Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
J Exp Bot ; 75(10): 2829-2847, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38436428

RESUMO

Cell plate formation during cytokinesis entails multiple stages occurring concurrently and requiring orchestrated vesicle delivery, membrane remodelling, and timely deposition of polysaccharides, such as callose. Understanding such a dynamic process requires dissection in time and space; this has been a major hurdle in studying cytokinesis. Using lattice light sheet microscopy (LLSM), we studied cell plate development in four dimensions, through the behavior of yellow fluorescent protein (YFP)-tagged cytokinesis-specific GTPase RABA2a vesicles. We monitored the entire duration of cell plate development, from its first emergence, with the aid of YFP-RABA2a, in both the presence and absence of cytokinetic callose. By developing a robust cytokinetic vesicle volume analysis pipeline, we identified distinct behavioral patterns, allowing the identification of three easily trackable cell plate developmental phases. Notably, the phase transition between phase I and phase II is striking, indicating a switch from membrane accumulation to the recycling of excess membrane material. We interrogated the role of callose using pharmacological inhibition with LLSM and electron microscopy. Loss of callose inhibited the phase transitions, establishing the critical role and timing of the polysaccharide deposition in cell plate expansion and maturation. This study exemplifies the power of combining LLSM with quantitative analysis to decode and untangle such a complex process.


Assuntos
Arabidopsis , Citocinese , Glucanos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Glucanos/metabolismo , Microscopia
2.
Proc Natl Acad Sci U S A ; 117(22): 12452-12463, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32404426

RESUMO

Plastid isoprenoid-derived carotenoids serve essential roles in chloroplast development and photosynthesis. Although nearly all enzymes that participate in the biosynthesis of carotenoids in plants have been identified, the complement of auxiliary proteins that regulate synthesis, transport, sequestration, and degradation of these molecules and their isoprenoid precursors have not been fully described. To identify such proteins that are necessary for the optimal functioning of oxygenic photosynthesis, we screened a large collection of nonphotosynthetic (acetate-requiring) DNA insertional mutants of Chlamydomonas reinhardtii and isolated cpsfl1 The cpsfl1 mutant is extremely light-sensitive and susceptible to photoinhibition and photobleaching. The CPSFL1 gene encodes a CRAL-TRIO hydrophobic ligand-binding (Sec14) domain protein. Proteins containing this domain are limited to eukaryotes, but some may have been retargeted to function in organelles of endosymbiotic origin. The cpsfl1 mutant showed decreased accumulation of plastidial isoprenoid-derived pigments, especially carotenoids, and whole-cell focused ion-beam scanning-electron microscopy revealed a deficiency of carotenoid-rich chloroplast structures (e.g., eyespot and plastoglobules). The low carotenoid content resulted from impaired biosynthesis at a step prior to phytoene, the committed precursor to carotenoids. The CPSFL1 protein bound phytoene and ß-carotene when expressed in Escherichia coli and phosphatidic acid in vitro. We suggest that CPSFL1 is involved in the regulation of phytoene synthesis and carotenoid transport and thereby modulates carotenoid accumulation in the chloroplast.


Assuntos
Carotenoides/metabolismo , Chlamydomonas reinhardtii/crescimento & desenvolvimento , Cloroplastos/metabolismo , Proteínas de Plantas/metabolismo , Chlamydomonas reinhardtii/classificação , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Cloroplastos/química , Cloroplastos/genética , Fotossíntese , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Domínios Proteicos
3.
PLoS Biol ; 17(4): e3000226, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30978201

RESUMO

Although collar cells are conserved across animals and their closest relatives, the choanoflagellates, little is known about their ancestry, their subcellular architecture, or how they differentiate. The choanoflagellate Salpingoeca rosetta expresses genes necessary for animal development and can alternate between unicellular and multicellular states, making it a powerful model for investigating the origin of animal multicellularity and mechanisms underlying cell differentiation. To compare the subcellular architecture of solitary collar cells in S. rosetta with that of multicellular 'rosette' colonies and collar cells in sponges, we reconstructed entire cells in 3D through transmission electron microscopy on serial ultrathin sections. Structural analysis of our 3D reconstructions revealed important differences between single and colonial choanoflagellate cells, with colonial cells exhibiting a more amoeboid morphology consistent with higher levels of macropinocytotic activity. Comparison of multiple reconstructed rosette colonies highlighted the variable nature of cell sizes, cell-cell contact networks, and colony arrangement. Importantly, we uncovered the presence of elongated cells in some rosette colonies that likely represent a distinct and differentiated cell type, pointing toward spatial cell differentiation. Intercellular bridges within choanoflagellate colonies displayed a variety of morphologies and connected some but not all neighbouring cells. Reconstruction of sponge choanocytes revealed ultrastructural commonalities but also differences in major organelle composition in comparison to choanoflagellates. Together, our comparative reconstructions uncover the architecture of cell differentiation in choanoflagellates and sponge choanocytes and constitute an important step in reconstructing the cell biology of the last common ancestor of animals.


Assuntos
Coanoflagelados/fisiologia , Morfogênese/fisiologia , Poríferos/fisiologia , Animais , Diferenciação Celular/genética , Coanoflagelados/genética , Coanoflagelados/metabolismo , Microscopia Eletrônica de Transmissão , Filogenia , Poríferos/genética
4.
Proc Natl Acad Sci U S A ; 116(33): 16631-16640, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31358635

RESUMO

Photosystem II (PSII) undergoes frequent photooxidative damage that, if not repaired, impairs photosynthetic activity and growth. How photosynthetic organisms protect vulnerable PSII intermediate complexes during de novo assembly and repair remains poorly understood. Here, we report the genetic and biochemical characterization of chloroplast-located rubredoxin 1 (RBD1), a PSII assembly factor containing a redox-active rubredoxin domain and a single C-terminal transmembrane α-helix (TMH) domain. RBD1 is an integral thylakoid membrane protein that is enriched in stroma lamellae fractions with the rubredoxin domain exposed on the stromal side. RBD1 also interacts with PSII intermediate complexes containing cytochrome b559 Complementation of the Chlamydomonas reinhardtii (hereafter Chlamydomonas) RBD1-deficient 2pac mutant with constructs encoding RBD1 protein truncations and site-directed mutations demonstrated that the TMH domain is essential for de novo PSII assembly, whereas the rubredoxin domain is involved in PSII repair. The rubredoxin domain exhibits a redox midpoint potential of +114 mV and is proficient in 1-electron transfers to a surrogate cytochrome c in vitro. Reduction of oxidized RBD1 is NADPH dependent and can be mediated by ferredoxin-NADP+ reductase (FNR) in vitro. We propose that RBD1 participates, together with the cytochrome b559, in the protection of PSII intermediate complexes from photooxidative damage during de novo assembly and repair. This role of RBD1 is consistent with its evolutionary conservation among photosynthetic organisms and the fact that it is essential in photosynthetic eukaryotes.


Assuntos
Membranas Intracelulares/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Rubredoxinas/metabolismo , Tilacoides/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Chlamydomonas reinhardtii/efeitos dos fármacos , Chlamydomonas reinhardtii/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/ultraestrutura , Ferro/farmacologia , Modelos Biológicos , Oxirredução , Domínios Proteicos , Rubredoxinas/química , Tilacoides/efeitos dos fármacos , Tilacoides/ultraestrutura
5.
Proc Natl Acad Sci U S A ; 115(2): E210-E217, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29279409

RESUMO

Xenophagy is a selective macroautophagic process that protects the host cytosol by entrapping and delivering microbes to a degradative compartment. Both noncanonical autophagic pathways and xenophagy are activated by microbes during infection, but the relative importance and function of these distinct processes are not clear. In this study, we used bacterial and host mutants to dissect the contribution of autophagic processes responsible for bacterial growth restriction of Listeria monocytogenesL. monocytogenes is a facultative intracellular pathogen that escapes from phagosomes, grows in the host cytosol, and avoids autophagy by expressing three determinants of pathogenesis: two secreted phospholipases C (PLCs; PlcA and PlcB) and a surface protein (ActA). We found that shortly after phagocytosis, wild-type (WT) L. monocytogenes escaped from a noncanonical autophagic process that targets damaged vacuoles. During this process, the autophagy marker LC3 localized to single-membrane phagosomes independently of the ULK complex, which is required for initiation of macroautophagy. However, growth restriction of bacteria lacking PlcA, PlcB, and ActA required FIP200 and TBK1, both involved in the engulfment of microbes by xenophagy. Time-lapse video microscopy revealed that deposition of LC3 on L. monocytogenes-containing vacuoles via noncanonical autophagy had no apparent role in restricting bacterial growth and that, upon access to the host cytosol, WT L. monocytogenes utilized PLCs and ActA to avoid subsequent xenophagy. In conclusion, although noncanonical autophagy targets phagosomes, xenophagy was required to restrict the growth of L. monocytogenes, an intracellular pathogen that damages the entry vacuole.


Assuntos
Autofagia , Listeria monocytogenes/fisiologia , Macrófagos/microbiologia , Fagocitose , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Células Cultivadas , Citosol/metabolismo , Citosol/microbiologia , Interações Hospedeiro-Patógeno , Listeria monocytogenes/genética , Macrófagos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Knockout , Camundongos Transgênicos , Microscopia de Fluorescência , Mutação , Fagossomos/metabolismo , Fagossomos/microbiologia , Imagem com Lapso de Tempo/métodos , Fosfolipases Tipo C/genética , Fosfolipases Tipo C/metabolismo
6.
PLoS Genet ; 10(11): e1004715, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25392990

RESUMO

Neuronal cargos are differentially targeted to either axons or dendrites, and this polarized cargo targeting critically depends on the interaction between microtubules and molecular motors. From a forward mutagenesis screen, we identified a gain-of-function mutation in the C. elegans α-tubulin gene mec-12 that triggered synaptic vesicle mistargeting, neurite swelling and neurodegeneration in the touch receptor neurons. This missense mutation replaced an absolutely conserved glycine in the H12 helix with glutamic acid, resulting in increased negative charges at the C-terminus of α-tubulin. Synaptic vesicle mistargeting in the mutant neurons was suppressed by reducing dynein function, suggesting that aberrantly high dynein activity mistargeted synaptic vesicles. We demonstrated that dynein showed preference towards binding mutant microtubules over wild-type in microtubule sedimentation assay. By contrast, neurite swelling and neurodegeneration were independent of dynein and could be ameliorated by genetic paralysis of the animal. This suggests that mutant microtubules render the neurons susceptible to recurrent mechanical stress induced by muscle activity, which is consistent with the observation that microtubule network was disorganized under electron microscopy. Our work provides insights into how microtubule-dynein interaction instructs synaptic vesicle targeting and the importance of microtubule in the maintenance of neuronal structures against constant mechanical stress.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Degeneração Neural/genética , Transmissão Sináptica/genética , Vesículas Sinápticas/genética , Tubulina (Proteína)/genética , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Dendritos/genética , Dendritos/metabolismo , Dendritos/patologia , Dineínas/metabolismo , Exocitose , Humanos , Microtúbulos/metabolismo , Mutação de Sentido Incorreto , Degeneração Neural/patologia , Neuritos/metabolismo , Neuritos/patologia , Vesículas Sinápticas/metabolismo , Tubulina (Proteína)/metabolismo
7.
Proc Natl Acad Sci U S A ; 110(40): 16247-52, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24043802

RESUMO

Photosystem II (PSII) reaction center protein D1 is synthesized as a precursor (pD1) with a short C-terminal extension. The pD1 is processed to mature D1 by carboxyl-terminal peptidase A to remove the C-terminal extension and form active protein. Here we report functional characterization of the Arabidopsis gene encoding D1 C-terminal processing enzyme (AtCtpA) in the chloroplast thylakoid lumen. Recombinant AtCtpA converted pD1 to mature D1 and a mutant lacking AtCtpA retained all D1 in precursor form, confirming that AtCtpA is solely responsible for processing. As with cyanobacterial ctpa, a knockout Arabidopsis atctpa mutant was lethal under normal growth conditions but was viable with sucrose under low-light conditions. Viable plants, however, showed deficiencies in PSII and thylakoid stacking. Surprisingly, unlike its cyanobacterial counterpart, the Arabidopsis mutant retained both monomer and dimer forms of the PSII complexes that, although nonfunctional, contained both the core and extrinsic subunits. This mutant was also essentially devoid of PSII supercomplexes, providing an unexpected link between D1 maturation and supercomplex assembly. A knock-down mutant expressing about 2% wild-type level of AtCtpA showed normal growth under low light but was stunted and accumulated pD1 under high light, indicative of delayed C-terminal processing. Although demonstrating the functional significance of C-terminal D1 processing in PSII biogenesis, our study reveals an unsuspected link between D1 maturation and PSII supercomplex assembly in land plants, opening an avenue for exploring the mechanism for the association of light-harvesting complexes with the PSII core complexes.


Assuntos
Arabidopsis/metabolismo , Endopeptidases/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteína do Fotossistema II/biossíntese , Complexo de Proteína do Fotossistema II/fisiologia , Eletroforese em Gel de Poliacrilamida , Endopeptidases/genética , Fluorescência , Técnicas de Silenciamento de Genes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tilacoides/metabolismo
8.
Mol Biol Evol ; 31(9): 2342-55, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24899667

RESUMO

Reconstructing the evolution and ancestral functions of synaptic proteins promises to shed light on how neurons first evolved. The postsynaptic density (PSD) protein Homer scaffolds membrane receptors and regulates Ca(2+) signaling in diverse metazoan cell types (including neurons and muscle cells), yet its ancestry and core functions are poorly understood. We find that the protein domain organization and essential biochemical properties of metazoan Homer proteins, including their ability to tetramerize, are conserved in the choanoflagellate Salpingoeca rosetta, one of the closest living relatives of metazoans. Unlike in neurons, Homer localizes to the nucleoplasm in S. rosetta and interacts directly with Flotillin, a protein more commonly associated with cell membranes. Surprisingly, we found that the Homer/Flotillin interaction and its localization to the nucleus are conserved in metazoan astrocytes. These findings suggest that Homer originally interacted with Flotillin in the nucleus of the last common ancestor of metazoans and choanoflagellates and was later co-opted to function as a membrane receptor scaffold in the PSD.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Evolução Molecular , Proteínas de Membrana/metabolismo , Animais , Astrócitos/metabolismo , Núcleo Celular/metabolismo , Coanoflagelados/metabolismo , Proteínas de Arcabouço Homer , Filogenia , Ratos
9.
Appl Environ Microbiol ; 80(7): 2193-205, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24487526

RESUMO

Bacterial microcompartments (BMCs) are organelles that encapsulate functionally linked enzymes within a proteinaceous shell. The prototypical example is the carboxysome, which functions in carbon fixation in cyanobacteria and some chemoautotrophs. It is increasingly apparent that diverse heterotrophic bacteria contain BMCs that are involved in catabolic reactions, and many of the BMCs are predicted to have novel functions. However, most of these putative organelles have not been experimentally characterized. In this study, we sought to discover the function of a conserved BMC gene cluster encoded in the majority of the sequenced planctomycete genomes. This BMC is especially notable for its relatively simple genetic composition, its remote phylogenetic position relative to characterized BMCs, and its apparent exclusivity to the enigmatic Verrucomicrobia and Planctomycetes. Members of the phylum Planctomycetes are known for their morphological dissimilarity to the rest of the bacterial domain: internal membranes, reproduction by budding, and lack of peptidoglycan. As a result, they are ripe for many discoveries, but currently the tools for genetic studies are very limited. We expanded the genetic toolbox for the planctomycetes and generated directed gene knockouts of BMC-related genes in Planctomyces limnophilus. A metabolic activity screen revealed that BMC gene products are involved in the degradation of a number of plant and algal cell wall sugars. Among these sugars, we confirmed that BMCs are formed and required for growth on l-fucose and l-rhamnose. Our results shed light on the functional diversity of BMCs as well as their ecological role in the planctomycetes, which are commonly associated with algae.


Assuntos
Metabolismo dos Carboidratos , Organelas/metabolismo , Planctomycetales/metabolismo , Plantas/química , Plantas/microbiologia , Fucose/metabolismo , Técnicas de Inativação de Genes , Ordem dos Genes , Genes Bacterianos , Microscopia Eletrônica de Transmissão , Família Multigênica , Organelas/genética , Filogenia , Planctomycetales/genética , Planctomycetales/crescimento & desenvolvimento , Planctomycetales/ultraestrutura , Ramnose/metabolismo
10.
Microsc Microanal ; 20(1): 152-63, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24252586

RESUMO

A variety of specimens including bacteria, ciliates, choanoflagellates (Salpingoeca rosetta), zebrafish (Danio rerio) embryos, nematode worms (Caenorhabditis elegans), and leaves of white clover (Trifolium repens) plants were high pressure frozen, freeze-substituted, infiltrated with either Epon, Epon-Araldite, or LR White resins, and polymerized. Total processing time from freezing to blocks ready to section was about 6 h. For epoxy embedding the specimens were freeze-substituted in 1% osmium tetroxide plus 0.1% uranyl acetate in acetone. For embedding in LR White the freeze-substitution medium was 0.2% uranyl acetate in acetone. Rapid infiltration was achieved by centrifugation through increasing concentrations of resin followed by polymerization at 100°C for 1.5-2 h. The preservation of ultrastructure was comparable to standard freeze substitution and resin embedding methods that take days to complete. On-section immunolabeling results for actin and tubulin molecules were positive with very low background labeling. The LR White methods offer a safer, quicker, and less-expensive alternative to Lowicryl embedding of specimens processed for on-section immunolabeling without traditional aldehyde fixatives.


Assuntos
Substituição ao Congelamento/métodos , Imuno-Histoquímica/métodos , Inclusão do Tecido/métodos , Animais , Bactérias , Resinas Epóxi , Folhas de Planta
11.
Cell Rep ; 43(3): 113791, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38428420

RESUMO

The "ribbon," a structural arrangement in which Golgi stacks connect to each other, is considered to be restricted to vertebrate cells. Although ribbon disruption is linked to various human pathologies, its functional role in cellular processes remains unclear. In this study, we investigate the evolutionary origin of the Golgi ribbon. We observe a ribbon-like architecture in the cells of several metazoan taxa suggesting its early emergence in animal evolution predating the appearance of vertebrates. Supported by AlphaFold2 modeling, we propose that the evolution of Golgi reassembly and stacking protein (GRASP) binding by golgin tethers may have driven the joining of Golgi stacks resulting in the ribbon-like configuration. Additionally, we find that Golgi ribbon assembly is a shared developmental feature of deuterostomes, implying a role in embryogenesis. Overall, our study points to the functional significance of the Golgi ribbon beyond vertebrates and underscores the need for further investigations to unravel its elusive biological roles.


Assuntos
Complexo de Golgi , Proteínas de Membrana , Animais , Humanos , Proteínas de Membrana/metabolismo , Complexo de Golgi/metabolismo , Citoesqueleto/metabolismo , Células HeLa , Vertebrados
12.
Dev Biol ; 357(1): 73-82, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21699890

RESUMO

It has been posited that animal development evolved from pre-existing mechanisms for regulating cell differentiation in the single celled and colonial ancestors of animals. Although the progenitors of animals cannot be studied directly, insights into their cell biology may be gleaned from comparisons between animals and their closest living relatives, the choanoflagellates. We report here on the life history, cell differentiation and intercellular interactions in the colony-forming choanoflagellate Salpingoeca rosetta. In response to diverse environmental cues, S. rosetta differentiates into at least five distinct cell types, including three solitary cell types (slow swimmers, fast swimmers, and thecate cells) and two colonial forms (rosettes and chains). Electron microscopy reveals that cells within colonies are held together by a combination of fine intercellular bridges, a shared extracellular matrix, and filopodia. In addition, we have discovered that the carbohydrate-binding protein wheat germ agglutinin specifically stains colonies and the slow swimmers from which they form, showing that molecular differentiation precedes multicellular development. Together, these results help establish S. rosetta as a model system for studying simple multicellularity in choanoflagellates and provide an experimental framework for investigating the origin of animal multicellularity and development.


Assuntos
Diferenciação Celular , Coanoflagelados/citologia , Morfogênese , Animais , Coanoflagelados/metabolismo , Coanoflagelados/ultraestrutura , Microscopia Eletrônica de Varredura , Receptores de Superfície Celular/metabolismo
13.
Dev Biol ; 359(2): 251-61, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21925157

RESUMO

Rbfox RNA binding proteins are implicated as regulators of phylogenetically-conserved alternative splicing events important for muscle function. To investigate the function of rbfox genes, we used morpholino-mediated knockdown of muscle-expressed rbfox1l and rbfox2 in zebrafish embryos. Single and double morphant embryos exhibited changes in splicing of overlapping sets of bioinformatically-predicted rbfox target exons, many of which exhibit a muscle-enriched splicing pattern that is conserved in vertebrates. Thus, conservation of intronic Rbfox binding motifs is a good predictor of Rbfox-regulated alternative splicing. Morphology and development of single morphant embryos were strikingly normal; however, muscle development in double morphants was severely disrupted. Defects in cardiac muscle were marked by reduced heart rate and in skeletal muscle by complete paralysis. The predominance of wavy myofibers and abnormal thick and thin filaments in skeletal muscle revealed that myofibril assembly is defective and disorganized in double morphants. Ultra-structural analysis revealed that although sarcomeres with electron dense M- and Z-bands are present in muscle fibers of rbfox1l/rbox2 morphants, they are substantially reduced in number and alignment. Importantly, splicing changes and morphological defects were rescued by expression of morpholino-resistant rbfox cDNA. Additionally, a target-blocking MO complementary to a single UGCAUG motif adjacent to an rbfox target exon of fxr1 inhibited inclusion in a similar manner to rbfox knockdown, providing evidence that Rbfox regulates the splicing of target exons via direct binding to intronic regulatory motifs. We conclude that Rbfox proteins regulate an alternative splicing program essential for vertebrate heart and skeletal muscle functions.


Assuntos
Processamento Alternativo , Coração/fisiologia , Músculo Esquelético/fisiologia , Proteínas de Ligação a RNA/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/fisiologia , Animais , Animais Geneticamente Modificados , Sequência de Bases , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Embrião não Mamífero/ultraestrutura , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/ultraestrutura , Coração/embriologia , Imuno-Histoquímica , Hibridização In Situ , Masculino , Microscopia Confocal , Microscopia Eletrônica , Dados de Sequência Molecular , Músculo Esquelético/embriologia , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Fatores de Processamento de RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
14.
Health Phys ; 122(5): 618-624, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35307725

RESUMO

ABSTRACT: High-efficiency particulate air (HEPA) filters are widely employed by nuclear facilities to remove radiological particulate matter from their effluent exhaust streams. The purpose of this study is to evaluate the relationships between the 10-y HEPA filter lifetime deployment and its other performance indicators. This 10-y-long endeavor to collect and analyze data regarding the service life of HEPA filters at the Pacific Northwest National Laboratory began in 2010. A set of HEPA filters was selected, and the filters have been surveyed and analyzed at least annually to verify compliance with permit conditions. The study suggests the frequency of filter replacement should be based on the actual operational requirements, such as fume hood face velocity and/or efficiency test results, instead of on the prescribed filter "age limit" of 10 y from the date of manufacture (e.g., birth date) when operating under dry conditions. The study has now been completed, and over the past decade, all the HEPA filters have been replaced due to either technical issues as listed in this report or the previously recommended filter "age limit" of 10 y as prescribed by the oversight bodies. Experimentally determined failure rates are also determined from the data set and can be used to estimate the chances of HEPA filters surviving 15, 20, or even 30 y.


Assuntos
Filtros de Ar , Poeira , Filtração/métodos , Material Particulado
15.
J Cell Biol ; 172(5): 663-9, 2006 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-16492809

RESUMO

The diversity of sensory cilia on Caenorhabditis elegans neurons allows the animal to detect a variety of sensory stimuli. Sensory cilia are assembled by intraflagellar transport (IFT) kinesins, which transport ciliary precursors, bound to IFT particles, along the ciliary axoneme for incorporation into ciliary structures. Using fluorescence microscopy of living animals and serial section electron microscopy of high pressure-frozen, freeze-substituted IFT motor mutants, we found that two IFT kinesins, homodimeric OSM-3 kinesin and heterotrimeric kinesin II, function in a partially redundant manner to build full-length amphid channel cilia but are completely redundant for building full-length amphid wing (AWC) cilia. This difference reflects cilia-specific differences in OSM-3 activity, which serves to extend distal singlets in channel cilia but not in AWC cilia, which lack such singlets. Moreover, AWC-specific chemotaxis assays reveal novel sensory functions for kinesin II in these wing cilia. We propose that kinesin II is a "canonical" IFT motor, whereas OSM-3 is an "accessory" IFT motor, and that subtle changes in the deployment or actions of these IFT kinesins can contribute to differences in cilia morphology, cilia function, and sensory perception.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/fisiologia , Cinesinas/fisiologia , Neurônios Aferentes/fisiologia , Animais , Transporte Biológico , Caenorhabditis elegans/ultraestrutura , Cílios/fisiologia , Cílios/ultraestrutura , Cruzamentos Genéticos , Microscopia de Fluorescência , Neurônios Aferentes/ultraestrutura
16.
PLoS Genet ; 4(2): e1000022, 2008 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-18454199

RESUMO

The C. elegans eat-3 gene encodes a mitochondrial dynamin family member homologous to Opa1 in humans and Mgm1 in yeast. We find that mutations in the C. elegans eat-3 locus cause mitochondria to fragment in agreement with the mutant phenotypes observed in yeast and mammalian cells. Electron microscopy shows that the matrices of fragmented mitochondria in eat-3 mutants are divided by inner membrane septae, suggestive of a specific defect in fusion of the mitochondrial inner membrane. In addition, we find that C. elegans eat-3 mutant animals are smaller, grow slower, and have smaller broodsizes than C. elegans mutants with defects in other mitochondrial fission and fusion proteins. Although mammalian Opa1 is antiapoptotic, mutations in the canonical C. elegans cell death genes ced-3 and ced-4 do not suppress the slow growth and small broodsize phenotypes of eat-3 mutants. Instead, the phenotypes of eat-3 mutants are consistent with defects in oxidative phosphorylation. Moreover, eat-3 mutants are hypersensitive to paraquat, which promotes damage by free radicals, and they are sensitive to loss of the mitochondrial superoxide dismutase sod-2. We conclude that free radicals contribute to the pathology of C. elegans eat-3 mutants.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/efeitos dos fármacos , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Resistência a Medicamentos/genética , Dinaminas/química , Dinaminas/genética , Dinaminas/metabolismo , Radicais Livres/metabolismo , Radicais Livres/toxicidade , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Ligação ao GTP/genética , Genes de Helmintos , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Atrofia Óptica Autossômica Dominante/etiologia , Atrofia Óptica Autossômica Dominante/genética , Atrofia Óptica Autossômica Dominante/metabolismo , Fosforilação Oxidativa , Paraquat/toxicidade , Fenótipo , Interferência de RNA , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
17.
Philos Trans R Soc Lond B Biol Sci ; 376(1821): 20190759, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33550951

RESUMO

Neurosecretory vesicles are highly specialized trafficking organelles that store neurotransmitters that are released at presynaptic nerve endings and are, therefore, important for animal cell-cell signalling. Despite considerable anatomical and functional diversity of neurons in animals, the protein composition of neurosecretory vesicles in bilaterians appears to be similar. This similarity points towards a common evolutionary origin. Moreover, many putative homologues of key neurosecretory vesicle proteins predate the origin of the first neurons, and some even the origin of the first animals. However, little is known about the molecular toolkit of these vesicles in non-bilaterian animals and their closest unicellular relatives, making inferences about the evolutionary origin of neurosecretory vesicles extremely difficult. By comparing 28 proteins of the core neurosecretory vesicle proteome in 13 different species, we demonstrate that most of the proteins are present in unicellular organisms. Surprisingly, we find that the vesicular membrane-associated soluble N-ethylmaleimide-sensitive factor attachment protein receptor protein synaptobrevin is localized to the vesicle-rich apical and basal pole in the choanoflagellate Salpingoeca rosetta. Our 3D vesicle reconstructions reveal that the choanoflagellates S. rosetta and Monosiga brevicollis exhibit a polarized and diverse vesicular landscape reminiscent of the polarized organization of chemical synapses that secrete the content of neurosecretory vesicles into the synaptic cleft. This study sheds light on the ancestral molecular machinery of neurosecretory vesicles and provides a framework to understand the origin and evolution of secretory cells, synapses and neurons. This article is part of the theme issue 'Basal cognition: multicellularity, neurons and the cognitive lens'.


Assuntos
Evolução Biológica , Coanoflagelados/fisiologia , Proteínas R-SNARE/metabolismo , Vesículas Sinápticas/fisiologia
18.
J Exp Med ; 198(9): 1361-8, 2003 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-14597736

RESUMO

Mycobacteria are responsible for a number of human and animal diseases and are classical intracellular pathogens, living inside macrophages rather than as free-living organisms during infection. Numerous intracellular pathogens, including Listeria monocytogenes, Shigella flexneri, and Rickettsia rickettsii, exploit the host cytoskeleton by using actin-based motility for cell to cell spread during infection. Here we show that Mycobacterium marinum, a natural pathogen of fish and frogs and an occasional pathogen of humans, is capable of actively inducing actin polymerization within macrophages. M. marinum that polymerized actin were free in the cytoplasm and propelled by actin-based motility into adjacent cells. Immunofluorescence demonstrated the presence of host cytoskeletal proteins, including the Arp2/3 complex and vasodilator-stimulated phosphoprotein, throughout the actin tails. In contrast, Wiskott-Aldrich syndrome protein localized exclusively at the actin-polymerizing pole of M. marinum. These findings show that M. marinum can escape into the cytoplasm of infected macrophages, where it can recruit host cell cytoskeletal factors to induce actin polymerization leading to direct cell to cell spread.


Assuntos
Actinas/fisiologia , Mycobacterium marinum/imunologia , Fagossomos/imunologia , Actinas/química , Animais , Biopolímeros , Camundongos , Camundongos Endogâmicos , Mycobacterium marinum/fisiologia
19.
J Bacteriol ; 191(7): 2077-82, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19168614

RESUMO

Despite the fact that most bacteria grow in biofilms in natural and pathogenic ecosystems, very little is known about the ultrastructure of their component cells or about the details of their community architecture. We used high-pressure freezing and freeze-substitution to minimize the artifacts of chemical fixation, sample aggregation, and sample extraction. As a further innovation we have, for the first time in biofilm research, used electron tomography and three-dimensional (3D) visualization to better resolve the macromolecular 3D ultrastructure of a biofilm. This combination of superb specimen preparation and greatly improved resolution in the z axis has opened a window in studies of Myxococcus xanthus cell ultrastructure and biofilm community architecture. New structural information on the chromatin body, cytoplasmic organization, membrane apposition between adjacent cells, and structure and distribution of pili and vesicles in the biofilm matrix is presented.


Assuntos
Biofilmes/crescimento & desenvolvimento , Tomografia com Microscopia Eletrônica/métodos , Imageamento Tridimensional , Myxococcus xanthus/ultraestrutura , Cromossomos Bacterianos/ultraestrutura , Vesículas Citoplasmáticas/ultraestrutura , Fímbrias Bacterianas/ultraestrutura , Myxococcus xanthus/fisiologia
20.
Curr Biol ; 16(8): 801-7, 2006 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-16631588

RESUMO

A longstanding enigma has been the origin of maternal centrosomes that facilitate parthenogenetic development in Hymenopteran insects. In young embryos, hundreds of microtubule-organizing centers (MTOCs) are assembled completely from maternal components. Two of these MTOCs join the female pronucleus to set up the first mitotic spindle in unfertilized embryos and drive their development. These MTOCs appear to be canonical centrosomes because they contain gamma-tubulin, CP190, and centrioles and they undergo duplication. Here, we present evidence that these centrosomes originate from accessory nuclei (AN), organelles derived from the oocyte nuclear envelope. In the parasitic wasps Nasonia vitripennis and Muscidifurax uniraptor, the position and number of AN in mature oocytes correspond to the position and number of maternal centrosomes in early embryos. These AN also contain high concentrations of gamma-tubulin. In the honeybee, Apis mellifera, distinct gamma-tubulin foci are present in each AN. Additionally, the Hymenopteran homolog of the Drosophila centrosomal protein Dgrip84 localizes on the outer surfaces of AN. These organelles disintegrate in the late oocyte, leaving behind small gamma-tubulin foci, which likely seed the formation of maternal centrosomes. Accessory nuclei, therefore, may have played a significant role in the evolution of haplodiploidy in Hymenopteran insects.


Assuntos
Centrossomo , Himenópteros/fisiologia , Partenogênese/fisiologia , Animais , Proteínas de Drosophila/imunologia , Feminino , Proteínas Associadas aos Microtúbulos/imunologia , Membrana Nuclear/fisiologia , Oócitos/ultraestrutura , Oogênese/fisiologia , Organelas/metabolismo , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA