Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Semin Thromb Hemost ; 44(2): 167-175, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29232721

RESUMO

Tissue injury prompts the initiation of host defense responses to limit blood loss, restrict pathogen entry, and promote repair. Biochemical and cellular pathways that lead to blood coagulation serve a fundamental role in generating a physical barrier at the wound site, but have also evolved to promote immune response to injury. Similarly, anticoagulant pathways that attenuate clot formation also regulate innate and adaptive immune responses. Of particular importance is activated protein C (APC) which serves as a principal regulator of thrombin generation, shapes the innate immune response to infection, and has been shown to contribute to the adaptive immune response in several preclinical models of autoimmune disease. APC controls blood coagulation by proteolytic degradation of procoagulant activated cofactors essential for fibrin clot development, but also cleaves multiple additional substrates and interacts with cell surface receptors to exert additional physiologically important roles. In this review, we focus on the molecular mechanisms utilized by APC to limit inflammation and, in particular, current understanding of the basis for APC anticoagulant and signaling activities. In particular, we provide an overview of established and emerging signaling pathways initiated by APC on endothelial cells, monocytes, neutrophils, dendritic cells, and T cells to control and regulate immune cell physiology. Finally, we consider the impact of APC activity in the context of both acute and chronic inflammatory disease, and the continuing efforts to harness the immunoregulatory properties of recombinant APC for therapeutic use.


Assuntos
Inflamação/sangue , Monócitos/metabolismo , Proteína C/imunologia , Humanos , Inflamação/imunologia , Inflamação/patologia
2.
Cell Microbiol ; 19(3)2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27598716

RESUMO

Blood-brain barrier (BBB) disruption constitutes a hallmark event during pathogen-mediated neurological disorders such as bacterial meningitis. As a prevalent opportunistic pathogen, Staphylococcus aureus (SA) is of particular interest in this context, although our fundamental understanding of how SA disrupts the BBB is very limited. This paper employs in vitro infection models to address this. Human brain microvascular endothelial cells (HBMvECs) were infected with formaldehyde-fixed (multiplicity of infection [MOI] 0-250, 0-48 hr) and live (MOI 0-100, 0-3 hr) SA cultures. Both Fixed-SA and Live-SA could adhere to HBMvECs with equal efficacy and cause elevated paracellular permeability. In further studies employing Fixed-SA, infection of HBMvECs caused dose-dependent release of cytokines/chemokines (TNF-α, IL-6, MCP-1, IP-10, and thrombomodulin), reduced expression of interendothelial junction proteins (VE-Cadherin, claudin-5, and ZO-1), and activation of both canonical and non-canonical NF-κB pathways. Using N-acetylcysteine, we determined that these events were coupled to the SA-mediated induction of reactive oxygen species (ROS) within HBMvECs. Finally, treatment of HBMvECs with Fixed-ΔSpA (MOI 0-250, 48 hr), a gene deletion mutant of Staphylococcal protein A associated with bacterial infectivity, had relatively similar effects to Newman WT Fixed-SA. In conclusion, these findings provide insight into how SA infection may activate proinflammatory mechanisms within the brain microvascular endothelium to elicit BBB failure.


Assuntos
Barreira Hematoencefálica/lesões , Células Endoteliais/microbiologia , Células Endoteliais/fisiologia , Staphylococcus aureus/patogenicidade , Aderência Bacteriana , Células Cultivadas , Citocinas/metabolismo , Humanos , Modelos Biológicos , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Junções Íntimas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA