Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 34(7): 8902-8919, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32519783

RESUMO

TOKs are outwardly rectifying K+ channels in fungi with two pore-loops and eight transmembrane spans. Here, we describe the TOKs from four pathogens that cause the majority of life-threatening fungal infections in humans. These TOKs pass large currents only in the outward direction like the canonical isolate from Saccharomyces cerevisiae (ScTOK), and distinct from other K+ channels. ScTOK, AfTOK1 (Aspergillus fumigatus), and H99TOK (Cryptococcus neoformans grubii) are K+ -selective and pass current above the K+ reversal potential. CaTOK (Candida albicans) and CnTOK (Cryptococcus neoformans neoformans) pass both K+ and Na+ and conduct above a reversal potential reflecting the mixed permeability of their selectivity filter. Mutations in CaTOK and ScTOK at sites homologous to those that open the internal gates in classical K+ channels are shown to produce inward TOK currents. A favored model for outward rectification is proposed whereby the reversal potential determines ion occupancy, and thus, conductivity, of the selectivity filter gate that is coupled to an imperfectly restrictive internal gate, permitting the filter to sample ion concentrations on both sides of the membrane.


Assuntos
Condutividade Elétrica , Ativação do Canal Iônico/fisiologia , Oócitos/fisiologia , Canais de Potássio/fisiologia , Potássio/metabolismo , Sequência de Aminoácidos , Animais , Candida albicans/genética , Candida albicans/crescimento & desenvolvimento , Candida albicans/metabolismo , Clonagem Molecular , Biologia Computacional , Cryptococcus neoformans/genética , Cryptococcus neoformans/crescimento & desenvolvimento , Cryptococcus neoformans/metabolismo , Potenciais da Membrana , Oócitos/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência , Xenopus laevis
2.
J Membr Biol ; 228(1): 1-14, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19219384

RESUMO

Kv2.1 is a voltage-gated potassium (Kv) channel alpha-subunit expressed in mammalian heart and brain. MinK-related peptides (MiRPs), encoded by KCNE genes, are single-transmembrane domain ancillary subunits that form complexes with Kv channel alpha-subunits to modify their function. Mutations in human MinK (KCNE1) and MiRP1 (KCNE2) are associated with inherited and acquired forms of long QT syndrome (LQTS). Here, coimmunoprecipitations from rat heart tissue suggested that both MinK and MiRP1 form native cardiac complexes with Kv2.1. In whole-cell voltage-clamp studies of subunits expressed in CHO cells, rat MinK and MiRP1 reduced Kv2.1 current density three- and twofold, respectively; slowed Kv2.1 activation (at +60 mV) two- and threefold, respectively; and slowed Kv2.1 deactivation less than twofold. Human MinK slowed Kv2.1 activation 25%, while human MiRP1 slowed Kv2.1 activation and deactivation twofold. Inherited mutations in human MinK and MiRP1, previously associated with LQTS, were also evaluated. D76N-MinK and S74L-MinK reduced Kv2.1 current density (threefold and 40%, respectively) and slowed deactivation (60% and 80%, respectively). Compared to wild-type human MiRP1-Kv2.1 complexes, channels formed with M54T- or I57T-MiRP1 showed greatly slowed activation (tenfold and fivefold, respectively). The data broaden the potential roles of MinK and MiRP1 in cardiac physiology and support the possibility that inherited mutations in either subunit could contribute to cardiac arrhythmia by multiple mechanisms.


Assuntos
Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Canais de Potássio Shab/metabolismo , Animais , Western Blotting , Células CHO , Cricetinae , Cricetulus , Eletrofisiologia , Imunofluorescência , Humanos , Imunoprecipitação , Mutação , Miocárdio/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Canais de Potássio Shab/genética
3.
J Neurosci ; 23(22): 8077-91, 2003 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-12954870

RESUMO

Delayed rectifier potassium current diversity and regulation are essential for signal processing and integration in neuronal circuits. Here, we investigated a neuronal role for MinK-related peptides (MiRPs), membrane-spanning modulatory subunits that generate phenotypic diversity in cardiac potassium channels. Native coimmunoprecipitation from rat brain membranes identified two novel potassium channel complexes, MiRP2-Kv2.1 and MiRP2-Kv3.1b. MiRP2 reduces the current density of both channels, slows Kv3.1b activation, and slows both activation and deactivation of Kv2.1. Altering native MiRP2 expression levels by RNAi gene silencing or cDNA transfection toggles the magnitude and kinetics of endogenous delayed rectifier currents in PC12 cells and hippocampal neurons. Computer simulations predict that the slower gating of Kv3.1b in complexes with MiRP2 will broaden action potentials and lower sustainable firing frequency. Thus, MiRP2, unlike other known neuronal beta subunits, provides a mechanism for influence over multiple delayed rectifier potassium currents in mammalian CNS via modulation of alpha subunits from structurally and kinetically distinct subfamilies.


Assuntos
Encéfalo/metabolismo , Neuropeptídeos/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Canais de Potássio/metabolismo , Potenciais de Ação/fisiologia , Animais , Encéfalo/citologia , Células CHO , Membrana Celular/metabolismo , Células Cultivadas , Simulação por Computador , Cricetinae , Canais de Potássio de Retificação Tardia , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Substâncias Macromoleculares , Neurônios/metabolismo , Neuropeptídeos/genética , Células PC12 , Técnicas de Patch-Clamp , Potássio/metabolismo , Canais de Potássio/genética , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Ratos , Ratos Sprague-Dawley , Canais de Potássio Shab , Canais de Potássio Shaw , Transfecção
4.
Neuropharmacology ; 47(6): 787-821, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15527815

RESUMO

Voltage-gated potassium (Kv) channels mediate rapid, selective diffusion of K+ ions through the plasma membrane, controlling cell excitability, secretion and signal transduction. KCNE genes encode a family of single transmembrane domain proteins called MinK-related peptides (MiRPs) that function as ancillary or beta subunits of Kv channels. When co-expressed in heterologous systems, MiRPs confer changes in Kv channel conductance, gating kinetics and pharmacology, and are fundamental to recapitulation of the properties of some native currents. Inherited mutations in KCNE genes are associated with diseases of cardiac and skeletal muscle, and the inner ear. This article reviews our current understanding of MiRPs--their functional roles, the mechanisms underlying their association with Kv alpha subunits, their patterns of native expression and emerging evidence of the potential roles of MiRPs in the brain. The ubiquity of MiRP expression and their promiscuous association with Kv alpha subunits suggest a prominent role for MiRPs in channel dependent systems.


Assuntos
Canais de Potássio de Abertura Dependente da Tensão da Membrana/fisiologia , Sequência de Aminoácidos , Animais , Humanos , Dados de Sequência Molecular , Oócitos/metabolismo , Especificidade de Órgãos , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Subunidades Proteicas , Xenopus
5.
J Mol Biol ; 387(1): 175-91, 2009 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-19361449

RESUMO

We report the X-ray crystal structure of human potassium channel tetramerization domain-containing protein 5 (KCTD5), the first member of the family to be so characterized. Four findings were unexpected. First, the structure reveals assemblies of five subunits while tetramers were anticipated; pentameric stoichiometry is observed also in solution by scanning transmission electron microscopy mass analysis and analytical ultracentrifugation. Second, the same BTB (bric-a-brac, tramtrack, broad complex) domain surface mediates the assembly of five KCTD5 and four voltage-gated K(+) (Kv) channel subunits; four amino acid differences appear crucial. Third, KCTD5 complexes have well-defined N- and C-terminal modules separated by a flexible linker that swivels by approximately 30 degrees; the C-module shows a new fold and is required to bind Golgi reassembly stacking protein 55 with approximately 1 microM affinity, as judged by surface plasmon resonance and ultracentrifugation. Fourth, despite the homology reflected in its name, KCTD5 does not impact the operation of Kv4.2, Kv3.4, Kv2.1, or Kv1.2 channels.


Assuntos
Biopolímeros/química , Canais de Potássio/química , Sequência de Aminoácidos , Cristalografia por Raios X , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Homologia de Sequência de Aminoácidos , Eletricidade Estática , Ressonância de Plasmônio de Superfície
6.
Neuron ; 58(6): 859-70, 2008 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-18579077

RESUMO

K(2P) channels mediate potassium background currents essential to central nervous system function, controlling excitability by stabilizing membrane potential below firing threshold and expediting repolarization. Here, we show that alternative translation initiation (ATI) regulates function of K(2P)2.1 (TREK-1) via an unexpected strategy. Full-length K(2P)2.1 and an isoform lacking the first 56 residues of the intracellular N terminus (K(2P)2.1Delta1-56) are produced differentially in a regional and developmental manner in the rat central nervous system, the latter passing sodium under physiological conditions leading to membrane depolarization. Control of ion selectivity via ATI is proposed to be a natural, epigenetic mechanism for spatial and temporal regulation of neuronal excitability.


Assuntos
Encéfalo/fisiologia , Canais de Potássio de Domínios Poros em Tandem/genética , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Biossíntese de Proteínas , Sódio/metabolismo , Sequência de Aminoácidos , Animais , Feminino , Humanos , Dados de Sequência Molecular , Permeabilidade , Ratos , Xenopus laevis
7.
J Neurochem ; 84(5): 1193-200, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12603842

RESUMO

We recently showed that activation of ATP-sensitive potassium (KATP) channels in PC12 cells induces protection against the neurotoxic effect of rotenone, a mitochondrial complex I inhibitor. In this study, we sought to determine the locus of the KATP channels that mediate this protection in PC12 cells. We found that pretreatment of PC12 cells with diazoxide, a mitochondrial KATP channel selective opener, dose-dependently increases cell viability against rotenone-induced cell death as indicated in trypan blue exclusion assays. The protective effect of this preconditioning is attenuated by 5-hydroxydecanoic acid (5-HD), a selective mitochondrial KATP channel antagonist but not in the presence of HMR-1098, a selective plasma membrane KATP potassium channel antagonist. In contrast, P-1075, a selective plasma membrane KATP channel opener, does not induce protection. Using specific antibodies against SUR1 and Kir6.1, we detected immunoreactive proteins of apparent molecular masses 155 and 50 kDa, corresponding to those previously reported for SUR1 and Kir6.1, respectively, in the mitochondria-enriched fraction of PC12 cells. In addition, whole cell patch-clamp studies revealed that inward currents in PC12 cells are insensitive to P-1075, HMR-1098, glibenclamide and diazoxide, indicating that functional plasma membrane KATP channels are negligible. Taken together, our results demonstrate for the first time that activation of mitochondrial KATP channels elicits protection against rotenone-induced cell death.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Trifosfato de Adenosina/metabolismo , Mitocôndrias/metabolismo , Canais de Potássio/metabolismo , Rotenona/farmacologia , Desacopladores/farmacologia , Animais , Western Blotting , Morte Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Diazóxido/farmacologia , Relação Dose-Resposta a Droga , Mitocôndrias/efeitos dos fármacos , Células PC12 , Técnicas de Patch-Clamp , Feocromocitoma/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Ratos , Receptores de Droga/metabolismo , Frações Subcelulares/química , Frações Subcelulares/metabolismo , Receptores de Sulfonilureias
8.
J Biol Chem ; 279(9): 7884-92, 2004 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-14679187

RESUMO

High frequency firing in mammalian neurons requires ultra-rapid delayed rectifier potassium currents generated by homomeric or heteromeric assemblies of Kv3.1 and Kv3.2 potassium channel alpha subunits. Kv3.1 alpha subunits can also form slower activating channels by coassembling with MinK-related peptide 2 (MiRP2), a single transmembrane domain potassium channel ancillary subunit. Here, using channel subunits cloned from rat and expressed in Chinese hamster ovary cells, we show that modulation by MinK, MiRP1, and MiRP2 is a general mechanism for slowing of Kv3.1 and Kv3.2 channel activation and deactivation and acceleration of inactivation, creating a functionally diverse range of channel complexes. MiRP1 also negatively shifts the voltage dependence of Kv3.1 and Kv3.2 channel activation. Furthermore, MinK, MiRP1, and MiRP2 each form channels with Kv3.1-Kv3.2 heteromers that are kinetically distinct from one another and from MiRP/homomeric Kv3 channels. The findings illustrate a mechanism for dynamic expansion of the functional repertoire of Kv3.1 and Kv3.2 potassium currents and suggest roles for these alpha subunits outside the scope of sustained rapid neuronal firing.


Assuntos
Proteínas do Tecido Nervoso/fisiologia , Neuropeptídeos/fisiologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Canais de Potássio/fisiologia , Animais , Células CHO , Cricetinae , Condutividade Elétrica , Eletrofisiologia , Humanos , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Neuropeptídeos/química , Neuropeptídeos/genética , Canais de Potássio/química , Canais de Potássio/genética , Ratos , Proteínas Recombinantes , Superfamília Shaker de Canais de Potássio , Canais de Potássio Shaw , Relação Estrutura-Atividade , Transfecção
9.
J Biol Chem ; 278(14): 11739-45, 2003 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-12529362

RESUMO

The physiological properties of most ion channels are defined experimentally by functional expression of their pore-forming alpha subunits in Xenopus laevis oocytes. Here, we cloned a family of Xenopus KCNE genes that encode MinK-related peptide K(+) channel beta subunits (xMiRPs) and demonstrated their constitutive expression in oocytes. Electrophysiological analysis of xMiRP2 revealed that when overexpressed this gene modulates human cardiac K(+) channel alpha subunits HERG (human ether-a-go-go-related gene) and KCNQ1 by suppressing HERG currents and removing the voltage dependence of KCNQ1 activation. The ability of endogenous levels of xMiRP2 to contribute to the biophysical attributes of overexpressed mammalian K(+) channels in oocyte studies was assessed next. Injection of an xMiRP2 sequence-specific short interfering RNA (siRNA) oligo reduced endogenous xMiRP2 expression 5-fold, whereas a control siRNA oligo had no effect, indicating the effectiveness of the RNA interference technique in Xenopus oocytes. The functional effects of endogenous xMiRP2 silencing were tested using electrophysiological analysis of heterologously expressed HERG channels. The RNA interference-mediated reduction of endogenous xMiRP2 expression increased macroscopic HERG current as much as 10-fold depending on HERG cRNA concentration. The functional effects of human MiRP1 (hMiRP1)/HERG interaction were also affected by endogenous xMiRP2. At high HERG channel density, at which the effects of endogenous xMiRP2 are minimal, hMiRP1 reduced HERG current. At low HERG current density, hMiRP1 paradoxically up-regulated HERG current, a result consistent with hMiRP1 rescuing HERG from suppression by endogenous xMiRP2. Thus, endogenous Xenopus MiRP subunits contribute to the base-line properties of K(+) channels like HERG in oocyte expression studies, which could explain expression level- and expression system-dependent variation in K(+) channel function.


Assuntos
Proteínas de Transporte de Cátions , Proteínas de Ligação a DNA , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Canais de Potássio/metabolismo , Interferência de RNA/fisiologia , Transativadores , Sequência de Aminoácidos , Animais , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go , Expressão Gênica/fisiologia , Humanos , Mamíferos , Dados de Sequência Molecular , Oócitos/fisiologia , Técnicas de Patch-Clamp , Canais de Potássio/genética , RNA/farmacologia , Regulador Transcricional ERG , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA