Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 160(1-2): 105-18, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25579684

RESUMO

Adipose tissue is an essential regulator of metabolic homeostasis. In contrast with white adipose tissue, which stores excess energy in the form of triglycerides, brown adipose tissue is thermogenic, dissipating energy as heat via the unique expression of the mitochondrial uncoupling protein UCP1. A subset of UCP1+ adipocytes develops within white adipose tissue in response to physiological stimuli; however, the developmental origin of these "brite" or "beige" adipocytes is unclear. Here, we report the identification of a BMP7-ROCK signaling axis regulating beige adipocyte formation via control of the G-actin-regulated transcriptional coactivator myocardin-related transcription factor A, MRTFA. White adipose tissue from MRTFA(-/-) mice contains more multilocular adipocytes and expresses enhanced levels of brown-selective proteins, including UCP1. MRTFA(-/-) mice also show improved metabolic profiles and protection from diet-induced obesity and insulin resistance. Our study hence unravels a central pathway driving the development of physiologically functional beige adipocytes.


Assuntos
Transativadores/metabolismo , Adipogenia , Animais , Proteína Morfogenética Óssea 7/metabolismo , Dieta , Metabolismo Energético , Resistência à Insulina , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Transativadores/genética , Fator de Crescimento Transformador beta1/metabolismo
2.
J Biol Chem ; 287(22): 18351-8, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22493496

RESUMO

Obese white adipose tissue is hypoxic but is incapable of inducing compensatory angiogenesis. Brown adipose tissue is highly vascularized, facilitating delivery of nutrients to brown adipocytes for heat production. In this study, we investigated the mechanisms by which white and brown adipocytes respond to hypoxia. Brown adipocytes produced lower amounts of hypoxia-inducible factor 1α (HIF-1α) than white adipocytes in response to low O(2) but induced higher levels of hypoxia-associated genes. The response of white adipocytes to hypoxia required HIF-1α, but its presence alone was incapable of inducing target gene expression under normoxic conditions. In addition to the HIF-1α targets, hypoxia also induced many inflammatory genes. Exposure of white adipocytes to a peroxisome proliferator-activated receptor γ (PPARγ) ligand (troglitazone) attenuated induction of these genes but enhanced expression of the HIF-1α targets. Knockdown of PPARγ in mature white adipocytes prevented the usual robust induction of HIF-1α targets in response to hypoxia. Similarly, knockdown of PPARγ coactivator (PGC) 1ß in PGC-1α-deficient brown adipocytes eliminated their response to hypoxia. These data demonstrate that the response of white adipocytes requires HIF-1α but also depends on PPARγ in white cells and the PPARγ cofactors PGC-1α and PGC-1ß in brown cells.


Assuntos
Adipócitos/citologia , Tecido Adiposo Marrom/citologia , Hipóxia Celular , PPAR gama/fisiologia , Transativadores/fisiologia , Células 3T3 , Adipócitos/metabolismo , Tecido Adiposo Marrom/metabolismo , Animais , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Camundongos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fatores de Transcrição
3.
Drug News Perspect ; 23(7): 409-17, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20862392

RESUMO

Obesity has now reached pandemic proportions leading to a collection of morbidities referred to as metabolic syndrome including insulin resistance, type 2 diabetes and cardiovascular disease. The expansion of adipose tissue is a direct cause of these comorbidities due to excessive accumulation of triglycerides within adipocytes, causing disruption of normal adipose function. There are two major types of adipose tissue, white and brown. The former stores energy as triglycerides within large droplets, whereas the latter catabolizes lipids to produce heat. A strategy to combat obesity-associated disorders, therefore, includes enhancement of brown adipose tissue activity by targeting the recently identified regulators of brown adipocyte development and function, including its master regulator, PRDM16.


Assuntos
Tecido Adiposo Marrom/metabolismo , Sistemas de Liberação de Medicamentos , Obesidade/tratamento farmacológico , Adipócitos Marrons/metabolismo , Animais , Fármacos Antiobesidade/farmacologia , Proteínas de Ligação a DNA/metabolismo , Humanos , Síndrome Metabólica/etiologia , Obesidade/complicações , Obesidade/fisiopatologia , Fatores de Transcrição/metabolismo , Triglicerídeos/metabolismo
4.
Mol Cell Biol ; 29(17): 4714-28, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19564408

RESUMO

White adipose tissue (WAT) stores energy in the form of triglycerides, whereas brown tissue (BAT) expends energy, primarily by oxidizing lipids. WAT also secretes many cytokines and acute-phase proteins that contribute to insulin resistance in obese subjects. In this study, we have investigated the mechanisms by which activation of peroxisome proliferator-activated receptor gamma (PPARgamma) with synthetic agonists induces a brown phenotype in white adipocytes in vivo and in vitro. We demonstrate that this phenotypic conversion is characterized by repression of a set of white fat genes ("visceral white"), including the resistin, angiotensinogen, and chemerin genes, in addition to induction of brown-specific genes, such as Ucp-1. Importantly, the level of expression of the "visceral white" genes is high in mesenteric and gonadal WAT depots but low in the subcutaneous WAT depot and in BAT. Mutation of critical amino acids within helix 7 of the ligand-binding domain of PPARgamma prevents inhibition of visceral white gene expression by the synthetic agonists and therefore shows a direct role for PPARgamma in the repression process. Inhibition of the white adipocyte genes also depends on the expression of C/EBPalpha and the corepressors, carboxy-terminal binding proteins 1 and 2 (CtBP1/2). The data further show that repression of resistin and angiotensinogen expression involves recruitment of CtBP1/2, directed by C/EBPalpha, to the minimal promoter of the corresponding genes in response to the PPARgamma ligand. Developing strategies to enhance the brown phenotype in white adipocytes while reducing secretion of stress-related cytokines from visceral WAT is a means to combat obesity-associated disorders.


Assuntos
Adipócitos Brancos/fisiologia , Tecido Adiposo Marrom/fisiologia , Tecido Adiposo Branco/fisiologia , Oxirredutases do Álcool/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Proteínas de Ligação a DNA/metabolismo , Gordura Intra-Abdominal/fisiologia , PPAR gama/agonistas , Fosfoproteínas/metabolismo , Células 3T3-L1 , Adipócitos Brancos/citologia , Adipócitos Brancos/efeitos dos fármacos , Tecido Adiposo Marrom/citologia , Tecido Adiposo Branco/citologia , Oxirredutases do Álcool/genética , Animais , Biomarcadores/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Linhagem Celular , Respiração Celular/fisiologia , Cromanos/farmacologia , Proteínas Correpressoras , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hipoglicemiantes/farmacologia , Gordura Intra-Abdominal/citologia , Camundongos , Camundongos Knockout , PPAR gama/genética , PPAR gama/metabolismo , Fenótipo , Fosfoproteínas/genética , Tiazolidinedionas/farmacologia , Troglitazona
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA