adulto , Osso Esponjoso/citologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteoma/metabolismo , Gordura Subcutânea/citologia
7.
Int J Mol Sci ; 21(11)2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32481647

RESUMO

The wide-ranging influence of vascular endothelial growth factor (VEGF) within the central (CNS) and peripheral nervous system (PNS), for example through effects on axonal growth or neuronal cell survival, is mainly mediated by VEGF receptor 2 (VEGFR-2). However, the regulation of VEGFR-2 expression during development is not yet well understood. As microRNAs are considered to be key players during neuronal maturation and regenerative processes, we identified the two microRNAs (miRNAs)-miR-129-5p and miR-130a-3p-that may have an impact on VEGFR-2 expression in young and mature sensory and lower motor neurons. The expression level of VEGFR-2 was analyzed by using in situ hybridization, RT-qPCR, Western blot, and immunohistochemistry in developing rats. microRNAs were validated within the spinal cord and dorsal root ganglia. To unveil the molecular impact of our candidate microRNAs, dissociated cell cultures of sensory and lower motor neurons were transfected with mimics and inhibitors. We depicted age-dependent VEGFR-2 expression in sensory and lower motor neurons. In detail, in lower motor neurons, VEGFR-2 expression was significantly reduced during maturation, in conjunction with an increased level of miR-129-5p. In sensory dorsal root ganglia, VEGFR-2 expression increased during maturation and was accompanied by an overexpression of miR-130a-3p. In a second step, the functional significance of these microRNAs with respect to VEGFR-2 expression was proven. Whereas miR-129-5p seems to decrease VEGFR-2 expression in a direct manner in the CNS, miR-130a-3p might indirectly control VEGFR-2 expression in the PNS. A detailed understanding of genetic VEGFR-2 expression control might promote new strategies for the treatment of severe neurological diseases like ischemia or peripheral nerve injury.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/metabolismo , Neurônios Motores/metabolismo , Células Receptoras Sensoriais/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Sistema Nervoso Central/metabolismo , Gânglios Espinais/metabolismo , Perfilação da Expressão Gênica , Imuno-Histoquímica , Hibridização In Situ , Sistema Nervoso Periférico/metabolismo , Ratos , Ratos Wistar , Medula Espinal/metabolismo
8.
Cell Physiol Biochem ; 52(6): 1412-1426, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31075191

RESUMO

BACKGROUND/AIMS: Amyotrophic lateral sclerosis (ALS) is the most common degenerative motor neuron disease in humans. However, the pathogenesis of ALS is not yet understood. The wobbler mouse is considered as an animal model for the sporadic form of ALS due to its spontaneous mutation in the Vps54 gene. Due to transactivation of NDRG2 by p53, this tumor suppressor might play a functional role in stress induced cell death in wobbler mice as well as ALS patients. Furthermore, deregulated microRNAs are often related to neurodegenerative diseases. Thus, the NDRG2 linked miR-375-3p was of interest for this study. METHODS: Here, we investigated the relevance of NDRG2 and miR-375-3p for the pathomechanism of the motor neuronal degeneration in wobbler mice by investigating expression level via qPCR and Western Blot as well as localization of these molecules in the cervical spinal cord by in situ hybridization, immunostaining and mass spectrometric analysis. RESULTS: We were able to show a differential regulation of the expression of NDRG2 as well as miR-375-3p in the cervical part of the spinal cord of wobbler mice. In addition, for the first time we were able to demonstrate an expression of NDRG2 in motor neurons using different techniques. CONCLUSION: The present study has shown NDRG2 and miR-375-3p to be promising targets for further research of the pathogenesis of sporadic ALS in the wobbler mouse model. Based on these results and in combination with previous published data we could develop a putative pro-apoptotic mechanism in the spinal cord of the wobbler mouse.


Assuntos
MicroRNAs/metabolismo , Proteínas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Apoptose , Modelos Animais de Doenças , Regulação para Baixo , Hibridização In Situ , Camundongos , Microscopia de Fluorescência , Neurônios Motores/metabolismo , Proteínas/genética , Medula Espinal/metabolismo , Proteína Supressora de Tumor p53/metabolismo
9.
J Proteome Res ; 17(10): 3418-3430, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30207155

RESUMO

Cerebrospinal fluid (CSF) is in direct contact with the brain and serves as a valuable specimen to examine diseases of the central nervous system through analyzing its components. These include the analysis of metabolites, cells as well as proteins. For identifying new suitable diagnostic protein biomarkers bottom-up data-dependent acquisition (DDA) mass spectrometry-based approaches are most popular. Drawbacks of this method are stochastic and irreproducible precursor ion selection. Recently, data-independent acquisition (DIA) emerged as an alternative method. It overcomes several limitations of DDA, since it combines the benefits of DDA and targeted methods like selected reaction monitoring (SRM). We established a DIA method for in-depth proteome analysis of CSF. For this, four spectral libraries were generated with samples from native CSF ( n = 5), CSF fractionation (15 in total) and substantia nigra fractionation (54 in total) and applied to three CSF DIA replicates. The DDA and DIA methods for CSF were conducted with the same nanoLC parameters using a 180 min gradient. Compared to a conventional DDA method, our DIA approach increased the number of identified protein groups from 648 identifications in DDA to 1574 in DIA using a comprehensive spectral library generated with DDA measurements from five native CSF and 54 substantia nigra fractions. We also could show that a sample specific spectral library generated from native CSF only increased the identification reproducibility from three DIA replicates to 90% (77% with a DDA method). Moreover, by utilizing a substantia nigra specific spectral library for CSF DIA, over 60 brain-originated proteins could be identified compared to only 11 with DDA. In conclusion, the here presented optimized DIA method substantially outperforms DDA and could develop into a powerful tool for biomarker discovery in CSF. Data are available via ProteomeXchange with the identifiers PXD010698, PXD010708, PXD010690, PXD010705, and PXD009624.


Assuntos
Hidrocefalia/líquido cefalorraquidiano , Espectrometria de Massas/métodos , Proteoma/metabolismo , Proteômica/métodos , Biomarcadores/líquido cefalorraquidiano , Biomarcadores/metabolismo , Humanos , Reprodutibilidade dos Testes , Substância Negra/metabolismo
10.
Hum Mol Genet ; 25(3): 459-71, 2016 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-26604148

RESUMO

The protease HtrA2 has a protective role inside mitochondria, but promotes apoptosis under stress. We previously identified the G399S HtrA2 mutation in Parkinson's disease (PD) patients and reported mitochondrial dysfunction in vitro. Mitochondrial dysfunction is a common feature of PD and related to neurodegeneration. Complete loss of HtrA2 has been shown to cause neurodegeneration in mice. However, the full impact of HtrA2 overexpression or the G399S mutation is still to be determined in vivo. Here, we report the first HtrA2 G399S transgenic mouse model. Our data suggest that the mutation has a dominant-negative effect. We also describe a toxic effect of wild-type (WT) HtrA2 overexpression. Only low overexpression of the G399S mutation allowed viable animals and we suggest that the mutant protein is likely unstable. This is accompanied by reduced mitochondrial respiratory capacity and sensitivity to apoptotic cell death. Mice overexpressing WT HtrA2 were viable, yet these animals have inhibited mitochondrial respiration and significant induction of apoptosis in the brain leading to motor dysfunction, highlighting the opposing roles of HtrA2. Our data further underscore the importance of HtrA2 as a key mediator of mitochondrial function and its fine regulatory role in cell fate. The location and abundance of HtrA2 is tightly controlled and, therefore, human mutations leading to gain- or loss of function could provide significant risk for PD-related neurodegeneration.


Assuntos
Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Mutação , Doença de Parkinson/genética , Serina Endopeptidases/genética , Animais , Apoptose , Encéfalo/metabolismo , Encéfalo/patologia , Respiração Celular , Modelos Animais de Doenças , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Dosagem de Genes , Regulação da Expressão Gênica , Serina Peptidase 2 de Requerimento de Alta Temperatura A , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas Mitocondriais/metabolismo , Atividade Motora , Neurônios/metabolismo , Neurônios/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Fenótipo , Serina Endopeptidases/metabolismo
11.
Bioinformatics ; 32(10): 1577-9, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26803161

RESUMO

UNLABELLED: The R/Bioconductor package Protein Array Analyzer (PAA) facilitates a flexible analysis of protein microarrays for biomarker discovery (esp., ProtoArrays). It provides a complete data analysis workflow including preprocessing and quality control, uni- and multivariate feature selection as well as several different plots and results tables to outline and evaluate the analysis results. As a main feature, PAA's multivariate feature selection methods are based on recursive feature elimination (e.g. SVM-recursive feature elimination, SVM-RFE) with stability ensuring strategies such as ensemble feature selection. This enables PAA to detect stable and reliable biomarker candidate panels. AVAILABILITY AND IMPLEMENTATION: PAA is freely available (BSD 3-clause license) from http://www.bioconductor.org/packages/PAA/ CONTACT: michael.turewicz@rub.de or martin.eisenacher@rub.de.


Assuntos
Análise Serial de Proteínas , Biomarcadores , Software
12.
J Immunol ; 195(3): 1312-9, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26116512

RESUMO

Primary lymphoma of the CNS (PCNSL) is a diffuse large B cell lymphoma confined to the CNS. To elucidate its peculiar organ tropism, we generated recombinant Abs (recAbs) identical to the BCR of 23 PCNSLs from immunocompetent patients. Although none of the recAbs showed self-reactivity upon testing with common autoantigens, they recognized 1547 proteins present on a large-scale protein microarray, indicating polyreactivity. Interestingly, proteins (GRINL1A, centaurin-α, BAIAP2) recognized by the recAbs are physiologically expressed by CNS neurons. Furthermore, 87% (20/23) of the recAbs, including all Abs derived from IGHV4-34 using PCNSL, recognized galectin-3, which was upregulated on microglia/macrophages, astrocytes, and cerebral endothelial cells upon CNS invasion by PCNSL. Thus, PCNSL Ig may recognize CNS proteins as self-Ags. Their interaction may contribute to BCR signaling with sustained NF-κB activation and, ultimately, may foster tumor cell proliferation and survival. These data may also explain, at least in part, the affinity of PCNSL cells for the CNS.


Assuntos
Anticorpos Antineoplásicos/imunologia , Neoplasias do Sistema Nervoso Central/imunologia , Linfoma de Células B/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Astrócitos/imunologia , Sequência de Bases , Proteínas Sanguíneas , Carcinoma de Células Grandes/imunologia , Proliferação de Células , Células Endoteliais/imunologia , Ativação Enzimática , Feminino , Galectina 3/imunologia , Galectinas , Perfilação da Expressão Gênica , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Cadeias Leves de Imunoglobulina/genética , Cadeias Leves de Imunoglobulina/imunologia , Imunoglobulinas/genética , Imunoglobulinas/imunologia , Macrófagos/imunologia , Masculino , Microglia/imunologia , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Proteínas do Tecido Nervoso/imunologia , RNA Polimerase II/imunologia , Análise de Sequência de DNA
13.
Proc Natl Acad Sci U S A ; 111(14): E1409-18, 2014 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-24706874

RESUMO

Short antimicrobial peptides rich in arginine (R) and tryptophan (W) interact with membranes. To learn how this interaction leads to bacterial death, we characterized the effects of the minimal pharmacophore RWRWRW-NH2. A ruthenium-substituted derivative of this peptide localized to the membrane in vivo, and the peptide also integrated readily into mixed phospholipid bilayers that resemble Gram-positive membranes. Proteome and Western blot analyses showed that integration of the peptide caused delocalization of peripheral membrane proteins essential for respiration and cell-wall biosynthesis, limiting cellular energy and undermining cell-wall integrity. This delocalization phenomenon also was observed with the cyclic peptide gramicidin S, indicating the generality of the mechanism. Exogenous glutamate increases tolerance to the peptide, indicating that osmotic destabilization also contributes to antibacterial efficacy. Bacillus subtilis responds to peptide stress by releasing osmoprotective amino acids, in part via mechanosensitive channels. This response is triggered by membrane-targeting bacteriolytic peptides of different structural classes as well as by hypoosmotic conditions.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Proteínas de Membrana/metabolismo , Bacillus subtilis/metabolismo , Sítios de Ligação , Citocromos c/metabolismo , Homeostase , Bicamadas Lipídicas , Fosfolipídeos/metabolismo
14.
Biochim Biophys Acta ; 1854(7): 741-5, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25680929

RESUMO

UNLABELLED: Nasal lavage fluid (NLF) becomes more and more important as a noninvasive patient sample serving as a new opportunity to discover new biomarkers in diverse human diseases comprising mainly respiratory disorders. This was supported by the observation that the protein profile of NLF differs from conventional samples of i.e. whole blood, hence being capable to complement or even expand the so far biomarker index. Since sample acquisition and processing are the most crucial steps for a profound and sensitive identification we present here a modified protocol of NLF generation and measurement. We show that mild washing steps for sample generation followed by column-mediated concentration and acetone precipitation are appropriate steps to minimize serum leakage by concomitantly highlighting proteins which represent typical components of NLF. This is shown by separation of proteins via 2D-PAGE followed by LC-MS/MS as well as Gel-LC-MS/MS measurements of cut and digested protein spots/bands. SIGNIFICANCE: For a better understanding of the molecular mechanisms underlying respiratory diseases NLF samples are favored sources for protein research. NLF acquisition and sample processing were impaired so far by the problem of blood serum leakage and high salt content. Here, we present a modified protocol of NLF generation leading to the display of typical inventory of NLF proteins combined with reduced salt and serum contaminants. By this, both assay reproducibility and the detection of up- or down-regulated proteins reliably can be discovered in the case of biomarker screenings in a disease versus control design. This article is part of a Special Issue entitled: Neuroproteomics: Applications in Neuroscience and Neurology.


Assuntos
Líquido da Lavagem Nasal , Proteômica/métodos , Rinite Alérgica Sazonal/metabolismo , Sinusite/metabolismo , Biomarcadores/metabolismo , Doença Crônica , Feminino , Humanos , Masculino
15.
J Neurochem ; 138(5): 758-74, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27333324

RESUMO

Parkinson's disease can be caused by mutations in the α-synuclein gene and is characterized by aggregates of α-synuclein protein. Aggregates are degraded by the autophago-lysosomal pathway. Since Rab7 has been shown to regulate trafficking of late endosomes and autophagosomes, we hypothesized that over-expressing Rab7 might be beneficial in Parkinson's disease. To test this hypothesis, we expressed the pathogenic A53T mutant of α-synuclein in HEK293 cells and Drosophila melanogaster. In HEK293 cells, EGFP-Rab7-decorated vesicles contain α-synuclein. Rab7 over-expression reduced the percentage of cells with α-synuclein particles and the amount of α-synuclein protein. Time-lapse microscopy confirmed that particles frequently disappeared with Rab7 over-expression. Clearance of α-synuclein is explained by the increased occurrence of acidified α-synuclein vesicles with Rab7 over-expression, presumably representing autolysosomes. Rab7 over-expression reduced apoptosis and the percentage of dead cells in trypan blue staining. In the fly model, Rab7 rescued the locomotor deficit induced by neuronal expression of A53T-α-synuclein. These beneficial effects were not produced by Rab7 missense mutations causing Charcot Marie Tooth neuropathy, or by the related GTPases Rab5, Rab9, or Rab23. Using mass spectrometry, we identified Rab7 in neuromelanin granules purified from human substantia nigra, indicating that Rab7 might be involved in the biogenesis of these possibly protective, autophagosome-like organelles in dopaminergic neurons. Taken together, Rab7 increased the clearance of α-synuclein aggregates, reduced cell death, and rescued the phenotype in a fly model of Parkinson's disease. These findings indicate that Rab7 is rate-limiting for aggregate clearance, and that Rab7 activation may offer a therapeutic strategy for Parkinson's disease. Cells over-expressing aggregation-prone A53T alpha-synuclein develop cytoplasmic aggregates mimicking changes observed in Parkinson's disease. When following cells in time-lapse microscopy, some few cells are able to remove these aggregates (Opazo et al. 2008). We now show that the percentage of cells clearing all aggregates from their cytosol is greatly increased with Rab7 over-expression, indicating that availability of Rab7 is rate-limiting for autophagic clearance of aggregates. The functional significance of this effect in neurons was confirmed in a Drosophila melanogaster model of Parkinson's disease.


Assuntos
Drosophila melanogaster/metabolismo , Substância Negra/metabolismo , alfa-Sinucleína/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Autofagia/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Células HEK293 , Humanos , Melaninas/metabolismo , Fagossomos/metabolismo , proteínas de unión al GTP Rab7
16.
J Biol Chem ; 289(30): 20979-90, 2014 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-24872408

RESUMO

Connexin43 (Cx43) is the most abundant gap junction protein in higher vertebrate organisms and has been shown to be involved in junctional and non-junctional functions. In addition to the expression of full-length Cx43, endogenously produced carboxyl-terminal segments of Cx43 have been described and have been suggested to be involved in manifold biological functions, such as hypoxic preconditioning and neuronal migration. Molecular aspects, however, behind the separate generation of carboxyl-terminal segments of Cx43 have remained elusive. Here we report on a mechanism that may play a key role in the separate production of these domains. First, stringent evidence derived from siRNA treatment and specific knockouts revealed significant loss of the low molecular weight fragments of Cx43. By applying a dicistronic vector strategy on transfected cell lines, we were able to identify putative IRES activity (nucleotides 442­637) in the coding region of Cx43, which resides upstream from the nucleotide sequence encoding the carboxyl terminus (nucleotides 637­1149). Functional responsiveness of the endogenous expression of Cx43 fragments to hypoxic/ischemic treatment was evaluated in in vitro and in vivo models, which led to a significant increase of the fastest migrating form (20 kDa) under conditions of metabolic deprivation. By nano-MS spectrometry, we achieved stringent evidence of the identity of the 20-kDa segment as part of the carboxyl-terminal domain of full-length Cx43. Our data prove the existence of endogenously expressed carboxyl-terminal domains, which may serve as valuable tools for further translational application in ischemic disorders.


Assuntos
Conexina 43/biossíntese , Modelos Biológicos , Biossíntese de Proteínas/fisiologia , Sequências Reguladoras de Ácido Ribonucleico/fisiologia , Animais , Hipóxia Celular/fisiologia , Conexina 43/genética , Camundongos , Células NIH 3T3 , Estrutura Terciária de Proteína , Ratos
17.
Biochim Biophys Acta ; 1844(5): 977-87, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24607371

RESUMO

In recent years, knowledge about immune-related disorders has substantially increased, especially in the field of central nervous system (CNS) disorders. Recent innovations in protein-related microarray technology have enabled the analysis of interactions between numerous samples and up to 20,000 targets. Antibodies directed against ion channels, receptors and other synaptic proteins have been identified, and their causative roles in different disorders have been identified. Knowledge about immunological disorders is likely to expand further as more antibody targets are discovered. Therefore, protein microarrays may become an established tool for routine diagnostic procedures in the future. The identification of relevant target proteins requires the development of new strategies to handle and process vast quantities of data so that these data can be evaluated and correlated with relevant clinical issues, such as disease progression, clinical manifestations and prognostic factors. This review will mainly focus on new protein array technologies, which allow the processing of a large number of samples, and their various applications with a deeper insight into their potential use as diagnostic tools in neurodegenerative diseases and other diseases. This article is part of a Special Issue entitled: Biomarkers: A Proteomic Challenge.


Assuntos
Doenças Autoimunes/diagnóstico , Biomarcadores/análise , Análise Serial de Proteínas/métodos , Proteínas/metabolismo , Proteoma/análise , Proteômica/métodos , Animais , Doenças Autoimunes/metabolismo , Humanos
18.
Chembiochem ; 16(7): 1101-8, 2015 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-25821129

RESUMO

The mechanism of action of aurein 2.2 and aurein 2.3, antimicrobial peptides from the frog Litoria aurea, was investigated. Proteomic profiling of the Bacillus subtilis stress response indicates that the cell envelope is the main target for both aureins. Upon treatment, the cytoplasmic membrane depolarizes and cellular ATP levels decrease. Global element analysis shows that intracellular concentrations of certain metal ions (potassium, magnesium, iron, and manganese) strongly decrease. Selective translocation of some ions over others was demonstrated in vitro. The same set of ions also leaks from B. subtilis cells treated with sublethal concentrations of gramicidin S, MP196, and nisin. Aureins do not permeabilize the cell membrane for propidium iodide thus excluding formation of large, unspecific pores. Our data suggest that the aureins acts by forming small pores thereby causing membrane depolarization, and by triggering the release of certain metal ions thus disturbing cellular ion homeostasis.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/metabolismo , Sequência de Aminoácidos , Animais , Peptídeos Catiônicos Antimicrobianos/química , Anuros , Bacillus subtilis/citologia , Membrana Celular/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Dados de Sequência Molecular , Porosidade , Proteômica
19.
J Neural Transm (Vienna) ; 122(7): 993-1005, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26123835

RESUMO

Brain function in normal aging and neurological diseases has long been a subject of interest. With current technology, it is possible to go beyond descriptive analyses to characterize brain cell populations at the molecular level. However, the brain comprises over 100 billion highly specialized cells, and it is a challenge to discriminate different cell groups for analyses. Isolating intact neurons is not feasible with traditional methods, such as tissue homogenization techniques. The advent of laser microdissection techniques promises to overcome previous limitations in the isolation of specific cells. Here, we provide a detailed protocol for isolating and analyzing neurons from postmortem human brain tissue samples. We describe a workflow for successfully freezing, sectioning and staining tissue for laser microdissection. This protocol was validated by mass spectrometric analysis. Isolated neurons can also be employed for western blotting or PCR. This protocol will enable further examinations of brain cell-specific molecular pathways and aid in elucidating distinct brain functions.


Assuntos
Encéfalo/citologia , Neurônios/metabolismo , Proteoma/metabolismo , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Microdissecção e Captura a Laser , Masculino , Pessoa de Meia-Idade , Mudanças Depois da Morte , Espectrometria de Massas em Tandem
20.
Proteomics ; 13(2): 217-8, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23341065

RESUMO

The HUPO Brain Proteome Project (HUPO BPP) held its 18(th) workshop in Boston, USA, September 12(th) 2012 during the HUPO 11th Annual Word Congress. The focus was on the progress on the Human Brain Proteome Atlas as well as ideas, strategies and methodological aspects.


Assuntos
Proteínas do Tecido Nervoso/análise , Doenças Neurodegenerativas/metabolismo , Proteoma/análise , Proteômica/métodos , Pesquisa Biomédica , Química Encefálica , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA