Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Int J Mol Sci ; 22(17)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34502097

RESUMO

This paper explored the potential mediating role of hydrogen sulfide (H2S) and the oxytocin (OT) systems in hemorrhagic shock (HS) and/or traumatic brain injury (TBI). Morbidity and mortality after trauma mainly depend on the presence of HS and/or TBI. Rapid "repayment of the O2 debt" and prevention of brain tissue hypoxia are cornerstones of the management of both HS and TBI. Restoring tissue perfusion, however, generates an ischemia/reperfusion (I/R) injury due to the formation of reactive oxygen (ROS) and nitrogen (RNS) species. Moreover, pre-existing-medical-conditions (PEMC's) can aggravate the occurrence and severity of complications after trauma. In addition to the "classic" chronic diseases (of cardiovascular or metabolic origin), there is growing awareness of psychological PEMC's, e.g., early life stress (ELS) increases the predisposition to develop post-traumatic-stress-disorder (PTSD) and trauma patients with TBI show a significantly higher incidence of PTSD than patients without TBI. In fact, ELS is known to contribute to the developmental origins of cardiovascular disease. The neurotransmitter H2S is not only essential for the neuroendocrine stress response, but is also a promising therapeutic target in the prevention of chronic diseases induced by ELS. The neuroendocrine hormone OT has fundamental importance for brain development and social behavior, and, thus, is implicated in resilience or vulnerability to traumatic events. OT and H2S have been shown to interact in physical and psychological trauma and could, thus, be therapeutic targets to mitigate the acute post-traumatic effects of chronic PEMC's. OT and H2S both share anti-inflammatory, anti-oxidant, and vasoactive properties; through the reperfusion injury salvage kinase (RISK) pathway, where their signaling mechanisms converge, they act via the regulation of nitric oxide (NO).


Assuntos
Lesões Encefálicas/metabolismo , Cuidados Críticos/métodos , Traumatismo Múltiplo/metabolismo , Ocitocina/metabolismo , Transtornos de Estresse Pós-Traumáticos/metabolismo , Sulfitos/metabolismo , Animais , Lesões Encefálicas/psicologia , Lesões Encefálicas/terapia , Humanos , Traumatismo Múltiplo/psicologia , Traumatismo Múltiplo/terapia , Transtornos de Estresse Pós-Traumáticos/epidemiologia , Transtornos de Estresse Pós-Traumáticos/etiologia
2.
Pharmacol Res ; 151: 104536, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31734346

RESUMO

Controversial data are available on hydrogen sulfide (H2S) during hemorrhage and resuscitation, depending on timing, dosing, mode of application, and the H2S donor used. Sodium thiosulfate (Na2S2O3) is a recognized drug devoid of major side effects, which attenuated murine acute lung injury and cerebral ischemia/reperfusion injury. Therefore, we tested the hypothesis whether Na2S2O3 would mitigate organ dysfunction in porcine hemorrhage-and-resuscitation. We studied animals with pre-existing coronary artery disease because of the reduced coronary arterial expression of the H2S producing enzyme cystathionine-γ-lyase (CSE) in this prospective, randomized, controlled, blinded experimental study. 20 anesthetized and instrumented pigs underwent 3 h of hemorrhage (removal of 30 % of the blood volume and subsequent titration of mean arterial pressure to 40 mmHg). Resuscitation (72 h) comprised re-transfusion of shed blood, crystalloids, and continuous i.v. norepinephrine. Animals randomly received vehicle or Na2S2O3 (0.1 g·kg-1 h-1) for 24 h. Before, at the end of and every 24 h after shock, hemodynamics, metabolism, blood gases, lung, heart, kidney, and liver function and injury were evaluated together with cytokines and parameters of oxidative and nitrosative stress. Immediate post mortem lung, kidney, heart, and liver specimen were analyzed for marker proteins of inflammation and oxidative and nitrosative stress and mitochondrial respiratory activity in the heart, kidney, and liver. Immuno-histochemical analysis comprised lung extra-vascular albumin accumulation, nitrotyrosine formation, and CSE and glucocorticoid receptor (GCR) expression. Na2S2O3 significantly attenuated shock-induced impairment of lung mechanics and gas exchange (plateau and positive end-expiratory pressure at 72 h p = 0.0006/p = 0.0264; Horovitz index at 48 h p = 0.0261), which coincided with a higher tissue GCR expression (p = 0.0415). During resuscitation from hemorrhagic shock Na2S2O3 attenuated shock-induced acute lung injury in co-morbid swine, most likely due to a GCR expression related mechanism.


Assuntos
Antioxidantes/uso terapêutico , Aterosclerose/complicações , Choque Hemorrágico/complicações , Choque Hemorrágico/tratamento farmacológico , Tiossulfatos/uso terapêutico , Animais , Antioxidantes/administração & dosagem , Aterosclerose/patologia , Doença da Artéria Coronariana/complicações , Doença da Artéria Coronariana/patologia , Feminino , Masculino , Distribuição Aleatória , Ressuscitação , Choque Hemorrágico/patologia , Suínos , Tiossulfatos/administração & dosagem
3.
Crit Care Med ; 45(12): e1270-e1279, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29028763

RESUMO

OBJECTIVES: Investigation of the effects of hyperoxia during resuscitation from hemorrhagic shock in swine with preexisting coronary artery disease. DESIGN: Prospective, controlled, randomized trial. SETTING: University animal research laboratory. SUBJECTS: Nineteen hypercholesterolemic pigs with preexisting coronary artery disease. INTERVENTIONS: Anesthetized, mechanically ventilated, and surgically instrumented pigs underwent 3 hours of hemorrhagic shock (removal of 30% of the calculated blood volume and subsequent titration of mean arterial blood pressure ≈40 mm Hg). Postshock resuscitation (48 hr) comprised retransfusion of shed blood, crystalloids (balanced electrolyte solution), and norepinephrine support. Pigs were randomly assigned to "control" (FIO2 0.3, adjusted for arterial oxygen saturation ≥ 90%) and "hyperoxia" (FIO2 1.0 for 24 hr) groups. MEASUREMENTS AND MAIN RESULTS: Before, at the end of shock and every 12 hours of resuscitation, datasets comprising hemodynamics, calorimetry, blood gases, cytokines, and cardiac and renal function were recorded. Postmortem, organs were sampled for immunohistochemistry, western blotting, and mitochondrial high-resolution respirometry. Survival rates were 50% and 89% in the control and hyperoxia groups, respectively (p = 0.077). Apart from higher relaxation constant τ at 24 hours, hyperoxia did not affect cardiac function. However, troponin values were lower (2.2 [0.9-6.2] vs 6.9 [4.8-9.8] ng/mL; p < 0.05) at the end of the experiment. Furthermore, hyperoxia decreased cardiac 3-nitrotyrosine formation and increased inducible nitric oxide synthase expression. Plasma creatinine values were lower in the hyperoxia group during resuscitation coinciding with significantly improved renal mitochondrial respiratory capacity and lower 3-nitrotyrosine formation. CONCLUSIONS: Hyperoxia during resuscitation from hemorrhagic shock in swine with preexisting coronary artery disease reduced renal dysfunction and cardiac injury, potentially resulting in improved survival, most likely due to increased mitochondrial respiratory capacity and decreased oxidative and nitrosative stress. Compared with our previous study, the present results suggest a higher benefit of hyperoxia in comorbid swine due to an increased susceptibility to hemorrhagic shock.


Assuntos
Doença da Artéria Coronariana/epidemiologia , Hipercolesterolemia/epidemiologia , Hiperóxia/fisiopatologia , Ressuscitação/métodos , Choque Hemorrágico/epidemiologia , Choque Hemorrágico/fisiopatologia , Animais , Gasometria , Pressão Sanguínea , Citocinas/metabolismo , Testes de Função Cardíaca , Hemodinâmica , Testes de Função Renal , Estudos Prospectivos , Distribuição Aleatória , Choque Hemorrágico/mortalidade , Choque Hemorrágico/terapia , Suínos
4.
Crit Care Med ; 44(5): e264-77, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26588829

RESUMO

OBJECTIVE: Hemorrhagic shock-induced tissue hypoxia induces hyperinflammation, ultimately causing multiple organ failure. Hyperoxia and hypothermia can attenuate tissue hypoxia due to increased oxygen supply and decreased demand, respectively. Therefore, we tested the hypothesis whether mild therapeutic hypothermia and hyperoxia would attenuate postshock hyperinflammation and thereby organ dysfunction. DESIGN: Prospective, controlled, randomized study. SETTING: University animal research laboratory. SUBJECTS: Thirty-six Bretoncelles-Meishan-Willebrand pigs of either gender. INTERVENTIONS: After 4 hours of hemorrhagic shock (removal of 30% of the blood volume, subsequent titration of mean arterial pressure at 35 mm Hg), anesthetized and instrumented pigs were randomly assigned to "control" (standard resuscitation: retransfusion of shed blood, fluid resuscitation, norepinephrine titrated to maintain mean arterial pressure at preshock values, mechanical ventilation titrated to maintain arterial oxygen saturation > 90%), "hyperoxia" (standard resuscitation, but FIO2, 1.0), "hypothermia" (standard resuscitation, but core temperature 34°C), or "combi" (hyperoxia plus hypothermia) (n = 9 each). MEASUREMENTS AND MAIN RESULTS: Before, immediately at the end of and 12 and 22 hours after hemorrhagic shock, we measured hemodynamics, blood gases, acid-base status, metabolism, organ function, cytokine production, and coagulation. Postmortem kidney specimen were taken for histological evaluation, immunohistochemistry (nitrotyrosine, cystathionine γ-lyase, activated caspase-3, and extravascular albumin), and immunoblotting (nuclear factor-κB, hypoxia-inducible factor-1α, heme oxygenase-1, inducible nitric oxide synthase, B-cell lymphoma-extra large, and protein expression of the endogenous nuclear factor-κB inhibitor). Although hyperoxia alone attenuated the postshock hyperinflammation and thereby tended to improve visceral organ function, hypothermia and combi treatment had no beneficial effect. CONCLUSIONS: During resuscitation from near-lethal hemorrhagic shock, hyperoxia attenuated hyperinflammation, and thereby showed a favorable trend toward improved organ function. The lacking efficacy of hypothermia was most likely due to more pronounced barrier dysfunction with vascular leakage-induced circulatory failure.


Assuntos
Hiperóxia , Hipotermia Induzida/métodos , Ressuscitação/métodos , Choque Hemorrágico/fisiopatologia , Choque Hemorrágico/terapia , Animais , Coagulação Sanguínea/fisiologia , Gasometria , Citocinas/metabolismo , Feminino , Hidratação , Hemodinâmica , Immunoblotting , Imuno-Histoquímica , Rim/patologia , Masculino , Estudos Prospectivos , Distribuição Aleatória , Respiração Artificial , Suínos
5.
Mediators Inflamm ; 2015: 463950, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26556956

RESUMO

Severe tissue trauma-induced systemic inflammation is often accompanied by evident or occult blood-organ barrier dysfunctions, frequently leading to multiple organ dysfunction. However, it is unknown whether specific barrier molecules are shed into the circulation early after trauma as potential indicators of an initial barrier dysfunction. The release of the barrier molecule junctional adhesion molecule-1 (JAM-1) was investigated in plasma of C57BL/6 mice 2 h after experimental mono- and polytrauma as well as in polytrauma patients (ISS ≥ 18) during a 10-day period. Correlation analyses were performed to indicate a linkage between JAM-1 plasma concentrations and organ failure. JAM-1 was systemically detected after experimental trauma in mice with blunt chest trauma as a driving force. Accordingly, JAM-1 was reduced in lung tissue after pulmonary contusion and JAM-1 plasma levels significantly correlated with increased protein levels in the bronchoalveolar lavage as a sign for alveolocapillary barrier dysfunction. Furthermore, JAM-1 was markedly released into the plasma of polytrauma patients as early as 4 h after the trauma insult and significantly correlated with severity of disease and organ dysfunction (APACHE II and SOFA score). The data support an early injury- and time-dependent appearance of the barrier molecule JAM-1 in the circulation indicative of a commencing trauma-induced barrier dysfunction.


Assuntos
Moléculas de Adesão Celular/sangue , Traumatismo Múltiplo/sangue , Receptores de Superfície Celular/sangue , APACHE , Animais , Líquido da Lavagem Broncoalveolar/química , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Índice de Gravidade de Doença
6.
Nitric Oxide ; 41: 48-61, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-24650697

RESUMO

Numerous papers have been published on the role of H2S during circulatory shock. Consequently, knowledge about vascular sulfide concentrations may assume major importance, in particular in the context of "acute on chronic disease", i.e., during circulatory shock in animals with pre-existing chronic disease. This review addresses the questions (i) of the "real" sulfide levels during circulatory shock, and (ii) to which extent injury and pre-existing co-morbidity may affect the expression of H2S producing enzymes under these conditions. In the literature there is a huge range on sulfide blood levels during circulatory shock, in part as a result of the different analytical methods used, but also due to the variable of the models and species studied. Clearly, some of the very high levels reported should be questioned in the context of the well-known H2S toxicity. As long as "real" sulfide levels during circulatory shock are unknown and/or undetectable "on line" due to the lack of appropriate techniques, it appears to be premature to correlate the measured blood levels of hydrogen sulfide with the severity of shock or the H2S therapy-related biological outcomes. The available data on the tissue expression of the H2S-releasing enzymes during circulatory shock suggest that a "constitutive" CSE expression may play a crucial role of for the maintenance of organ function, at least in the kidney. The data also indicate that increased CBS and CSE expression, in particular in the lung and the liver, represents an adaptive response to stress states.


Assuntos
Sulfeto de Hidrogênio , Choque , Animais , Testes de Química Clínica , Humanos , Camundongos , Ratos , Choque/sangue , Choque/metabolismo , Choque/fisiopatologia , Sulfetos , Suínos
7.
Photodiagnosis Photodyn Ther ; 46: 104059, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38548041

RESUMO

OBJECTIVE: Herein we describe initial results in a porcine model of a fully implantable device designed to allow closed, repetitive photodynamic treatment of glioblastoma (GBM). METHODS: This implant, Globus Lucidus, is a transparent quartz glass sphere with light-emitting diodes releasing wavelengths of 630 nm (19.5 mW/cm2), 405 nm (5.0 mW/cm2) or 275 nm (0.9 mW/cm2). 5-aminolevulinic acid was the photosensitizing prodrug chosen for use with Globus Lucidus, hence the implants illuminated at 630 nm or 405 nm. An additional 275 nm wavelength-emittance was included to explore the effects of photochemical therapy (PCT) by ultraviolet (UV) light. Twenty healthy domestic pigs underwent right-frontal craniotomies. The Globus Lucidus device was inserted into a surgically created right-frontal lobe cavity. After postoperative recovery, irradiation for up to 30 min daily for up to 14 d, or continuous irradiation for up to 14.6 h was conducted. RESULTS: Surgery, implants, and repeated irradiations using the different wavelengths were generally well tolerated. Social behavior, wound healing, body weight, and temperature remained unaffected. Histopathological analyses revealed consistent leukocyte infiltration around the intracerebral implant sites with no significant differences between experimental and control groups. CONCLUSION: This Globus Lucidus porcine study prepares the groundwork for adjuvant, long-term, repeated PDT of the GBM infiltration zone. This is the first report of a fully implantable PDT/PCT device for the potential treatment of GBM. A preclinical effectivity study of Globus Lucidus PDT/PCT is warranted and in advanced stages of planning.


Assuntos
Ácido Aminolevulínico , Glioblastoma , Fotoquimioterapia , Fármacos Fotossensibilizantes , Animais , Glioblastoma/tratamento farmacológico , Glioblastoma/terapia , Fotoquimioterapia/métodos , Suínos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Ácido Aminolevulínico/uso terapêutico , Ácido Aminolevulínico/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/terapia , Feminino
8.
Crit Care Med ; 41(7): e105-17, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23507715

RESUMO

OBJECTIVES: Accidental hypothermia increases mortality and morbidity after hemorrhage, but controversial data are available on the effects of therapeutic hypothermia. Therefore, we tested the hypothesis whether moderate pretreatment hypothermia would beneficially influence organ dysfunction during long-term, porcine hemorrhage and resuscitation. DESIGN: Prospective, controlled, randomized study. SETTING: University animal research laboratory. SUBJECTS: Twenty domestic pigs of either gender. INTERVENTIONS: Using an extracorporeal heat exchanger, anesthetized and instrumented animals were maintained at 38°C, 35°C, or 32°C core temperature and underwent 4 hours of hemorrhage (removal of 40% of the blood volume and subsequent blood removal/retransfusion to maintain mean arterial pressure at 30 mm Hg). Resuscitation comprised of hydroxyethyl starch and norepinephrine infusion titrated to maintain mean arterial pressure at preshock values. MEASUREMENTS AND MAIN RESULTS: Before, immediately at the end of, and 12 and 22 hours after hemorrhage, we measured systemic and regional hemodynamics (portal vein, hepatic and right kidney artery ultrasound flow probes) and oxygen transport, and nitric oxide and cytokine production. Hemostasis was assessed by rotation thromboelastometry. Postmortem biopsies were analyzed for histomorphology (hematoxylin and eosin staining) and markers of apoptosis (kidney Bcl-xL and caspase-3 expression). Hypothermia at 32°C attenuated the shock-related lactic acidosis but caused metabolic acidosis, most likely resulting from reduced carbohydrate oxidation. Although hypothermia did not further aggravate shock-related coagulopathy, it caused a transitory attenuation of kidney and liver dysfunction, which was ultimately associated with reduced histological damage and more pronounced apoptosis. CONCLUSIONS: During long-term porcine hemorrhage and resuscitation, moderate pretreatment hypothermia was associated with a transitory attenuation of organ dysfunction and less severe histological tissue damage despite more pronounced metabolic acidosis. This effect is possibly due to a switch from necrotic to apoptotic cell death, ultimately resulting from reduced tissue energy deprivation during the shock phase.


Assuntos
Hipotermia Induzida/métodos , Ressuscitação/métodos , Choque Hemorrágico/terapia , Animais , Análise Química do Sangue , Feminino , Glucose/metabolismo , Hemodinâmica , Masculino , Distribuição Aleatória , Choque Hemorrágico/sangue , Suínos , Fatores de Tempo
9.
Crit Care Med ; 40(7): 2157-67, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22713217

RESUMO

OBJECTIVE: Controversial data are available on the effects of hydrogen sulfide during hemorrhage. Because the clinical significance of hydrogen sulfide administration in rodents may not be applicable to larger species, we tested the hypothesis whether intravenous Na2S (sulfide) would beneficially influence organ dysfunction during long-term, porcine hemorrhage and resuscitation. DESIGN: Prospective, controlled, randomized study. SETTING: University animal research laboratory. SUBJECTS: Forty-five domestic pigs of either gender. INTERVENTIONS: Anesthetized and instrumented animals underwent 4 hrs of hemorrhage (removal of 40% of the blood volume and subsequent blood removal/retransfusion to maintain mean arterial pressure at 30 mm Hg). Sulfide infusion was started 2 hrs before hemorrhage, simultaneously with blood removal or at the beginning of retransfusion of shed blood, and continued for 12 hrs. Resuscitation comprised hydroxyethyl starch and norepinenephrine infusion titrated to maintain mean arterial pressure at preshock values. MEASUREMENTS AND MAIN RESULTS: Before, immediately at the end of and 12 and 22 hrs after hemorrhage, we measured systemic and regional hemodynamics (portal vein, hepatic and right kidney artery ultrasound flow probes) and oxygen transport, nitric oxide and cytokine production (nitrate+nitrite, interleukin-6, tumor necrosis factor-α levels). Postmortem biopsies were analyzed for histomorphology (hematoxylin and eosin staining) and DNA damage (terminal deoxynucleotidyltransferase-mediated dUTP nick-end labeling staining). The progressive kidney (creatinine levels, creatinine clearance), liver (transaminase activities, bilirubin levels), and cardiocirculatory (norepipnehrine requirements, troponin I levels) dysfunction was attenuated in the simultaneous treatment group only, which coincided with reduced lung, liver, and kidney histological damage. Sulfide reduced mortality, however, irrespective of the timing of its administration. CONCLUSIONS: While the sulfide-induced protection against organ injury was only present when initiated simultaneously with blood removal, it was largely unrelated to hypothermia. The absence of sulfide-mediated protection in the pretreatment protocol may be due to the accumulation of sulfide during low flow states. In conclusion, sulfide treatment can be effective in hemorrhagic shock, but its effectiveness is restricted to a narrow timing and dosing window.


Assuntos
Sulfeto de Hidrogênio/farmacologia , Ressuscitação/métodos , Choque Hemorrágico/tratamento farmacológico , Bilirrubina/metabolismo , Creatinina/análise , Feminino , Humanos , Derivados de Hidroxietil Amido/farmacologia , Infusões Intravenosas , Fígado/metabolismo , Masculino , Norepinefrina/farmacologia , Substitutos do Plasma/farmacologia , Distribuição Aleatória , Transaminases/metabolismo , Troponina I/sangue
10.
Crit Care ; 16(5): 319, 2012 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-23016869

RESUMO

There is a plethora of experimental data on the potential therapeutic benefits of recombinant human erythropoietin (rhEPO) and its synthetic derivatives in critical care medicine, in particular in ischemia/reperfusion injury. Most of the recent clinical trials have not shown clear benefits, and, in some patients, EPO-aggravated morbidity and mortality was even reported. Treatment with rhEPO has been successfully used in patients with anemia resulting from chronic kidney disease, but even a subset of this patient population does not adequately respond to rhEPO therapy. The following viewpoint uses rhEPO as an example to highlight the possible pitfalls in current practice using young healthy animals for the evaluation of therapies to treat patients of variable age and underlying chronic co-morbidity.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Eritropoetina/uso terapêutico , Proteínas Recombinantes/uso terapêutico , Traumatismo por Reperfusão/prevenção & controle , Animais , Ensaios Clínicos como Assunto , Estado Terminal , Resistência a Medicamentos , Eritropoetina/farmacologia , Humanos , Modelos Animais , Proteínas Recombinantes/farmacologia , Insuficiência Renal Crônica/complicações
11.
Biomolecules ; 12(4)2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35454132

RESUMO

Ever since the discovery of endogenous H2S and the identification of its cytoprotective properties, efforts have been made to develop strategies to use H2S as a therapeutic agent. The ability of H2S to regulate vascular tone, inflammation, oxidative stress, and apoptosis might be particularly useful in the therapeutic management of critical illness. However, neither the inhalation of gaseous H2S, nor the administration of inorganic H2S-releasing salts or slow-releasing H2S-donors are feasible for clinical use. Na2S2O3 is a clinically approved compound with a good safety profile and is able to release H2S, in particular under hypoxic conditions. Pre-clinical studies show promise for Na2S2O3 in the acute management of critical illness. A current clinical trial is investigating the therapeutic potential for Na2S2O3 in myocardial infarct. Pre-eclampsia and COVID-19 pneumonia might be relevant targets for future clinical trials.


Assuntos
Tratamento Farmacológico da COVID-19 , Sulfeto de Hidrogênio , Estado Terminal , Humanos , Sulfeto de Hidrogênio/uso terapêutico , Tiossulfatos/farmacologia , Tiossulfatos/uso terapêutico
12.
Front Med (Lausanne) ; 9: 925433, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35847799

RESUMO

Background: The hydrogen sulfide (H2S) and the oxytocin/oxytocin receptor (OT/OTR) systems interact in the central nervous and cardiovascular system. As a consequence of osmotic balance stress, H2S stimulates OT release from the paraventricular nuclei (PVN) in the hypothalamic regulation of blood volume and pressure. Hemorrhagic shock (HS) represents one of the most pronounced acute changes in blood volume, which, moreover, may cause at least transient brain tissue hypoxia. Atherosclerosis is associated with reduced vascular expression of the main endogenous H2S producing enzyme cystathionine-γ-lyase (CSE), and, hence, exogenous H2S administration could be beneficial in these patients, in particular after HS. However, so far cerebral effects of systemic H2S administration are poorly understood. Having previously shown lung-protective effects of therapeutic Na2S2O3 administration in a clinically relevant, long-term, porcine model of HS and resuscitation we evaluated if these protective effects were extended to the brain. Methods: In this study, available unanalyzed paraffin embedded brain sections (Na2S2O3 N = 8 or vehicle N = 5) of our recently published HS study were analyzed via neuro-histopathology and immunohistochemistry for the endogenous H2S producing enzymes, OT, OTR, and markers for brain injury and oxidative stress (glial fibrillary acidic protein (GFAP) and nitrotyrosine). Results: Neuro-histopathological analysis revealed uninjured brain tissue with minor white matter edema. Protein quantification in the hypothalamic PVN showed no significant inter-group differences between vehicle or Na2S2O3 treatment. Conclusions: The endogenous H2S enzymes, OT/OTR co-localized in magnocellular neurons in the hypothalamus, which may reflect their interaction in response to HS-induced hypovolemia. The preserved blood brain barrier (BBB) may have resulted in impermeability for Na2S2O3 and no inter-group differences in the PVN. Nonetheless, our results do not preclude that Na2S2O3 could have a therapeutic benefit in the brain in an injury that disrupts the BBB, e.g., traumatic brain injury (TBI) or acute subdural hematoma (ASDH).

13.
Front Med (Lausanne) ; 9: 878823, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35572988

RESUMO

Background: Sodium thiosulfate (STS) is a recognized drug with antioxidant and H2S releasing properties. We recently showed that STS attenuated organ dysfunction and injury during resuscitation from trauma-and-hemorrhage in CSE-ko mice, confirming its previously described organ-protective and anti-inflammatory properties. The role of H2S in diabetes mellitus type 1 (DMT1) is controversial: genetic DMT1 impairs H2S biosynthesis, which has been referred to contribute to endothelial dysfunction and cardiomyopathy. In contrast, development and severity of hyperglycemia in streptozotocin(STZ)-induced DMT1 was attenuated in CSE-ko mice. Therefore, we tested the hypothesis whether STS would also exert organ-protective effects in CSE-ko mice with STZ-induced DMT1, similar to our findings in animals without underlying co-morbidity. Methods: Under short-term anesthesia with sevoflurane and analgesia with buprenorphine CSE-ko mice underwent DMT1-induction by single STZ injection (100 µg⋅g-1). Seven days later, animals underwent blast wave-induced blunt chest trauma and surgical instrumentation followed by 1 h of hemorrhagic shock (MAP 35 ± 5 mmHg). Resuscitation comprised re-transfusion of shed blood, lung-protective mechanical ventilation, fluid resuscitation and continuous i.v. norepinephrine together with either i.v. STS (0.45 mg⋅g-1) or vehicle (n = 9 in each group). Lung mechanics, hemodynamics, gas exchange, acid-base status, stable isotope-based metabolism, and visceral organ function were assessed. Blood and organs were collected for analysis of cytokines, chemokines, and immunoblotting. Results: Diabetes mellitus type 1 was associated with more severe circulatory shock when compared to our previous study using the same experimental design in CSE-ko mice without co-morbidity. STS did not exert any beneficial therapeutic effect. Most of the parameters measured of the inflammatory response nor the tissue expression of marker proteins of the stress response were affected either. Conclusion: In contrast to our previous findings in CSE-ko mice without underlying co-morbidity, STS did not exert any beneficial therapeutic effect in mice with STZ-induced DMT1, possibly due to DMT1-related more severe circulatory shock. This result highlights the translational importance of both integrating standard ICU procedures and investigating underlying co-morbidity in animal models of shock research.

14.
J Endocr Soc ; 6(4): bvac029, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35265784

RESUMO

Hormonal factors affecting the vascular adaptions of the uteroplacental unit in noncomplicated and complicated pregnancies are of interest. Here, 4 human placentas from women with and without preeclampsia (PE) were investigated for the presence of placental lactogen (PL)-derived, antiangiogenic vasoinhibin. Western blotting and mass spectrometry of placental tissue revealed the presence of a 9-kDa PL-derived vasoinhibin, the normal 22-kDa full-length PL, and a 28-kDa immunoreactive protein of undetermined nature. The sequence of the 9-kDa vasoinhibin includes the antiangiogenic determinant of vasoinhibin and could constitute a relevant factor in normal pregnancy and PE.

15.
Front Med (Lausanne) ; 9: 971882, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072939

RESUMO

Controversial evidence is available regarding suitable targets for the arterial O2 tension (PaO2) after traumatic brain injury and/or hemorrhagic shock (HS). We previously demonstrated that hyperoxia during resuscitation from hemorrhagic shock attenuated cardiac injury and renal dysfunction in swine with coronary artery disease. Therefore, this study investigated the impact of targeted hyperoxemia in a long-term, resuscitated model of combined acute subdural hematoma (ASDH)-induced brain injury and HS. The prospective randomized, controlled, resuscitated animal investigation consisted of 15 adult pigs. Combined ASDH plus HS was induced by injection of 0.1 ml/kg autologous blood into the subdural space followed by controlled passive removal of blood. Two hours later, resuscitation was initiated comprising re-transfusion of shed blood, fluids, continuous i.v. noradrenaline, and either hyperoxemia (target PaO2 200 - 250 mmHg) or normoxemia (target PaO2 80 - 120 mmHg) during the first 24 h of the total of 54 h of intensive care. Systemic hemodynamics, intracranial and cerebral perfusion pressures, parameters of brain microdialysis and blood biomarkers of brain injury did not significantly differ between the two groups. According to the experimental protocol, PaO2 was significantly higher in the hyperoxemia group at the end of the intervention period, i.e., at 24 h of resuscitation, which coincided with a higher brain tissue PO2. The latter persisted until the end of observation period. While neurological function as assessed using the veterinary Modified Glasgow Coma Score progressively deteriorated in the control group, it remained unaffected in the hyperoxemia animals, however, without significant intergroup difference. Survival times did not significantly differ in the hyperoxemia and control groups either. Despite being associated with higher brain tissue PO2 levels, which were sustained beyond the intervention period, targeted hyperoxemia exerted neither significantly beneficial nor deleterious effects after combined ASDH and HS in swine with pre-existing coronary artery disease. The unavailability of a power calculation and, thus, the limited number of animals included, are the limitations of the study.

16.
Shock ; 57(1): 131-139, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34172609

RESUMO

BACKGROUND: Sodium thiosulfate (Na2S2O3) is a clinically established drug with antioxidant and sulphide-releasing properties. Na2S2O3 mediated neuro- and cardioprotective effects in ischemia/reperfusion models and anti-inflammatory effects in LPS-induced acute lung injury. Moreover, Na2S2O3 improved lung function during resuscitation from hemorrhagic shock in swine with pre-existing atherosclerosis, characterized by decreased expression of cystathionine γ-lyase (CSE), a major source of hydrogen sulfide (H2S) synthesis in the vasculature. Based on these findings, we investigated the effects of Na2S2O3 administration during resuscitation from trauma-and-hemorrhage in mice under conditions of whole body CSE deficit. METHODS: After blast wave-induced blunt chest trauma and surgical instrumentation, CSE knockout (CSE-/-) mice underwent 1 h of hemorrhagic shock (MAP 35 ±â€Š5 mm Hg). At the beginning of resuscitation comprising retransfusion, norepinephrine support and lung-protective mechanical ventilation, animals received either i.v. Na2S2O3 (0.45 mg g-1, n = 12) or vehicle (saline, n = 13). Hemodynamics, acid-base status, metabolism using stable isotopes, and visceral organ function were assessed. Blood and organs were collected for analysis of cytokines, mitochondrial respiratory capacity, and immunoblotting. RESULTS: Na2S2O3 treatment improved arterial paO2 (P = 0.03) coinciding with higher lung tissue glucocorticoid receptor expression. Norepinephrine requirements were lower in the Na2S2O3 group (P < 0.05), which was associated with lower endogenous glucose production and higher urine output. Na2S2O3 significantly increased renal tissue IκBα and heme oxygenase-1 expression, whereas it lowered kidney IL-6 and MCP-1 levels. CONCLUSION: Na2S2O3 exerted beneficial effects during resuscitation of murine trauma-and-hemorrhage in CSE-/- mice, confirming and extending the previously described organ-protective and anti-inflammatory properties of Na2S2O3. The findings make Na2S2O3 a potentially promising therapeutic option in the context of impaired CSE activity and/or reduced endogenous H2S availability.


Assuntos
Antioxidantes/farmacologia , Ressuscitação , Tiossulfatos/farmacologia , Animais , Quimiocina CCL2/metabolismo , Cistationina gama-Liase/genética , Glucose/metabolismo , Heme Oxigenase-1/metabolismo , Interleucina-6/metabolismo , Rim/metabolismo , Pulmão/metabolismo , Camundongos Knockout , Inibidor de NF-kappaB alfa/metabolismo , Norepinefrina/administração & dosagem , Oxigênio/sangue , Receptores de Glucocorticoides/metabolismo , Choque Hemorrágico/terapia , Traumatismos Torácicos/terapia , Urina , Vasoconstritores/administração & dosagem
17.
J Trauma ; 71(6): 1659-67, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21857260

RESUMO

BACKGROUND: When used as a pretreatment, hydrogen sulfide (H2S) either attenuated or aggravated lung injury. Therefore, we tested the hypothesis whether posttreatment intravenous Na2S (sulfide) may attenuate lung injury. METHODS: After blast wave blunt chest trauma or sham procedure, anesthetized and instrumented mice received continuous intravenous sulfide or vehicle while being kept at 37°C or 32°C core temperature. After 4 hours of pressure-controlled, thoracopulmonary compliance-titrated, lung-protective mechanical ventilation, blood and tissue were harvested for cytokine concentrations, heme oxygenase-1, IκBα, Bcl-Xl, and pBad expression (western blotting), nuclear factor-κB activation (electrophoretic mobility shift assay), and activated caspase-3, cystathionine-ß synthase and cystathionine-γ lyase (immunohistochemistry). RESULTS: Hypothermia caused marked bradycardia and metabolic acidosis unaltered by sulfide. Chest trauma impaired thoracopulmonary compliance and arterial Po2, again without sulfide effect. Cytokine levels showed inconsistent response. Sulfide increased nuclear factor-κB activation during normothermia, but this effect was blunted during hypothermia. While histologic lung injury was variable, both sulfide and hypothermia attenuated the trauma-related increase in heme oxygenase-1 expression and activated caspase-3 staining, which coincided with increased Bad phosphorylation and Bcl-Xl expression. Sulfide and hypothermia also attenuated the trauma-induced cystathionine-ß synthase and cystathionine-γ lyase expression. CONCLUSIONS: Posttreatment sulfide infusion after blunt chest trauma did not affect the impaired lung mechanics and gas exchange but attenuated stress protein expression and apoptotic cell death. This protective effect was amplified by moderate hypothermia. The simultaneous reduction in cystathionine-ß synthase and cystathionine-γ lyase expression supports the role of H2S-generating enzymes as an adaptive response during stress states.


Assuntos
Hemodinâmica/efeitos dos fármacos , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/patologia , Sulfetos/farmacologia , Ferimentos não Penetrantes/tratamento farmacológico , Animais , Western Blotting , Citocinas/efeitos dos fármacos , Citocinas/metabolismo , Modelos Animais de Doenças , Hemodinâmica/fisiologia , Imuno-Histoquímica , Infusões Intravenosas , Lesão Pulmonar/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Troca Gasosa Pulmonar , Distribuição Aleatória , Mecânica Respiratória/efeitos dos fármacos , Sensibilidade e Especificidade , Ferimentos não Penetrantes/patologia
18.
J Clin Med ; 10(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34441780

RESUMO

Today it is well established that early life stress leads to cardiovascular programming that manifests in cardiovascular disease, but the mechanisms by which this occurs, are not fully understood. This perspective review examines the relevant literature that implicates the dysregulation of the gasomediator hydrogen sulfide and the neuroendocrine oxytocin systems in heart disease and their putative mechanistic role in the early life stress developmental origins of cardiovascular disease. Furthermore, interesting hints towards the mutual interaction of the hydrogen sulfide and OT systems are identified, especially with regards to the connection between the central nervous and the cardiovascular system, which support the role of the vagus nerve as a communication link between the brain and the heart in stress-mediated cardiovascular disease.

19.
Methods Mol Biol ; 2321: 121-135, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34048012

RESUMO

The translation of preclinical results into successful clinical therapies remains a challenge in sepsis research. One reason for this lack of translation might be the discrepancy between preclinical models and the clinical reality: nonresuscitated young healthy rodents in contrast to elderly comorbid patients in an intensive care unit. We introduce the mouse intensive care unit (MICU) as a concept to address the lack of resuscitation in preclinical studies as one of the limiting issues in translational research. The MICU reflects standard procedures of the clinical intensive care unit: fluid resuscitation, lung-protective mechanical ventilation, and hemodynamic monitoring and management, all tailored to organ- and function-specific targets. Thus, the MICU gives an experimental animal the intermediate possibility of recovery and survival due to "patient" management, which is not reflected in less complex experimental scenarios, which either result in acute survival or death.


Assuntos
Estudos Clínicos como Assunto/métodos , Camundongos/fisiologia , Animais , Hemodinâmica/fisiologia , Unidades de Terapia Intensiva , Pulmão/fisiopatologia , Respiração Artificial/métodos , Ressuscitação/métodos , Sepse/fisiopatologia , Pesquisa Translacional Biomédica/métodos
20.
Neural Regen Res ; 16(12): 2376-2382, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33907009

RESUMO

In the porcine model discussed in this review, the acute subdural hematoma was induced by subdural injection of autologous blood over the left parietal cortex, which led to a transient elevation of the intracerebral pressure, measured by bilateral neuromonitoring. The hematoma-induced brain injury was associated with albumin extravasation, oxidative stress, reactive astrogliosis and microglial activation in the ipsilateral hemisphere. Further proteins and injury markers were validated to be used for immunohistochemistry of porcine brain tissue. The cerebral expression patterns of oxytocin, oxytocin receptor, cystathionine-γ-lyase and cystathionine-ß-synthase were particularly interesting: these four proteins all co-localized at the base of the sulci, where pressure-induced brain injury elicits maximum stress. In this context, the pig is a very relevant translational model in contrast to the rodent brain. The structure of the porcine brain is very similar to the human: the presence of gyri and sulci (gyrencephalic brain), white matter to grey matter proportion and tentorium cerebelli. Thus, pressure-induced injury in the porcine brain, unlike in the rodent brain, is reflective of the human pathophysiology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA