Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Langmuir ; 34(12): 3711-3719, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29480725

RESUMO

Responsive interfacial architectures of practical interest commonly require the combination of conflicting properties in terms of their demand upon material structure. Switchable stiffness, wettability, and permeability, key features for tissue engineering applications, are in fact known to be exclusively interdependent. Here, we present a nanoarchitectonic approach that decouples these divergent properties by the use of thermoresponsive microgels as building blocks for the construction of three-dimensional arrays of interconnected pores. Layer-by-layer assembled poly( N-isopropylacrylamide- co-methacrylic acid) microgel films were found to exhibit an increase in hydrophobicity, stiffness, and adhesion properties upon switching the temperature from below to above the lower critical solution temperature, whereas the permeability of redox probes through the film remained unchanged. Our findings indicate that the switch in hydrophilicity and nanomechanical properties undergone by the microgels does not compromise the porosity of the film, thus allowing the free diffusion of redox probes through the polymer-free volume of the submicrometer pores. This novel approach for decoupling conflicting properties provides a strategic route for creating tailorable scaffolds with unforeseen functionalities.

2.
Soft Matter ; 14(10): 1939-1952, 2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29479625

RESUMO

Supramolecular self-assembly is of paramount importance for the development of novel functional materials with molecular-level feature control. In particular, the interest in creating well-defined stratified multilayers through simple methods using readily available building blocks is motivated by a multitude of research activities in the field of "nanoarchitectonics" as well as evolving technological applications. Herein, we report on the facile preparation and application of highly organized stacked multilayers via layer-by-layer assembly of lipid-like surfactants and polyelectrolytes. Polyelectrolyte multilayers with high degree of stratification of the internal structure were constructed through consecutive assembly of polyallylamine and dodecyl phosphate, a lipid-like surfactant that act as a structure-directing agent. We show that multilayers form well-defined lamellar hydrophilic/hydrophobic domains oriented parallel to the substrate. More important, X-ray reflectivity characterization conclusively revealed the presence of Bragg peaks up to fourth order, evidencing the highly stratified structure of the multilayer. Additionally, hydrophobic lamellar domains were used as hosts for ferrocene in order to create an electrochemically active film displaying spatially-addressed redox units. Stacked multilayers were then assembled integrating redox-tagged polyallylamine and glucose oxidase into the stratified hydrophilic domains. Bioelectrocatalysis and "redox wiring" in the presence of glucose was demonstrated to occur inside the stratified multilayer.

3.
Phys Chem Chem Phys ; 20(11): 7570-7578, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29492502

RESUMO

Molecular design and preparation of redox active films displaying mesoscopic levels of organization represents one of the most actively pursued research areas in nanochemistry. These mesostructured materials are not only of great interest at the fundamental level because of their unique properties but they can also be employed for a wide range of applications such as electrocatalysts, electronic devices, and electrochemical energy conversion and storage. Herein, we introduce a simple and straightforward strategy to chemically modify electrode surfaces with self-assembled electroactive polyelectrolyte-surfactant complexes. These assemblies are composed of amino-appended polyaniline and monododecyl phosphate. The complexes were deposited by spin-coating and the films were characterized by spectroscopic and X-ray-based techniques: XRR, GISAXS, WAXS, and XPS. The films presented a well-defined lamellar structure, directed by the strong interaction between the phosphate groups and the positively charged amine groups in the polyelectrolyte. These films also displayed intrinsic electroactivity in both acidic and neutral solutions, showing that the polymer remains electroactive and ionic transport is still possible through the stratified and hydrophobic coatings. The stability and enhanced electroactivity in neutral solutions make these assembled films promising building blocks for the construction of nanostructured electrochemical platforms.

4.
Phys Chem Chem Phys ; 17(44): 29935-48, 2015 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-26489595

RESUMO

The layer-by-layer construction of interfacial architectures displaying stimuli-responsive control of mass transport is attracting increasing interest in materials science. In this work, we describe the creation of interfacial architectures displaying pH-dependent ionic transport properties which until now have not been observed in polyelectrolyte multilayers. We describe a novel approach to create pH-controlled ion-rectifying systems employing polyelectrolyte multilayers assembled from a copolymer containing both weakly and strongly charged pendant groups, poly(4-styrenesulfonic acid-co-maleic acid) (PSS-MA), alternately deposited with poly(diallyldimethylammonium chloride) (PDADMAC). The conceptual framework is based on the very contrasting and differential interactions of PSS and MA units with PDADMAC. In our setting, sulfonate groups play a structural role by conferring stability to the multilayer due to the strong electrostatic interactions with the polycations, while the weakly interacting MA groups remain "silent" within the film and then act as on-demand pH-responsive units. When these multilayers are combined with a strong cationic capping layer that repels the passage of cationic probes, a pH-gateable rectified transport of anions is observed. Concomitantly, we also observed that these functional properties are significantly affected when multilayers are subjected to extensive pH cycling as a consequence of irreversible morphological changes taking place in the film. We envision that the synergy derived from combining weak and strong interactions within the same multilayer will play a key role in the construction of new interfacial architectures displaying tailorable ion transport properties.


Assuntos
Eletrólitos/química , Concentração de Íons de Hidrogênio , Transporte de Íons , Maleatos/química , Polietilenos/química , Poliestirenos/química , Compostos de Amônio Quaternário/química , Ânions , Microscopia de Força Atômica
5.
J Colloid Interface Sci ; 518: 92-101, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29448230

RESUMO

We present the covalent modification of a Pani-like conducting polymer (polyaminobenzylamine, PABA) by grafting of a polyelectrolyte brush (poly [2-(methacryloyloxy)-ethyl-trimethylammonium chloride], PMETAC). As PABA has extra pendant amino moieties, the grafting procedure does not affect the backbone nitrogen atoms that are implicated in the electronic structure of the conducting polymers. Moreover, perchlorate anions interact very strongly with the quaternary ammonium pendant groups of PMETAC through ion pairing. Therefore, the grafting does not only keep the electroactivity of PABA in aqueous solutions but it adds the ion-actuation properties of the PMETAC brush to the modified electrode as demonstrated by contact angle measurements and electrochemical methods. In this way, the conjugation of the electron transfer properties of the conducting polymer with the anion responsiveness of the integrated brush renders perchlorate actuation of the electrochemical response. These results constitute a rational integration of nanometer-sized polymer building blocks that yields synergism of functionalities and illustrate the potentialities of nanoarchitectonics for pushing the limits of soft material science into the nanoworld.

6.
Nanoscale ; 7(38): 15789-97, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26355753

RESUMO

The insertion and function of the muscle-type nicotinic acetylcholine receptor (nAChR) in Au(111)-supported thiolipid self-assembled monolayers have been studied by atomic force microscopy (AFM), surface plasmon resonance (SPR), and electrochemical techniques. It was possible for the first time to resolve the supramolecular arrangement of the protein spontaneously inserted in a thiolipid monolayer in an aqueous solution. Geometric supramolecular arrays of nAChRs were observed, most commonly in a triangular form compatible with three nAChR dimers of ∼20 nm each. Addition of the full agonist carbamoylcholine activated and opened the nAChR ion channel, as revealed by the increase in capacitance relative to that of the nAChR-thiolipid system under basal conditions. Thus, the self-assembled system appears to be a viable biomimetic model to measure ionic conductance mediated by ion-gated ion channels under different experimental conditions, with potential applications in biotechnology and pharmacology.


Assuntos
Proteínas de Peixes/química , Ouro/química , Receptores Nicotínicos/química , Compostos de Sulfidrila/química , Animais , Carbacol , Proteínas de Peixes/metabolismo , Microscopia de Força Atômica , Receptores Nicotínicos/metabolismo , Torpedo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA