Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 19(3): 2153-2167, 2017 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-28045146

RESUMO

Understanding the key parameters necessary for generating uniform Er,Yb co-activated NaYF4 possessing various selected phases (i.e. cubic or hexagonal) represents an important chemical strategy towards tailoring optical behavior in these systems. Herein, we report on a straightforward hydrothermal synthesis in which the separate effects of reaction temperature, reaction time, and precursor stoichiometry in the absence of any surfactant were independently investigated. Interestingly, the presence and the concentration of NH4OH appear to be the most critical determinants of the phase and morphology. For example, with NH4OH as an additive, we have observed the formation of novel hierarchical nanowire bundles which possess overall lengths of ∼5 µm and widths of ∼1.5 µm but are composed of constituent component sub-units of long, ultrathin (∼5 nm) nanowires. These motifs have yet to be reported as distinctive morphological manifestations of fluoride materials. The optical properties of as-generated structures have also been carefully analyzed. Specifically, we have observed tunable, structure-dependent energy transfer behavior associated with the formation of a unique class of NaYF4-CdSe quantum dot (QD) heterostructures, incorporating zero-dimensional (0D), one-dimensional (1D), and three-dimensional (3D) NaYF4 structures. Our results have demonstrated the key roles of the intrinsic morphology-specific physical surface area and porosity as factors in governing the resulting opto-electronic behavior. Specifically, the trend in energy transfer efficiency correlates well with the corresponding QD loading within these heterostructures, thereby implying that the efficiency of FRET appears to be directly affected by the amount of QDs immobilized onto the external surfaces of the underlying fluoride host materials.

2.
ACS Appl Mater Interfaces ; 9(29): 24634-24648, 2017 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-28714661

RESUMO

The oxygen evolution reaction (OER) is a key reaction for water electrolysis cells and air-powered battery applications. However, conventional metal oxide catalysts, used for high-performing OER, tend to incorporate comparatively expensive and less abundant precious metals such as Ru and Ir, and, moreover, suffer from poor stability. To attempt to mitigate for all of these issues, we have prepared one-dimensional (1D) OER-active perovskite nanorods using a unique, simple, generalizable, and robust method. Significantly, our work demonstrates the feasibility of a novel electroless, seedless, surfactant-free, wet solution-based protocol for fabricating "high aspect ratio" LaNiO3 and LaMnO3 nanostructures. As the main focus of our demonstration of principle, we prepared as-synthesized LaNiO3 rods and correlated the various temperatures at which these materials were annealed with their resulting OER performance. We observed generally better OER performance for samples prepared with lower annealing temperatures. Specifically, when annealed at 600 °C, in the absence of a conventional conductive carbon support, our as-synthesized LaNiO3 rods not only evinced (i) a reasonable level of activity toward OER but also displayed (ii) an improved stability, as demonstrated by chronoamperometric measurements, especially when compared with a control sample of commercially available (and more expensive) RuO2.

3.
ChemSusChem ; 8(19): 3304-13, 2015 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-26214800

RESUMO

"Flower-like" motifs of Li4Ti5O12 were synthesized by using a facile and large-scale hydrothermal process involving unique Ti foil precursors followed by a short, relatively low-temperature calcination in air. Moreover, a detailed time-dependent growth mechanism and a reasonable reaction scheme were proposed to clearly illustrate and highlight the structural evolution and subsequent formation of this material. Specifically, the resulting "flower-like" Li4Ti5O12 microspheres consisting of thin nanosheets provide for an enhanced surface area and a reduced lithium-ion diffusion distance. The high surface areas of the exposed roughened, thin petal-like component nanosheets are beneficial for the interaction of the electrolyte with Li4Ti5O12 , which thereby ultimately provides for improved high-rate performance and favorable charge/discharge dynamics. Electrochemical studies of the as-prepared nanostructured Li4Ti5O12 clearly revealed their promising potential as an enhanced anode material for lithium-ion batteries, as they present both excellent rate capabilities (delivering 148, 141, 137, 123, and 60 mAh g(-1) under discharge rates of 0.2, 10, 20, 50, and 100 C, at cycles of 50, 55, 60, 65, and 70, respectively) and stable cycling performance (exhibiting a capacity retention of ≈97 % from cycles 10-100, under a discharge rate of 0.2 C, and an impressive capacity retention of ≈87 % by using a more rigorous discharge rate of 20 C from cycles 101-300).


Assuntos
Fontes de Energia Elétrica , Compostos de Lítio/química , Lítio/química , Conformação Molecular , Difusão , Eletroquímica , Eletrodos , Compostos de Lítio/síntese química , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA