Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 237
Filtrar
1.
Osteoporos Int ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856732

RESUMO

This position paper of the International Osteoporosis Foundation reports the findings of an IOF Commission to consider to recommend rules of partnership with scientists belonging to a country which is currently responsible for an armed conflict, anywhere in the world. The findings and recommendations have been adopted unanimously by the Board of IOF.

2.
Osteoporos Int ; 35(3): 469-494, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38228807

RESUMO

The relationship between self-reported falls and fracture risk was estimated in an international meta-analysis of individual-level data from 46 prospective cohorts. Previous falls were associated with an increased fracture risk in women and men and should be considered as an additional risk factor in the FRAX® algorithm. INTRODUCTION: Previous falls are a well-documented risk factor for subsequent fracture but have not yet been incorporated into the FRAX algorithm. The aim of this study was to evaluate, in an international meta-analysis, the association between previous falls and subsequent fracture risk and its relation to sex, age, duration of follow-up, and bone mineral density (BMD). METHODS: The resource comprised 906,359 women and men (66.9% female) from 46 prospective cohorts. Previous falls were uniformly defined as any fall occurring during the previous year in 43 cohorts; the remaining three cohorts had a different question construct. The association between previous falls and fracture risk (any clinical fracture, osteoporotic fracture, major osteoporotic fracture, and hip fracture) was examined using an extension of the Poisson regression model in each cohort and each sex, followed by random-effects meta-analyses of the weighted beta coefficients. RESULTS: Falls in the past year were reported in 21.4% of individuals. During a follow-up of 9,102,207 person-years, 87,352 fractures occurred of which 19,509 were hip fractures. A previous fall was associated with a significantly increased risk of any clinical fracture both in women (hazard ratio (HR) 1.42, 95% confidence interval (CI) 1.33-1.51) and men (HR 1.53, 95% CI 1.41-1.67). The HRs were of similar magnitude for osteoporotic, major osteoporotic fracture, and hip fracture. Sex significantly modified the association between previous fall and fracture risk, with predictive values being higher in men than in women (e.g., for major osteoporotic fracture, HR 1.53 (95% CI 1.27-1.84) in men vs. HR 1.32 (95% CI 1.20-1.45) in women, P for interaction = 0.013). The HRs associated with previous falls decreased with age in women and with duration of follow-up in men and women for most fracture outcomes. There was no evidence of an interaction between falls and BMD for fracture risk. Subsequent risk for a major osteoporotic fracture increased with each additional previous fall in women and men. CONCLUSIONS: A previous self-reported fall confers an increased risk of fracture that is largely independent of BMD. Previous falls should be considered as an additional risk factor in future iterations of FRAX to improve fracture risk prediction.


Assuntos
Fraturas do Quadril , Fraturas por Osteoporose , Masculino , Humanos , Feminino , Fraturas por Osteoporose/epidemiologia , Fraturas por Osteoporose/etiologia , Estudos Prospectivos , Medição de Risco , Estudos de Coortes , Fatores de Risco , Densidade Óssea , Fraturas do Quadril/etiologia , Fraturas do Quadril/complicações
3.
J Clin Densitom ; 27(1): 101452, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38228014

RESUMO

Osteoporosis can currently be diagnosed by applying the WHO classification to bone mineral density (BMD) assessed by dual-energy x-ray absorptiometry (DXA). However, skeletal factors other than BMD contribute to bone strength and fracture risk. Lumbar spine TBS, a grey-level texture measure which is derived from DXA images has been extensively studied, enhances fracture prediction independent of BMD and can be used to adjust fracture probability from FRAX® to improve risk stratification. The purpose of this International Society for Clinical Densitometry task force was to review the existing evidence and develop recommendations to assist clinicians regarding when and how to perform, report and utilize TBS. Our review concluded that TBS is most likely to alter clinical management in patients aged ≥ 40 years who are close to the pharmacologic intervention threshold by FRAX. The TBS value from L1-L4 vertebral levels, without vertebral exclusions, should be used to calculate adjusted FRAX probabilities. L1-L4 vertebral levels can be used in the presence of degenerative changes and lumbar compression fractures. It is recommended not to report TBS if extreme structural or pathological artifacts are present. Monitoring and reporting TBS change is unlikely to be helpful with the current version of the TBS algorithm. The next version of TBS software will include an adjustment based upon directly measured tissue thickness. This is expected to improve performance and address some of the technical factors that affect the current algorithm which may require modifications to these Official Positions as experience is acquired with this new algorithm.


Assuntos
Osteoporose , Fraturas por Osteoporose , Humanos , Osso Esponjoso/diagnóstico por imagem , Fraturas por Osteoporose/diagnóstico , Medição de Risco/métodos , Osteoporose/diagnóstico por imagem , Osteoporose/patologia , Densidade Óssea , Absorciometria de Fóton/métodos , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/patologia
4.
Aging Clin Exp Res ; 36(1): 126, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842791

RESUMO

BACKGROUND: Low grip strength and gait speed are associated with mortality. However, investigation of the additional mortality risk explained by these measures, over and above other factors, is limited. AIM: We examined whether grip strength and gait speed improve discriminative capacity for mortality over and above more readily obtainable clinical risk factors. METHODS: Participants from the Health, Aging and Body Composition Study, Osteoporotic Fractures in Men Study, and the Hertfordshire Cohort Study were analysed. Appendicular lean mass (ALM) was ascertained using DXA; muscle strength by grip dynamometry; and usual gait speed over 2.4-6 m. Verified deaths were recorded. Associations between sarcopenia components and mortality were examined using Cox regression with cohort as a random effect; discriminative capacity was assessed using Harrell's Concordance Index (C-index). RESULTS: Mean (SD) age of participants (n = 8362) was 73.8(5.1) years; 5231(62.6%) died during a median follow-up time of 13.3 years. Grip strength (hazard ratio (95% CI) per SD decrease: 1.14 (1.10,1.19)) and gait speed (1.21 (1.17,1.26)), but not ALM index (1.01 (0.95,1.06)), were associated with mortality in mutually-adjusted models after accounting for age, sex, BMI, smoking status, alcohol consumption, physical activity, ethnicity, education, history of fractures and falls, femoral neck bone mineral density (BMD), self-rated health, cognitive function and number of comorbidities. However, a model containing only age and sex as exposures gave a C-index (95% CI) of 0.65(0.64,0.66), which only increased to 0.67(0.67,0.68) after inclusion of grip strength and gait speed. CONCLUSIONS: Grip strength and gait speed may generate only modest adjunctive risk information for mortality compared with other more readily obtainable risk factors.


Assuntos
Força da Mão , Sarcopenia , Velocidade de Caminhada , Humanos , Sarcopenia/mortalidade , Sarcopenia/fisiopatologia , Masculino , Idoso , Força da Mão/fisiologia , Feminino , Velocidade de Caminhada/fisiologia , Estudos de Coortes , Fatores de Risco , Valor Preditivo dos Testes , Idoso de 80 Anos ou mais , Mortalidade
5.
Artigo em Inglês | MEDLINE | ID: mdl-38092036

RESUMO

OBJECTIVES: FRAX® uses clinical risk factors, with or without bone mineral density (BMD), to calculate 10-year fracture risk. Rheumatoid arthritis (RA) is a risk factor for osteoporotic fracture and a FRAX input variable. FRAX predates the current era of RA treatment. We examined how well FRAX predicts fracture in contemporary RA patients. METHODS: Administrative data from patients receiving BMD testing were linked to the Manitoba Population Health Research Data Repository. Observed cumulative 10-year Major Osteoporotic Fracture (MOF) probability was compared with FRAX-predicted 10-year MOF probability with BMD for assessing calibration. MOF risk stratification was assessed using Cox regression. RESULTS: RA patients (N = 2,099, 208 with incident MOF) and non-RA patients (N = 2,099, with 165 incident MOF) were identified. For RA patients, FRAX predicted 10-year risk was 13.2% and observed 10-year MOF risk was 13.2% (95% CI 11.6% to 15.1%). The slope of the calibration plot was 0.67 (95% CI 0.53-0. 81) in those with RA vs 0.98 (95% CI 0.61-1.34) in non-RA patients. Risk was overestimated in RA patients with high FRAX scores (>20%), but FRAX was well-calibrated in other groups. FRAX stratified risk in those with and without RA (hazard ratios 1.52, 95% 1.25-1.72 vs 2.00, 95% 1.73-2.31), with slightly better performance in the latter (p-interaction = 0.004). CONCLUSIONS: FRAX predicts fracture risk in contemporary RA patients but may slightly overestimate risk in those already at high predicted risk. Thus, the current FRAX tool continues to be appropriate for fracture risk assessment in RA patients.

6.
Osteoporos Int ; 34(3): 479-487, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36562788

RESUMO

A greater propensity to falling is associated with higher fracture risk. This study provides adjustments to FRAX-based fracture probabilities accounting for the number of prior falls. INTRODUCTION: Prior falls increase subsequent fracture risk but are not currently directly included in the FRAX tool. The aim of this study was to quantify the effect of the number of prior falls on the 10-year probability of fracture determined with FRAX®. METHODS: We studied 21,116 women and men age 40 years or older (mean age 65.7 ± 10.1 years) with fracture probability assessment (FRAX®), self-reported falls for the previous year, and subsequent fracture outcomes in a registry-based cohort. The risks of death, hip fracture, and non-hip major osteoporotic fracture (MOF-NH) were determined by Cox proportional hazards regression for fall number category versus the whole population (i.e., an average number of falls). Ten-year probabilities of hip fracture and major osteoporotic fracture (MOF) were determined according to the number of falls from the hazards of death and fracture incorporated into the FRAX model for the UK. The probability ratios (number of falls vs. average number of falls) provided adjustments to conventional FRAX estimates of fracture probability according to the number of falls. RESULTS: Compared with the average number of falls, the hazard ratios for hip fracture, MOF-NH and death were lower than unity in the absence of a fall history. Hazard ratios increased progressively with an increasing number of reported falls. The probability ratio rose progressively as the number of reported falls increased. Probability ratios decreased with age, an effect that was more marked the greater the number of prior falls. CONCLUSION: The probability ratios provide adjustments to conventional FRAX estimates of fracture probability according to the number of prior falls.


Assuntos
Fraturas do Quadril , Fraturas por Osteoporose , Masculino , Humanos , Feminino , Pessoa de Meia-Idade , Idoso , Adulto , Fraturas por Osteoporose/epidemiologia , Fraturas por Osteoporose/etiologia , Densidade Óssea , Medição de Risco , Fraturas do Quadril/epidemiologia , Fraturas do Quadril/etiologia , Probabilidade , Fatores de Risco
7.
Osteoporos Int ; 34(3): 489-499, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36525071

RESUMO

The incidence of hip and major osteoporotic fracture was increased in patients with primary hyperparathyroidism even in patients not referred for parathyroidectomy. The risk of death was also increased which attenuated an effect on fracture probabilities. The findings argue for widening the indications for parathyroidectomy in mild primary hyperparathyroidism. INTRODUCTION: Primary hyperparathyroidism (PHPT) is associated with an increase in the risk of fracture. In FRAX, the increase in risk is assumed to be mediated by low bone mineral density (BMD). However, the risk of death is also increased and its effect on fracture probability is not known. OBJECTIVE: The aim of this study was to determine whether PHPT affects hip fracture and major osteoporotic fracture risk independently of bone mineral density (BMD) and whether this and any increase in mortality affects the assessment of fracture probability. METHODS: A register-based survey of patients with PHPT and matched controls in Denmark were identified from hospital registers. The incidence of death, hip fracture, and major osteoporotic fracture were determined for computing fracture probabilities excluding time after parathyroidectomy. The gradient of risk for fracture for differences in BMD was determined in a subset of patients and in BMD controls. The severity of disease was based on serum calcium and parathyroid hormone levels. RESULTS: We identified 6884 patients with biochemically confirmed PHPT and 68,665 matched population controls. On follow-up, excluding time after parathyroidectomy in those undergoing surgery, patients with PHPT had a higher risk of death (+52%), hip fracture (+48%), and major osteoporotic fracture (+36%) than population controls. At any given age, average 10-year probabilities of fracture were higher in patients with PHPT than population controls. The gradient of fracture risk with differences in BMD was similar in cases and controls. Results were similar when confined to patients not undergoing parathyroidectomy. Fracture probability decreased with the severity of disease due to an increase in mortality rather than fracture risk. CONCLUSION: The risk of hip and other major osteoporotic fracture is increased in PHPT irrespective of the disease severity. Fracture probability was attenuated due to the competing effect of mortality. The increased fracture risk in patients treated conservatively argues for widening the indications for parathyroidectomy in mild PHPT.


Assuntos
Fraturas do Quadril , Hiperparatireoidismo Primário , Fraturas por Osteoporose , Humanos , Hiperparatireoidismo Primário/complicações , Hiperparatireoidismo Primário/cirurgia , Fraturas por Osteoporose/epidemiologia , Fraturas por Osteoporose/etiologia , Fraturas por Osteoporose/cirurgia , Densidade Óssea , Fraturas do Quadril/epidemiologia , Fraturas do Quadril/etiologia , Fraturas do Quadril/cirurgia , Paratireoidectomia/efeitos adversos , Hormônio Paratireóideo , Probabilidade
8.
Osteoporos Int ; 34(1): 1-9, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36282342

RESUMO

This position paper of the International Osteoporosis Foundation (IOF) and the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO) addresses the rationale for separate diagnostic and intervention thresholds in osteoporosis. We conclude that the current BMD-based diagnostic criteria for osteoporosis be retained whilst clarity is brought to bear on the distinction between diagnostic and intervention thresholds.


Assuntos
Doenças Musculoesqueléticas , Osteoartrite , Osteoporose , Fraturas por Osteoporose , Humanos , Osteoporose/diagnóstico , Osteoporose/terapia , Medição de Risco , Densidade Óssea , Fraturas por Osteoporose/diagnóstico , Fraturas por Osteoporose/etiologia , Fraturas por Osteoporose/prevenção & controle
9.
Osteoporos Int ; 34(9): 1501-1529, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37393412

RESUMO

PURPOSE: Trabecular bone score (TBS) is a grey-level textural measurement acquired from dual-energy X-ray absorptiometry lumbar spine images and is a validated index of bone microarchitecture. In 2015, a Working Group of the European Society on Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO) published a review of the TBS literature, concluding that TBS predicts hip and major osteoporotic fracture, at least partly independent of bone mineral density (BMD) and clinical risk factors. It was also concluded that TBS is potentially amenable to change as a result of pharmacological therapy. Further evidence on the utility of TBS has since accumulated in both primary and secondary osteoporosis, and the introduction of FRAX and BMD T-score adjustment for TBS has accelerated adoption. This position paper therefore presents a review of the updated scientific literature and provides expert consensus statements and corresponding operational guidelines for the use of TBS. METHODS: An Expert Working Group was convened by the ESCEO and a systematic review of the evidence undertaken, with defined search strategies for four key topics with respect to the potential use of TBS: (1) fracture prediction in men and women; (2) initiating and monitoring treatment in postmenopausal osteoporosis; (3) fracture prediction in secondary osteoporosis; and (4) treatment monitoring in secondary osteoporosis. Statements to guide the clinical use of TBS were derived from the review and graded by consensus using the Grades of Recommendation, Assessment, Development and Evaluation (GRADE) approach. RESULTS: A total of 96 articles were reviewed and included data on the use of TBS for fracture prediction in men and women, from over 20 countries. The updated evidence shows that TBS enhances fracture risk prediction in both primary and secondary osteoporosis, and can, when taken with BMD and clinical risk factors, inform treatment initiation and the choice of antiosteoporosis treatment. Evidence also indicates that TBS provides useful adjunctive information in monitoring treatment with long-term denosumab and anabolic agents. All expert consensus statements were voted as strongly recommended. CONCLUSION: The addition of TBS assessment to FRAX and/or BMD enhances fracture risk prediction in primary and secondary osteoporosis, adding useful information for treatment decision-making and monitoring. The expert consensus statements provided in this paper can be used to guide the integration of TBS in clinical practice for the assessment and management of osteoporosis. An example of an operational approach is provided in the appendix. This position paper presents an up-to-date review of the evidence base, synthesised through expert consensus statements, which informs the implementation of Trabecular Bone Score in clinical practice.


Assuntos
Osteoartrite , Osteoporose , Fraturas por Osteoporose , Masculino , Feminino , Humanos , Osso Esponjoso , Osteoporose/tratamento farmacológico , Osteoporose/complicações , Fraturas por Osteoporose/prevenção & controle , Fraturas por Osteoporose/complicações , Densidade Óssea , Absorciometria de Fóton/métodos , Vértebras Lombares , Osteoartrite/complicações , Osteoartrite/diagnóstico por imagem , Osteoartrite/tratamento farmacológico , Envelhecimento , Consenso , Organização Mundial da Saúde , Medição de Risco/métodos
10.
Osteoporos Int ; 34(8): 1283-1299, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37351614

RESUMO

This narrative review summarises the recommendations of a Working Group of the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO) for the conduct and reporting of real-world evidence studies with a focus on osteoporosis research. PURPOSE: Vast amounts of data are routinely generated at every healthcare contact and activity, and there is increasing recognition that these real-world data can be analysed to generate scientific evidence. Real-world evidence (RWE) is increasingly used to delineate the natural history of disease, assess real-life drug effectiveness, understand adverse events and in health economic analysis. The aim of this work was to understand the benefits and limitations of this type of data and outline approaches to ensure that transparent and high-quality evidence is generated. METHODS: A ESCEO Working Group was convened in December 2022 to discuss the applicability of RWE to osteoporosis research and approaches to best practice. RESULTS: This narrative review summarises the agreed recommendations for the conduct and reporting of RWE studies with a focus on osteoporosis research. CONCLUSIONS: It is imperative that research using real-world data is conducted to the highest standards with close attention to limitations and biases of these data, and with transparency at all stages of study design, data acquisition and curation, analysis and reporting to increase the trustworthiness of RWE study findings.


Assuntos
Doenças Musculoesqueléticas , Osteoartrite , Osteoporose , Humanos , Osteoartrite/terapia , Doenças Musculoesqueléticas/terapia , Sociedades Médicas
11.
Qual Life Res ; 32(4): 1199-1208, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36495384

RESUMO

INTRODUCTION: EQ-5D-3L preference-based value sets are predominately based on hypothetical health states and derived in cross-sectional settings. Therefore, we derived an experience-based value set from a prospective observational study. METHODS: The International Costs and Utilities Related to Osteoporotic fractures Study (ICUROS) was a multinational study on fragility fractures, prospectively collecting EQ-5D-3L and Time trade-off (TTO) within two weeks after fracture (including pre-fracture recall), and at 4, 12, and 18 months thereafter. We derived an EQ-5D-3L value set by regressing the TTO values on the ten impairment levels in the EQ-5D-3L. We explored the potential for response shift and whether preferences for domains vary systematically with prior impairment in that domain. Finally, we compared the value set to 25 other EQ-5D-3L preference-based value sets. RESULTS: TTO data were available for 12,954 EQ-5D-3L health states in 4683 patients. All coefficients in the value set had the expected sign, were statistically significant, and increased monotonically with severity of impairment. We found evidence for response shift in mobility, self-care, and usual activities. The value set had good agreement with the only other experience- and preference-based value set, but poor agreement with all hypothetical value sets. CONCLUSIONS: We present an experience- and preference-based value set with high face validity. The study indicates that response shift may be important to account for when deriving value sets. Furthermore, the study suggests that perspective (experienced versus hypothetical) is more important than country setting or demographics for valuation of EQ-5D-3L health states.


Assuntos
Nível de Saúde , Fraturas por Osteoporose , Humanos , Qualidade de Vida/psicologia , Estudos Transversais , Inquéritos e Questionários
12.
J Clin Densitom ; 26(3): 101415, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37246031

RESUMO

Lumbar spine trabecular bone score (TBS), a texture measure derived from spine dual-energy x-ray absorptiometry (DXA) images, is a bone mineral density (BMD)-independent risk factor for fracture. Lumbar vertebral levels that show structural artifact are excluded from BMD measurement. TBS is relatively unaffected by degenerative artifact, and it is uncertain whether the same exclusions should be applied to TBS reporting. To gain insight into the clinical impact of vertebral exclusion on TBS, we examined the effect of lumbar vertebral exclusions in routine clinical practice on tertile-based TBS categorization and TBS adjusted FRAX-based treatment recommendations. The study population consisted of 71,209 individuals aged 40 years and older with narrow fan-beam spine DXA examinations and retrospectively-derived TBS. During BMD reporting, 34.3% of the scans had one or more vertebral exclusions for structural artifact. When TBS was derived from the same vertebral levels used for BMD reporting, using fixed L1-L4 tertile cutoffs (1.23 and 1.31 from the McCloskey meta-analysis) reclassified 17.9% to a lower and 6.5% to a higher TBS category, with 75.6% unchanged. Reclassification was reduced from 24.4% overall to 17.2% when level-specific tertile cutoffs from the software manufacturer were used. Treatment reclassification based upon FRAX major osteoporotic fracture probability occurred in 2.9% overall, but in 9.6% of those with baseline risk ≥15%. For treatment based upon FRAX hip fracture probability, reclassification occurred in 3.4% overall, but in 10.4% in those with baseline risk ≥2%. In summary, lumbar spine TBS measurements based upon vertebral levels other than L1-L4 can alter the tertile category and treatment recommendations based upon TBS-adjusted FRAX calculation, especially for those close to or exceeding the treatment cut-off. Manufacturer level-specific tertile cut-offs should be used if vertebral exclusions are applied.


Assuntos
Osso Esponjoso , Fraturas por Osteoporose , Humanos , Adulto , Pessoa de Meia-Idade , Osso Esponjoso/diagnóstico por imagem , Manitoba/epidemiologia , Estudos Retrospectivos , Fraturas por Osteoporose/diagnóstico por imagem , Fraturas por Osteoporose/terapia , Fraturas por Osteoporose/epidemiologia , Densidade Óssea , Vértebras Lombares/diagnóstico por imagem , Absorciometria de Fóton/métodos , Sistema de Registros , Medição de Risco/métodos
13.
J Clin Densitom ; 26(2): 101366, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37037769

RESUMO

Trabecular bone score (TBS), a texture measure derived from spine dual-energy x-ray absorptiometry (DXA) images, is a bone mineral density (BMD)-independent risk factor for fracture. TBS is reportedly insensitive to degenerative changes, and it is uncertain whether the same rules for excluding lumbar vertebral levels from BMD measurement should be applied to TBS. The current analysis was performed to explore inter-vertebral variation in TBS measurements from L1 to L4, how this relates to clinically identified structural artifact resulting in vertebral level exclusion from BMD reporting, and area under the curve (AUC) for incident fracture. The study population comprised 70,762 individuals aged 40 years and older at the time of baseline spine DXA assessment (mean age 64.1 years, 89.7% female), among whom 24,289 (34.3%) had one or more vertebral exclusions. Both TBS and BMD showed a similar cranial/caudal inter-vertebral gradient. Compared with L1-4, TBS from L1 alone was lower (mean difference -0.096; -7.6%) while TBS from L4 alone was 0.046 (3.6%) greater, similar in those without and with visual structural artifact. During mean follow-up of 8.7 years, 6744 (9.5%) individuals sustained incident major osteoporotic fractures. TBS from L1 alone gave significantly higher AUC for incident fracture than L1-4, which was in turn significantly higher than L2, L3 and L4 alone, seen in those without and with visual structural artifact. In contrast, AUCs for BMD showed minimal variation from L1 to L4, and was higher for L1-4 than for any individual lumbar vertebral level. In summary, we found inter-vertebral TBS variations within the lumbar spine are overall similar to BMD but are relatively unaffected by visual structural artifact. Fracture outcomes showed the strongest association with TBS measured from L1 alone. Further investigation is need to understand the cause and clinical application of these differences.


Assuntos
Densidade Óssea , Fraturas por Osteoporose , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Masculino , Osso Esponjoso/diagnóstico por imagem , Manitoba/epidemiologia , Absorciometria de Fóton/métodos , Fraturas por Osteoporose/epidemiologia , Fraturas por Osteoporose/etiologia , Vértebras Lombares/diagnóstico por imagem , Sistema de Registros
14.
J Clin Densitom ; 26(4): 101429, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37742612

RESUMO

Trabecular bone score (TBS) is a FRAX®-independent risk factor for fracture prediction. TBS values increase from cranial to caudal, with the following mean differences between TBSL1-L4 and individual lumbar vertebrae: L1 -0.093, L2 -0.008, L3 +0.055 and L4 +0.046. Excluding vertebral levels can affect FRAX-based treatment recommendations close to the intervention threshold. We examined the effect of adjusting for level-specific TBS differences in individuals with vertebral exclusions due to structural artifact on TBS-adjusted FRAX-based treatment recommendations. We identified 71,209 individuals aged ≥40 years with TBS and FRAX calculations through the Manitoba Bone Density Program. In the 24,428 individuals with vertebral exclusions, adjusting TBS using these level-specific factors agreed with TBSL1-L4 (mean difference -0.001). We compared FRAX-based treatment recommendations for TBSL1-L4 and for non-excluded vertebral levels before and after adjusting for level-specific TBS differences. Among those with baseline major osteoporotic fracture risk ≥15 %, TBS with vertebral exclusions reclassified FRAX-based treatment in 10.6 % of individuals compared with TBSL1-L4, and was reduced to 7.2 % after adjusting for level-specific differences. In 11,131 patients where L1-L2 was used for BMD reporting (the most common exclusion pattern with the largest TBS effect), treatment reclassification was reduced from 13.9 % to 2.4 %, respectively. Among individuals with baseline hip fracture risk ≥2 %, TBS vertebral exclusions reclassified 7.1 % compared with TBSL1-L4, but only 4.5 % after adjusting for level-specific differences. When L1-L2 was used for BMD reporting, treatment reclassification from hip fracture risk was reduced from 9.2 % to 5.2 %. In conclusion, TBS and TBS-adjusted FRAX-based treatment recommendations are affected by vertebral level exclusions for structural artifact. Adjusting for level-specific differences in TBS reduces reclassification in FRAX-based treatment recommendations.


Assuntos
Fraturas do Quadril , Fraturas por Osteoporose , Humanos , Osso Esponjoso/diagnóstico por imagem , Manitoba/epidemiologia , Fraturas por Osteoporose/epidemiologia , Fraturas por Osteoporose/etiologia , Densidade Óssea , Vértebras Lombares/diagnóstico por imagem , Fraturas do Quadril/etiologia , Sistema de Registros , Absorciometria de Fóton , Medição de Risco
15.
J Clin Densitom ; 26(4): 101430, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37748431

RESUMO

Lumbar spine trabecular bone score (TBS) used in conjunction with FRAX® improves 10-year fracture prediction. The derived FRAX risk adjustment is based upon TBS measured from L1-L4, designated TBSL1-L4-FRAX. In prior studies, TBS measurements that include L1 and exclude L4 give better fracture stratification than L1-L4. We compared risk stratification from TBS-adjusted FRAX using TBS derived from different combinations of upper lumbar vertebral levels renormalized for level-specific differences in individuals from the Manitoba Bone Density Program aged >40 years with baseline assessment of TBS and FRAX. TBS measurements for L1-L3, L1-L2 and L1 alone were calculated after renormalization for level-specific differences. Corresponding TBS-adjusted FRAX scores designated TBSL1-L3-FRAX, TBSL1-L2-FRAX and TBSL1-FRAX were compared with TBSL1-L4-FRAX for fracture risk stratification. Incident major osteoporotic fractures (MOF) and hip fractures were assessed. The primary outcome was incremental change in area under the curve (ΔAUC). The study population included 71,209 individuals (mean age 64 years, 89.8% female). Before renormalization, mean TBS for L1-3, L1-L2 and L1 was significantly lower and TBS-adjusted FRAX significantly higher than from using TBSL1-L4. These differences were largely eliminated when TBS was renormalized for level-specific differences. During mean follow-up of 8.7 years 6745 individuals sustained incident MOF and 2039 sustained incident hip fractures. Compared with TBSL1-L4-FRAX, use of FRAX without TBS was associated with lower stratification (ΔAUC = -0.009, p < 0.001). There was progressive improvement in MOF stratification using TBSL1-L3-FRAX (ΔAUC = +0.001, p < 0.001), TBSL1-L2-FRAX (ΔAUC = +0.004, p < 0.001) and TBSL1-FRAX (ΔAUC = +0.005, p < 0.001). TBSL1-FRAX was significantly better than all other combinations for MOF prediction (p < 0.001). Incremental improvement in AUC for hip fracture prediction showed a similar but smaller trend. In conclusion, this single large cohort study found that TBS-adjusted FRAX performance for fracture prediction was improved when limited to the upper lumbar vertebral levels and was best using L1 alone.


Assuntos
Fraturas do Quadril , Fraturas por Osteoporose , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Osso Esponjoso/diagnóstico por imagem , Estudos de Coortes , Manitoba/epidemiologia , Fatores de Risco , Absorciometria de Fóton , Medição de Risco , Fraturas por Osteoporose/epidemiologia , Densidade Óssea , Fraturas do Quadril/epidemiologia , Vértebras Lombares/diagnóstico por imagem , Sistema de Registros
16.
J Clin Densitom ; 26(3): 101378, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37137791

RESUMO

Trabecular bone score (TBS), a texture measure derived from spine dual-energy x-ray absorptiometry (DXA) images, is a FRAX®-independent risk factor for fracture. The TBS adjustment to FRAX assumes the presence of femoral neck BMD in the calculation. However, there are many individuals in whom hip DXA cannot be acquired. Whether the TBS-adjustment would apply to FRAX probabilities calculated without BMD has not been studied. The current analysis was performed to evaluate major osteoporotic fracture (MOF) and hip fracture risk adjusted for FRAX with and without femoral neck BMD. The study cohort consisted of 71,209 individuals (89.8% female, mean age 64.0 years). During mean follow-up 8.7 years, 6743 (9.5%) individuals sustained one or more incident MOF, of which 2037 (2.9%) sustained a hip fracture. Lower TBS was significantly associated with increased fracture risk when adjusted for FRAX probabilities, with a slightly larger effect when BMD was not included. Inclusion of TBS in the risk calculation gave a small but significant increase in stratification for fracture probabilities estimated with and without BMD. Calibration plots showed very minor deviations from the line of identity, indicating overall good calibration. In conclusion, the existing equations for incorporating TBS in FRAX estimates of fracture probability work similarly when femoral neck BMD is not used in the calculation. This potentially extends the range of situations where TBS can be used clinically to those individuals in whom lumbar spine TBS is available but femoral neck BMD is not available.


Assuntos
Fraturas do Quadril , Fraturas por Osteoporose , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Densidade Óssea , Manitoba/epidemiologia , Osso Esponjoso/diagnóstico por imagem , Medição de Risco/métodos , Fraturas por Osteoporose/epidemiologia , Fraturas por Osteoporose/etiologia , Absorciometria de Fóton/métodos , Fraturas do Quadril/diagnóstico por imagem , Fraturas do Quadril/epidemiologia , Vértebras Lombares/diagnóstico por imagem , Sistema de Registros , Fatores de Risco
17.
Osteoporos Int ; 33(12): 2507-2515, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36161339

RESUMO

The risk of a recurrent fragility fracture is high following a first fracture and higher still with more than one prior fracture. This study provides adjustments to FRAX-based fracture probabilities accounting for the number of prior fractures. INTRODUCTION: Prior fractures increase subsequent fracture risk. The aim of this study was to quantify the effect of the number of prior fractures on the 10-year probability of fracture determined with FRAX®. METHODS: The study used data from the Reykjavik Study fracture register that documented prospectively all fractures at all skeletal sites in a large sample of the population of Iceland. Ten-year probabilities of hip fracture and major osteoporotic fracture (MOF) were determined according to the number of prior osteoporotic fractures over a 20-year interval from the hazards of death and fracture. Fracture probabilities were also computed for a prior osteoporotic fracture irrespective of the number of previous fractures. The probability ratios provided adjustments to conventional FRAX estimates of fracture probability according to the number of prior fractures. RESULTS: Probability ratios to adjust 10-year FRAX probabilities of a hip fracture and MOF increased with the number of prior fractures but decreased with age in both men and women. Probability ratios were similar in men and women and for hip fracture and MOF. Mean probability ratios according to the number of prior fractures for all scenarios were 0.95, 1.08, 1.21 and 1.35, for 1,2, 3 and 4 or more prior fractures, respectively. Thus, a simple rule of thumb is to downward adjust FRAX-based fracture probabilities by 5% in the presence of a single prior fracture and to uplift probabilities by 10, 20 and 30% with a history of 2, 3 and 4 or more prior fractures, respectively. CONCLUSION: The probability ratios provide adjustments to conventional FRAX estimates of fracture probability according to the number of prior fractures.


Assuntos
Fraturas do Quadril , Fraturas por Osteoporose , Masculino , Feminino , Humanos , Fraturas por Osteoporose/epidemiologia , Fraturas por Osteoporose/etiologia , Densidade Óssea , Medição de Risco , Fraturas do Quadril/epidemiologia , Fraturas do Quadril/etiologia , Probabilidade , Fatores de Risco
18.
Osteoporos Int ; 33(7): 1457-1463, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35175395

RESUMO

The Danish Fracture Risk Evaluation Model (FREM) was found to predict fracture risk independent of 10-year fracture probability derived with the FRAX® tool including bone mineral density from DXA. INTRODUCTION: FREM was developed from Danish public health registers without DXA information to identify high imminent risk of major osteoporotic fracture (MOF) and hip fracture (HF), while FRAX® estimates 10-year fracture probability from clinical risk factors and femoral neck bone mineral density (BMD) from DXA. The FREM algorithm showed significant 1- and 2-year fracture risk stratification when applied to a clinical population from Manitoba, Canada. We examined whether FREM predicts 10-year fracture risk independent of 10-year FRAX probability computed with BMD. METHODS: Using the Manitoba BMD Program registry, we identified women and men aged ≥ 45 years undergoing baseline BMD assessment. We calculated FREM and FRAX scores, and identified incident fractures over 10 years. Hazard ratios (HRs) for incident fracture were estimated according to FREM quintile, adjusted for FRAX probability. We compared predicted with observed 10-year cumulative fracture probability estimated with competing mortality. RESULTS: The study population comprised 74,446 women, mean age 65.2 years; 7945 men, mean age 67.5 years. There were 7957 and 646 incident MOF and 2554 and 294 incident HF in women and men, respectively. Higher FREM scores were associated with increased risk for MOF (highest vs middle quintile HRs 1.49 women, 2.06 men) and HF (highest vs middle quintile HRs 2.15 women, 2.20 men) even when adjusted for FRAX. Greater mortality with higher FREM scores attenuated its effect on 10-year fracture probability. In the highest FREM quintile, observed slightly exceeded predicted 10-year probability for MOF (ratios 1.05 in women, 1.49 in men) and HF (ratios 1.29 in women, 1.34 in men). CONCLUSIONS: Higher FREM scores identified women and men at increased fracture risk even when adjusted for FRAX probability that included BMD; hence, FREM provides additional predictive information to FRAX. FRAX slightly underestimated 10-year fracture probability in those falling within the highest FREM quintile.


Assuntos
Fraturas do Quadril , Fraturas por Osteoporose , Absorciometria de Fóton , Idoso , Densidade Óssea , Estudos de Coortes , Feminino , Colo do Fêmur , Fraturas do Quadril/complicações , Fraturas do Quadril/etiologia , Humanos , Masculino , Fraturas por Osteoporose/epidemiologia , Fraturas por Osteoporose/etiologia , Sistema de Registros , Medição de Risco , Fatores de Risco
19.
Osteoporos Int ; 33(1): 57-66, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34596704

RESUMO

The Fracture Risk Evaluation Model (FREM) identifies individuals at high imminent risk of major osteoporotic fractures. We validated FREM on 74,828 individuals from Manitoba, Canada, and found significant fracture risk stratification for all FREM scores. FREM performed better than age alone but not as well as FRAX® with BMD. INTRODUCTION: The FREM is a tool developed from Danish public health registers (hospital diagnoses) to identify individuals over age 45 years at high imminent risk of major osteoporotic fractures (MOF) and hip fracture (HF). In this study, our aim was to examine the ability of FREM to identify individuals at high imminent fracture risk in women and men from Manitoba, Canada. METHODS: We used the population-based Manitoba Bone Mineral Density (BMD) Program registry, and identified women and men aged 45 years or older undergoing baseline BMD assessment with 2 years of follow-up data. From linked population-based data sources, we constructed FREM scores using up to 10 years of prior healthcare information. RESULTS: The study population comprised 74,828 subjects, and during the 2 years of observation, 1612 incident MOF and 299 incident HF occurred. We found significant fracture risk stratification for all FREM scores, with AUC estimates of 0.63-0.66 for MOF for both sexes and 0.84 for women and 0.65-0.67 for men for HF. FREM performed better than age alone but not as well as FRAX® with BMD. The inclusion of physician claims data gave slightly better performance than hospitalization data alone. Overall calibration for 1-year MOF prediction was reasonable, but HF prediction was overestimated. CONCLUSION: In conclusion, the FREM algorithm shows significant fracture risk stratification when applied to an independent clinical population from Manitoba, Canada. Overall calibration for MOF prediction was good, but hip fracture risk was systematically overestimated indicating the need for recalibration.


Assuntos
Fraturas do Quadril , Fraturas por Osteoporose , Absorciometria de Fóton , Densidade Óssea , Canadá/epidemiologia , Feminino , Fraturas do Quadril/epidemiologia , Fraturas do Quadril/etiologia , Humanos , Masculino , Manitoba/epidemiologia , Pessoa de Meia-Idade , Fraturas por Osteoporose/epidemiologia , Fraturas por Osteoporose/etiologia , Medição de Risco , Fatores de Risco
20.
Osteoporos Int ; 33(11): 2297-2305, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35833956

RESUMO

In a combined analysis of 25,389 postmenopausal women aged 50-79 years, enrolled in the two Women's Health Initiative hormone therapy trials, menopausal hormone therapy vs. placebo reduced the risk of fracture regardless of baseline FRAX fracture probability and falls history. INTRODUCTION: The aim of this study was to determine if the anti-fracture efficacy of menopausal hormone therapy (MHT) differed by baseline falls history or fracture risk probability as estimated by FRAX, in a combined analysis of the two Women's Health Initiative (WHI) hormone therapy trials. METHODS: A total of 25,389 postmenopausal women aged 50-79 years were randomized to receive MHT (n = 12,739) or matching placebo (n = 12,650). At baseline, questionnaires were used to collect information on falls history, within the last 12 months, and clinical risk factors. FRAX 10-year probability of major osteoporotic fracture (MOF) was calculated without BMD. Incident clinical fractures were verified using medical records. An extension of Poisson regression was used to investigate the relationship between treatment and fractures in (1) the whole cohort; (2) those with prior falls; and (3) those without prior falls. The effect of baseline FRAX probability on efficacy was investigated in the whole cohort. RESULTS: Over 4.3 ± 2.1 years (mean ± SD), MHT (vs. placebo) significantly reduced the risk of any clinical fracture (hazard ratio [HR] 0.72 [95% CI, 0.65-0.78]), MOF (HR 0.60 [95% CI, 0.53-0.69]), and hip fracture (0.66 [95% CI, 0.45-0.96]). Treatment was effective in reducing the risk of any clinical fracture, MOF, and hip fracture in women regardless of baseline FRAX MOF probability, with no evidence of an interaction between MHT and FRAX (p > 0.30). Similarly, there was no interaction (p > 0.30) between MHT and prior falls. CONCLUSION: In the combined WHI trials, compared to placebo, MHT reduces fracture risk regardless of FRAX probability and falls history in postmenopausal women.


Assuntos
Fraturas do Quadril , Fraturas por Osteoporose , Acidentes por Quedas/prevenção & controle , Densidade Óssea , Feminino , Fraturas do Quadril/epidemiologia , Fraturas do Quadril/etiologia , Fraturas do Quadril/prevenção & controle , Hormônios/farmacologia , Humanos , Menopausa , Fraturas por Osteoporose/epidemiologia , Fraturas por Osteoporose/etiologia , Fraturas por Osteoporose/prevenção & controle , Medição de Risco/métodos , Fatores de Risco , Saúde da Mulher
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA