Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Microvasc Res ; 146: 104470, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36549373

RESUMO

OBJECTIVES: Evaluate reliability of laser-Doppler flowmetry derived cutaneous vasodilation on the upper and lower limbs during gradual local heating. METHODS: In twenty-eight young adults (21 (SD 3) years, 14 females), absolute cutaneous vascular conductance (CVCabs) and CVC normalized to maximum vasodilation at 44 °C (%CVCmax) were assessed at two adjacent sites on each of the forearm and calf during gradual local skin heating (33-42 °C at 1 °C·5 min-1) for two identical trials (∼1 week apart). Responses were assessed for baseline, the steady-state heating plateau at 42 °C and the span (i.e. plateau-baseline). RESULTS: Between-day reliability was characterized as measurement consistency across trials. Within-day reliability was characterized as within-limb measurement consistency across adjacent skin sites. Between- and within-day absolute reliability (coefficient of variation) generally improved with heating, from poor (>25 %) at baseline to good (<10 %) for %CVCmax and moderate (10-25 %) for CVCabs for plateau and span. However, relative reliability (intraclass correlation coefficient) was generally not acceptable (<0.70) for any condition. Responses were generally consistent for females and males and there were no major forearm and calf differences. CONCLUSIONS: Consistency of CVC estimates improved during gradual local heating with negligible limb and sex differences, which are important considerations for experimental design and interpretation.


Assuntos
Antebraço , Vasodilatação , Humanos , Masculino , Feminino , Adulto Jovem , Vasodilatação/fisiologia , Antebraço/irrigação sanguínea , Fluxometria por Laser-Doppler , Calefação , Reprodutibilidade dos Testes , Pele/irrigação sanguínea , Fluxo Sanguíneo Regional
2.
Microvasc Res ; 145: 104443, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36208670

RESUMO

OBJECTIVE: To investigate the nitric oxide synthase (NOS) and reactive oxygen species (ROS) contributions of the cutaneous vasodilator response to transient receptor potential ankyrin-1 channel (TRPA1) activation in young and older adults. MATERIALS AND METHODS: In sixteen young (20 ± 2 years, 8 females) and sixteen older adults (61 ± 5 years, 8 females), cutaneous vascular conductance normalized to maximum vasodilation (%CVCmax) was assessed at four dorsal forearm skin sites continuously perfused via microdialysis with: 1) vehicle solution (Control, 2 % dimethyl sulfoxide, 2 % Ringer, 96 % propylene glycol), 2) 10 mM Ascorbate (non-specific ROS inhibitor), 3) 10 mM L-NAME (non-specific NOS inhibitor), or 4) Ascorbate+L-NAME. The TRPA1 agonist cinnamaldehyde was co-administered at all sites [0 % (baseline), 2.9 %, 8.8 %, 26.4 %; ≥ 30 min per dose]. RESULTS: %CVCmax was not different between groups for Control, L-NAME, and Ascorbate (all p > 0.05). However, there were significant main dose effects for each site wherein %CVCmax was greater than baseline from 2.9 % to 26.4 % cinnamaldehyde for Control and Ascorbate, and at 26.4 % cinnamaldehyde for L-NAME and Ascorbate+L-NAME (all p < 0.05). For Ascorbate+L-NAME, there was a significant main group effect, wherein perfusion was 6 %CVCmax [95% CI: 2, 11, p < 0.05] greater in the older compared to the young group across all cinnamaldehyde doses. There was a significant main site effect for area under the curve wherein L-NAME and Ascorbate+L-NAME were lower than Control and Ascorbate across groups (all p < 0.05). CONCLUSION: The NOS-dependent cutaneous vasodilator response to TRPA1 activation is maintained in older adults, with no detectable contribution of ascorbate-sensitive ROS in either age group.


Assuntos
Canais de Potencial de Receptor Transitório , Vasodilatação , Idoso , Feminino , Humanos , Ácido Ascórbico/farmacologia , Microdiálise , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase , Espécies Reativas de Oxigênio , Fluxo Sanguíneo Regional , Pele/irrigação sanguínea , Canais de Potencial de Receptor Transitório/farmacologia , Vasodilatadores/farmacologia , Masculino , Adulto Jovem , Pessoa de Meia-Idade
3.
Microcirculation ; 29(2): e12743, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34874589

RESUMO

OBJECTIVE: Reports evaluating age-related impairments in cutaneous vascular function assessed by either the venoarteriolar reflex (VAR) induced by venous congestion, or post-occlusive reactive hyperemia (PORH) activated by arterial occlusion, have yielded mixed findings. This may be due to region-specific variability that occurs when assessing local cutaneous vascular responses. We evaluated the hypothesis that aging attenuates VAR and PORH responses in forearm skin assessed across four adjacent sites, each separated by ~4 cm to account for inter-site variability. METHODS: In twenty young (24 ± 4 years, 10 females) and twenty older (60 ± 7 years, 9 females) adults, VAR and PORH were achieved by a 3-min venous occlusion and 5-min arterial occlusion, each induced by inflating a pressure cuff to 45 and 240 mmHg, respectively. Cutaneous blood flow at all skin sites was measured by laser-Doppler flowmetry with the average response from all sites used for between-group comparisons. RESULTS: VAR and PORH responses were similar between groups with the exception that the time required to achieve peak PORH was delayed in older adults (mean difference of 5.5 ± 4.4 s, p = 0.003, Cohen's d = 0.812). CONCLUSIONS: We showed that aging had a negligible influence on VAR and PORH responses in forearm skin even when controlling for region-specific variability.


Assuntos
Hiperemia , Idoso , Envelhecimento , Feminino , Humanos , Fluxometria por Laser-Doppler , Microcirculação/fisiologia , Fluxo Sanguíneo Regional/fisiologia , Pele/irrigação sanguínea
4.
Am J Physiol Regul Integr Comp Physiol ; 322(4): R326-R335, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35170329

RESUMO

The objective of this study was 1) to examine pooled effects of hypertension on nitric oxide (NO)-dependent vasodilation during local heating across multiple nonglabrous skin regions, and 2) explore regional differences. Responses were compared between 14 participants with uncomplicated hypertension controlled with medication (7 females, 61 ± 6 yr) and 14 age-matched nonhypertensive controls (6 females; 60 ± 5 yr). Cutaneous vascular conductance, normalized to maximum vasodilation (%CVCmax), was assessed at the upper chest, abdomen, dorsal forearm, thigh, and lateral calf during local heating. Across all regions, local skin temperatures were simultaneously increased from 33°C to 42°C (1°C·10 s-1) and held until a stable heating plateau was achieved (∼40 min), followed by continuous infusion of 20 mM of NG-nitro-l-arginine methyl ester (l-NAME; ∼40 min) at all sites until a stable l-NAME plateau was achieved. The difference between heating and l-NAME plateaus was defined as the NO-contribution. Statistical equivalence for each heating phase was determined based on equivalence bounds of ±10%CVCmax for between-group differences. Pooled (all-regions) %CVCmax responses were equivalent for baseline (two one-sided t tests; P < 0.001), heating plateau (P = 0.002), l-NAME plateau (P = 0.028), and NO-contribution (P = 0.003). For individual regions, responses were equivalent at baseline for the abdomen, thigh, and calf, the heating plateau for the thigh, and the l-NAME plateau for the calf (all P < 0.05). Conversely, the calf heating plateau was lower in the hypertension group (t test; P < 0.05). Local heat-induced cutaneous vasodilation was statistically equivalent between individuals with uncomplicated, controlled hypertension, and nonhypertensive age-matched adults when pooled across multiple skin sites. Conversely, individual between-region comparisons were generally too variable to permit definitive conclusions.


Assuntos
Hipertensão , Vasodilatação , Adulto , Inibidores Enzimáticos/farmacologia , Feminino , Temperatura Alta , Humanos , Masculino , Microdiálise , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/metabolismo , Fluxo Sanguíneo Regional/fisiologia , Pele/irrigação sanguínea
5.
Microvasc Res ; 144: 104422, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35970407

RESUMO

OBJECTIVE: Examine the effects of sensory nerve blockade on cutaneous post-occlusive reactive hyperemia (PORH) and local thermal hyperemia (LTH) following prolonged upper limb ischemia. MATERIALS AND METHODS: In nine males [28 years (standard deviation:6)], volar forearm skin blood flux normalized to maximum vasodilation (%SkBFmax) was assessed at control (CTRL) and sensory nerve blockade (EMLA) treated sites during the PORH response following 20-min of complete arm ischemia and during rapid LTH (33-42 °C, 1 °C·20 s-1, held for ~30-min + 20-min at 44 °C) before and after ischemia-reperfusion (IR) injury. RESULTS: EMLA increased mean [95 % confidence-interval] PORH amplitude by 21%SkBFmax ([9,33]; p = 0.003), delayed time to peak by 111 s ([40,182]; p = 0.007) and increased area under the curve by 19,462%SkBFmax·s ([11,346,27,579]; p < 0.001) compared to CTRL. For LTH, EMLA delayed onset time by 76 s ([46,106]; p < 0.001) Pre-IR and by 46 s ([27,65]; p < 0.001) Post-IR compared to CTRL. Post-IR onset time was delayed for CTRL by 26 s ([8,43]; p = 0.007), but was not different for EMLA (p > 0.050) compared to Pre-IR. EMLA delayed time to initial peak by 24 s ([4,43]; p = 0.022, Main time effect) and it attenuated the initial peak by 27%SkBFmax ([12,43]; p = 0.002) Pre-IR and by 16%SkBFmax ([3,29]; p = 0.020) post-IR compared to CTRL. Post-IR, the initial peak was not different for CTRL (p > 0.050), but it was increased by 16%SkBFmax ([5,26]; p = 0.005) for EMLA compared to Pre-IR. Neither EMLA nor IR altered the steady-state heating plateau (all p > 0.050). CONCLUSION: For the current model of IR injury, sensory nerves appear to have a negligible influence on the LTH response in non-glabrous forearm skin once vasodilation has been initiated.


Assuntos
Hiperemia , Bloqueio Nervoso , Traumatismo por Reperfusão , Humanos , Isquemia , Fluxometria por Laser-Doppler , Masculino , Microcirculação , Fluxo Sanguíneo Regional , Traumatismo por Reperfusão/prevenção & controle , Pele/irrigação sanguínea , Vasodilatação
6.
Am J Physiol Regul Integr Comp Physiol ; 320(4): R563-R573, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33085914

RESUMO

Transient receptor potential vanilloid 4 (TRPV4) channels exist on vascular endothelial cells and eccrine sweat gland secretory cells in human skin. Here, we assessed whether TRPV4 channels contribute to cutaneous vasodilation and sweating during whole body passive heat stress (protocol 1) and to cutaneous vasodilation during postocclusive reactive hyperemia and local thermal hyperemia (protocol 2). Intradermal microdialysis was employed to locally deliver pharmacological agents to forearm skin sites, where cutaneous vascular conductance (CVC) and sweat rate were assessed. In protocol 1 (12 young adults), CVC and sweat rate were increased by passive whole body heating, resulting in a body core temperature elevation of 1.2 ± 0.1°C. The elevated CVC and sweat rate assessed at sites treated with TRPV4 channel antagonist (either 200 µM HC-067047 or 125 µM GSK2193874) were not different from the vehicle control site (5% dimethyl sulfoxide). After whole body heating, the TRPV4 channel agonist (100 µM GSK1016790A) was administered to each skin site, eliciting elevations in CVC. Relative to control, this response was partly attenuated by both TRPV4 channel antagonists, confirming drug efficacy. In protocol 2 (10 young adults), CVC was increased following a 5-min arterial occlusion and during local heating from 33 to 42°C. These responses did not differ between the control and the TRPV4 channel antagonist sites (200 µM HC-067047). We show that TRPV4 channels are not required for regulating cutaneous vasodilation or sweating during a whole body passive heat stress. Furthermore, they are not required for regulating cutaneous vasodilation during postocclusive reactive hyperemia and local thermal hyperemia.


Assuntos
Hiperemia/fisiopatologia , Hipertermia/fisiopatologia , Moduladores de Transporte de Membrana/administração & dosagem , Pele/irrigação sanguínea , Sudorese , Canais de Cátion TRPV/antagonistas & inibidores , Vasodilatação , Adulto , Feminino , Humanos , Hiperemia/metabolismo , Hipertermia/metabolismo , Leucina/administração & dosagem , Leucina/análogos & derivados , Masculino , Microdiálise , Morfolinas/administração & dosagem , Piperidinas/administração & dosagem , Pirróis/administração & dosagem , Quinolinas/administração & dosagem , Fluxo Sanguíneo Regional , Pele/metabolismo , Sulfonamidas/administração & dosagem , Canais de Cátion TRPV/metabolismo , Fatores de Tempo , Adulto Jovem
7.
Microvasc Res ; 133: 104096, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33058899

RESUMO

OBJECTIVE: To examine the contributions of calcium-activated K+ (KCa) channels and nitric oxide synthase (NOS) to adenosine triphosphate (ATP)-induced cutaneous vasodilation in healthy older adults. METHODS: In eleven older adults (69 ± 2 years, 5 females), cutaneous vascular conductance, normalized to maximum vasodilation (%CVCmax) was assessed at four dorsal forearm skin sites that were continuously perfused with either 1) lactated Ringer solution (Control), 2) 50 mM tetraethylammonium (TEA, KCa channel blocker), 3) 10 mM Nω-nitro-L-arginine (L-NNA, NOS inhibitor), or 4) combined 50 mM TEA +10 mM L-NNA, via microdialysis. Local skin temperature was fixed at 33 °C at all sites with local heaters throughout the protocol while the cutaneous vasodilator response was assessed during coadministration of ATP (0.03, 0.3, 3, 30, 300 mM; 20 min per dose), followed by 50 mM sodium nitroprusside and local skin heating to 43 °C to achieve maximum vasodilation (20-30 min). RESULTS: Blockade of KCa channels blunted %CVCmax relative to Control from 0.3 to 300 mM ATP (All P < 0.05). A similar response was observed for the combined KCa channel blockade and NOS inhibition site from 3 to 300 mM ATP (All P < 0.05). Conversely, NOS inhibition alone did not influence %CVCmax across all ATP doses (All P > 0.05). CONCLUSION: In healthy older adults, KCa channels play an important role in modulating ATP-induced cutaneous vasodilation, while the NOS contribution to this response is negligible.


Assuntos
Trifosfato de Adenosina/farmacologia , Vasos Sanguíneos/efeitos dos fármacos , Canais de Potássio Cálcio-Ativados/metabolismo , Pele/irrigação sanguínea , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Fatores Etários , Idoso , Vasos Sanguíneos/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Masculino , Microdiálise , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase/metabolismo , Canais de Potássio Cálcio-Ativados/antagonistas & inibidores , Transdução de Sinais
8.
Exp Dermatol ; 30(12): 1807-1813, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34114706

RESUMO

The venoarteriolar reflex (VAR) is a local mechanism by which vasoconstriction is mediated in response to venous congestion. This response may minimize tissue overperfusion, preventing capillary damage and oedema. Post-occlusive reactive hyperaemia (PORH) is used to assess microvascular function by performing a brief local arterial occlusion resulting in a subsequent rapid transient vasodilation. In the current study, we hypothesized that type 2 diabetes (T2D) attenuates VAR and PORH responses in forearm skin in vivo. In 11 healthy older adults (Control, 58 ± 8 years) and 13 older adults with controlled T2D (62 ± 10 years), cutaneous blood flow measured by laser-Doppler flowmetry was monitored following a 3-min venous occlusion of 45 mm Hg that elicited the VAR, followed by a 3-min recovery period and then a 5-min arterial occlusion of 240 mm Hg that induced PORH. Finally, sodium nitroprusside, a nitric oxide donor, was administered to induce maximum vasodilation. VAR and PORH variables were similar between groups. By contrast, maximal cutaneous blood flow induced by sodium nitroprusside was lower in the T2D group. Taken together, our observations indicate that T2D impairs vascular smooth muscle responsiveness to nitric oxide, but not VAR and PORH in forearm skin.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Hiperemia/fisiopatologia , Óxido Nítrico/farmacologia , Reflexo , Pele/fisiopatologia , Velocidade do Fluxo Sanguíneo , Estudos de Casos e Controles , Feminino , Antebraço , Humanos , Fluxometria por Laser-Doppler , Masculino , Pessoa de Meia-Idade , Fluxo Pulsátil
9.
Exp Physiol ; 106(8): 1671-1678, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34143517

RESUMO

NEW FINDINGS: What is the central question of this study? Are regional differences in nitric oxide (NO)-dependent cutaneous vasodilatation during local skin heating present in young adults? What is the main finding and its importance? NO-dependent cutaneous vasodilatation varied across the body. The abdomen demonstrated larger NO contributions, while the chest demonstrated smaller NO contributions, compared to other regions. This exploratory work is an important first step in characterizing regional heterogeneity of cutaneous microvascular control across the torso and limbs. Equally, it serves to generate hypotheses for future studies examining regional cutaneous microvascular control in ageing and disease. ABSTRACT: Regional variations in cutaneous vasodilatation during local skin heating exist across the body. While nitric oxide (NO) is a well-known modulator of this response, the extent of regional differences in NO-dependent cutaneous vasodilatation during local skin heating remains uncertain. In 16 habitually active young adults (8 females; 25 ± 5 years), cutaneous vascular conductance, normalized to maximum vasodilatation (% CVCmax ), was assessed at the upper chest, abdomen, dorsal forearm, thigh and lateral calf during local skin heating. Across all regions, local skin temperatures were simultaneously increased from 33 to 42°C (1°C per 10 s), and held until a stable heating plateau was achieved (∼40 min). Next, with local skin temperature maintained at 42°C, 20 mM of NG -nitro-l-arginine methyl ester (l-NAME) was continuously infused at each site until a stable l-NAME plateau was achieved (∼40 min). The difference between heating and l-NAME plateaus was identified as the NO contribution for each region. There was no evidence for region-specific responses at baseline (P = 0.561), the heating plateau (P = 0.351) or l-NAME plateau (P = 0.082), but there was for the NO contribution (P = 0.048). Overall, point estimates for between-region differences in the NO contribution varied across the body from 0 to 19% CVCmax . The greatest effects were observed for the abdomen, wherein the NO contribution was consistently greater than for the other regions (range: 9-19% CVCmax ). The chest was consistently lower than the other regions (range: 7-19% CVCmax ). The smallest effects were observed between limb regions (range: 0-2% CVCmax ). These findings advance our understanding of the mechanisms influencing regional variations in the cutaneous vasodilator response to local skin heating in young adults.


Assuntos
Óxido Nítrico , Vasodilatação , Feminino , Calefação , Humanos , Microdiálise , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/fisiologia , Fluxo Sanguíneo Regional , Pele/irrigação sanguínea , Fenômenos Fisiológicos da Pele , Vasodilatação/fisiologia , Adulto Jovem
10.
Exp Physiol ; 106(3): 634-652, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33245579

RESUMO

Laser-Doppler flowmetry (LDF) is commonly used to assess cutaneous vasodilatation responses, but its reliability (i.e. consistency) during whole-body passive heating is unknown. We therefore assessed the reliability of LDF-derived indices of cutaneous vasodilatation during incremental whole-body heating. Fourteen young men (age: 24 (SD 5) years) completed three identical trials, each separated by 1 week. During each trial, a water-perfused suit was used to raise and clamp oesophageal temperature at 0.6°C (low-heat strain; LHS) and 1.2°C (moderate-heat strain; MHS) above baseline. LDF-derived skin blood flow (SkBF) was measured at three dorsal mid-forearm sites, with local skin temperature clamped at 34°C. Data were expressed as absolute cutaneous vascular conductance (CVCabs ; SkBF/mean arterial pressure) and normalised to maximal conductance (%CVCmax ) achieved via simultaneous local skin heating to 44°C and increasing oesophageal temperature to 1.8°C above baseline. Between-day reliability was characterised as measurement consistency across trials, while within-day reliability was characterised as measurement consistency across adjacent skin sites during each trial. Between- and within-day absolute reliability (coefficient of variation) generally improved with increasing heat strain, changing from poor (>25%) at baseline, poor-to-moderate (15-34%) at LHS, and moderate (10-25%) at MHS. Generally, these estimates were more consistent when expressed as %CVCmax . Conversely, relative reliability was mostly acceptable (intraclass correlation coefficient ≥0.70) during LHS and when data were expressed as CVCabs . These findings indicate that the consistency of LDF-derived CVC estimates during heat stress depends on the level of heat strain and method of data expression, which should be considered when designing and interpreting experiments.


Assuntos
Antebraço , Vasodilatação , Adulto , Calefação , Temperatura Alta , Humanos , Fluxometria por Laser-Doppler , Masculino , Fluxo Sanguíneo Regional/fisiologia , Reprodutibilidade dos Testes , Pele/irrigação sanguínea , Adulto Jovem
11.
Exp Physiol ; 106(2): 450-462, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33347660

RESUMO

NEW FINDINGS: What is the central question of this study? Does short-term heat acclimation enhance whole-body evaporative heat loss and augment nitric oxide synthase (NOS)-dependent cutaneous vasodilatation and NOS- and cyclooxygenase (COX)-dependent sweating, in exercising older men? What is the main finding and its importance? Our preliminary data (n = 8) demonstrated that short-term heat acclimation improved whole-body evaporative heat loss, but it did not influence the effects of NOS and/or COX inhibition on cutaneous vasodilatation or sweating in older men during an exercise-heat stress. These outcomes might imply that although short-term heat acclimation enhances heat dissipation in older men, it does not modulate NOS- and COX-dependent control of cutaneous vasodilatation or sweating on the forearm. ABSTRACT: Ageing is associated with decrements in whole-body heat loss (evaporative + dry heat exchange), which might stem from alterations in nitric oxide synthase (NOS)- and cyclooxygenase (COX)-dependent cutaneous vasodilatation and sweating. We evaluated whether short-term heat acclimation would (i) enhance whole-body heat loss primarily by increasing evaporative heat loss, and (ii) augment NOS-dependent cutaneous vasodilatation and NOS- and COX-dependent sweating, in exercising older men. Eight older men [mean (SD) age, 59 (8) years] completed a calorimetry and microdialysis trial before and after 7 days of exercise-heat acclimation. For the calorimetry trials, whole-body evaporative and dry heat exchange were assessed using direct calorimetry during 30 min bouts of cycling at light, moderate and vigorous metabolic heat productions (150, 200 and 250 W/m2 , respectively) in dry heat (40°C, 20% relative humidity). For the microdialysis trials, local cutaneous vascular conductance and sweat rate were assessed during 60 min exercise in the heat (35°C, 20% relative humidity) at four dorsal forearm skin sites treated with lactated Ringer solution (control), NOS inhibitor, COX inhibitor or combined NOS and COX inhibitors, via microdialysis. Evaporative heat loss during moderate (P = 0.036) and vigorous (P = 0.021) exercise increased after acclimation. Inhibition of NOS alone reduced cutaneous vascular conductance to a similar extent before and after acclimation (P < 0.040), whereas separate and combined NOS and COX inhibition had no significant effects on sweating relative to the control site (P = 0.745). Our preliminary results might suggest that short-term heat acclimation improves evaporative heat loss, but does not significantly modulate the contributions of NOS or COX to cutaneous vasodilatation or sweating on the forearm in older men during an exercise-heat stress.


Assuntos
Aclimatação/fisiologia , Exercício Físico/fisiologia , Temperatura Alta , Óxido Nítrico Sintase/metabolismo , Prostaglandina-Endoperóxido Sintases/metabolismo , Termogênese/fisiologia , Idoso , Humanos , Masculino , Pessoa de Meia-Idade , Sudorese/fisiologia
12.
J Therm Biol ; 99: 102978, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34420622

RESUMO

PURPOSE: To examine the extent of regional variations in cutaneous vasodilatation during rapid and gradual local thermal hyperaemia (LTH) in young adults. METHODS: In thirty young adults (21 ± 3 years, 15 females), cutaneous vascular conductance, normalized to maximum local skin heating at 44 °C (%CVCmax), was assessed at the upper chest, abdomen, dorsal arm, dorsal forearm, thigh, and medial calf during rapid (33-42 °C at 1 °C·20 s-1) and gradual (33-42 °C at 1 °C·5 min-1) LTH on separate days. For both protocols, local temperatures were held at 42 °C for up to 35 min, followed by 20-30 min at 44 °C. During rapid LTH, between-region responses were evaluated at baseline, the initial vasodilator peak, and 42 °C plateau. During gradual LTH, responses were assessed at baseline and the 42 °C plateau. RESULTS: There were significant main effects of body region on %CVCmax for the initial peak and plateau during rapid LTH and for the plateau during gradual LTH (all P < 0.001) Conversely, main effects of sex and the sex by region interaction were not significant (all P > 0.05). The magnitudes of between-region differences varied across the body (~1-17% range). The greatest effects were observed for the abdomen, wherein responses were consistently lower compared to other regions. Further, responses were consistent between males and females across all body regions and heating phases. CONCLUSION: Regional variations in the cutaneous vasodilator response to local heating are evident for rapid and gradual LTH in young adults, with the largest effects observed for the abdomen, albeit regional differences were similar between sexes.


Assuntos
Distúrbios do Sono por Sonolência Excessiva/fisiopatologia , Convulsões/fisiopatologia , Fenômenos Fisiológicos da Pele , Vasodilatação , Adulto , Feminino , Calefação , Humanos , Masculino , Adulto Jovem
13.
Microcirculation ; 27(1): e12586, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31435995

RESUMO

OBJECTIVES: Post-occlusive reactive hyperemia (PORH) following arterial occlusion is widely used to assess cutaneous microvascular function, though the underlying mechanisms remain to be fully elucidated. We evaluated the hypothesis that Ca2+ -activated, ATP-sensitive, and voltage-gated K+ channels (KCa , KATP , and KV channels, respectively) contribute to PORH while nitric oxide synthase (NOS) and cyclooxygenase (COX) do not. METHODS: On separate occasions, cutaneous blood flow (laser Doppler flowmetry) was monitored before and following 5-min arterial occlusion at forearm skin sites treated via microdialysis with the following: Experiment 1 (n = 11): (a) lactated Ringer solution (Control), (b) 10 mM Nω -nitro-L -arginine (NOS inhibitor), (c) 10 mM ketorolac (COX inhibitor), and (d) combined NOS+COX inhibition; Experiment 2 (n = 14): (a) lactated Ringer solution (Control), (b) 50 mM tetraethylammonium (non-selective KCa channel blocker), (c) 5 mM glibenclamide (non-specific KATP channel blocker), and (d) 10 mM 4-aminopyridine (non-selective KV channel blocker). RESULTS: Separate and combined NOS and COX inhibition did not influence PORH. Conversely, tetraethylammonium and glibenclamide attenuated, whereas 4-aminopyridine augmented PORH. CONCLUSIONS: We showed that tetraethylammonium, glibenclamide, and 4-aminopyridine modulate PORH with no roles of NOS and COX in human non-glabrous forearm skin in vivo. Thus, cutaneous PORH changes could reflect altered K+ channel function.


Assuntos
4-Aminopiridina/administração & dosagem , Glibureto/administração & dosagem , Hiperemia/metabolismo , Óxido Nítrico Sintase/metabolismo , Prostaglandina-Endoperóxido Sintases/metabolismo , Pele/irrigação sanguínea , Pele/metabolismo , Tetraetilamônio/administração & dosagem , Adulto , Humanos , Masculino , Pele/fisiopatologia
14.
Am J Physiol Regul Integr Comp Physiol ; 318(2): R390-R398, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31913684

RESUMO

Local skin heating to 42°C causes cutaneous thermal hyperemia largely via nitric oxide (NO) synthase (NOS)-related mechanisms. We assessed the hypothesis that ATP-sensitive K+ (KATP) channels interact with NOS to mediate cutaneous thermal hyperemia. In 13 young adults (6 women, 7 men), cutaneous vascular conductance (CVC) was measured at four intradermal microdialysis sites that were continuously perfused with 1) lactated Ringer solution (control), 2) 5 mM glibenclamide (KATP channel blocker), 3) 20 mM NG-nitro-l-arginine methyl ester (NOS inhibitor), or 4) a combination of KATP channel blocker and NOS inhibitor. Local skin heating to 42°C was administered at all four treatment sites to elicit cutaneous thermal hyperemia. Thirty minutes after the local heating, 1.25 mM pinacidil (KATP channel opener) and subsequently 25 mM sodium nitroprusside (NO donor) were administered to three of the four sites (each 25-30 min). The local heating-induced prolonged elevation in CVC was attenuated by glibenclamide (19%), but the transient initial peak was not. However, glibenclamide had no effect on the prolonged elevation in CVC in the presence of NOS inhibition. Pinacidil caused an elevation in CVC, but this response was abolished at the glibenclamide-treated skin site, demonstrating its effectiveness as a KATP channel blocker. The pinacidil-induced increase in CVC was unaffected by NOS inhibition, whereas the increase in CVC elicited by sodium nitroprusside was partly (15%) inhibited by glibenclamide. In summary, we showed an interactive effect of KATP channels and NOS for the plateau of cutaneous thermal hyperemia. This interplay may reflect a vascular smooth muscle cell KATP channel activation by NO.


Assuntos
Hiperemia/enzimologia , Canais KATP/metabolismo , Microcirculação , Microvasos/enzimologia , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico/metabolismo , Pele/irrigação sanguínea , Vasodilatação , Adulto , Velocidade do Fluxo Sanguíneo , Inibidores Enzimáticos/administração & dosagem , Feminino , Humanos , Hiperemia/etiologia , Hiperemia/fisiopatologia , Hipotermia Induzida , Ativação do Canal Iônico , Canais KATP/antagonistas & inibidores , Masculino , Microcirculação/efeitos dos fármacos , Microvasos/efeitos dos fármacos , Microvasos/fisiopatologia , Doadores de Óxido Nítrico/administração & dosagem , Óxido Nítrico Sintase/antagonistas & inibidores , Bloqueadores dos Canais de Potássio/administração & dosagem , Transdução de Sinais , Vasodilatação/efeitos dos fármacos , Vasodilatadores/administração & dosagem , Adulto Jovem
15.
Microvasc Res ; 131: 104030, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32531353

RESUMO

Previous studies indicate that sex-related differences exist in the regulation of cutaneous vasodilation, however, the mechanisms remain unresolved. We assessed if sex-differences in young adults exist for cholinergic, nicotinic, and ß-adrenergic cutaneous vasodilation with a focus on nitric oxide synthase (NOS), cyclooxygenase (COX), and K+ channel mechanisms. In twelve young men and thirteen young women, four intradermal forearm skin sites were perfused with the following: 1) lactated Ringer's solution (control), 2) 10 mM Nω-nitro-l-arginine, a non-selective NOS inhibitor, 3) 10 mM ketorolac, a non-selective COX inhibitor, or 4) 50 mM BaCl2, a nonspecific K+ channel blocker. At all four sites, cutaneous vasodilation was induced by 1) 10 mM nicotine, a nicotinic receptor agonist, 2) 100 µM isoproterenol, a nonselective ß-adrenergic receptor agonist, and 3) 2 mM and 2000 mM acetylcholine, an acetylcholine receptor agonist. Nicotine and isoproterenol were administered for 3 min, whereas each acetylcholine dose was administered for 25 min. Regardless of treatment site, cutaneous vasodilation in response to nicotine and a high dose of acetylcholine (2000 mM) were lower in women than men. By contrast, isoproterenol induced cutaneous vasodilation was greater in women vs. men. Irrespective of sex, NOS inhibition or K+ channel blockade attenuated isoproterenol-mediated cutaneous vasodilation, whereas K+ channel blockade decreased nicotine-induced cutaneous vasodilation. Taken together, our findings indicate that while the mechanisms underlying cutaneous vasodilation are comparable between young men and women, sex-related differences in the magnitude of cutaneous vasodilation do exist and this response differs as a function of the receptor agonist.


Assuntos
Vasos Sanguíneos/enzimologia , Óxido Nítrico Sintase/metabolismo , Canais de Potássio/metabolismo , Prostaglandina-Endoperóxido Sintases/metabolismo , Receptores Adrenérgicos beta/metabolismo , Receptores Colinérgicos/metabolismo , Pele/irrigação sanguínea , Vasodilatação , Agonistas Adrenérgicos beta/farmacologia , Adulto , Vasos Sanguíneos/efeitos dos fármacos , Agonistas Colinérgicos/farmacologia , Inibidores de Ciclo-Oxigenase/farmacologia , Feminino , Antebraço , Humanos , Masculino , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/antagonistas & inibidores , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio/efeitos dos fármacos , Receptores Nicotínicos/metabolismo , Fatores Sexuais , Transdução de Sinais , Vasodilatação/efeitos dos fármacos , Adulto Jovem
16.
Exp Physiol ; 105(2): 236-243, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31821642

RESUMO

NEW FINDINGS: What is the central question of this study? We evaluated whether regional variations exist in NO-dependent cutaneous vasodilatation and sweating during cholinergic stimulation. What is the main finding and its importance? Peak cutaneous vasodilatation and sweating were greater on the torso than the forearm. Furthermore, we found that NO was an important modulator of cholinergic cutaneous vasodilatation, but not sweating, across body regions, with a greater contribution of NO to cutaneous vasodilatation in the limb compared with the torso. These findings advance our understanding of the mechanisms influencing regional variations in cutaneous vasodilator and sweating responses to pharmacological stimulation. ABSTRACT: Regional variations in cutaneous vasodilatation and sweating exist across the body. Nitric oxide (NO) is an important modulator of these heat loss responses in the forearm. However, whether regional differences in NO-dependent cutaneous vasodilatation and sweating exist remain uncertain. In 14 habitually active young men (23 ± 4 years of age), cutaneous vascular conductance (CVC%max ) and local sweat rates were assessed at six skin sites. On each of the dorsal forearm, chest and upper back (trapezius), sites were continuously perfused with either lactated Ringer solution (control) or 10 mm Nω -nitro-l-arginine (l-NNA; an NO synthase inhibitor) dissolved in Ringer solution, via microdialysis. At all sites, cutaneous vasodilatation and sweating were induced by co-administration of the cholinergic agonist methacholine (1, 10, 100, 1000 and 2000 mm; 25 min per dose) followed by 50 mm sodium nitroprusside (20-25 min) to induce maximal vasodilatation. The l-NNA attenuated CVC%max relative to the control conditions for all regions (all P < 0.05), and NO-dependent vasodilatation was greater at the forearm compared with the back and chest (both P < 0.05). Furthermore, maximal vasodilatation was higher at the back and chest relative to the forearm (both P < 0.05). Conversely, l-NNA had negligible effects on sweating across the body (all P > 0.05). Peak local sweat rate was higher at the back relative to the forearm (P < 0.05), with a similar trend observed for the chest. In habitually active young men, NO-dependent cholinergic cutaneous vasodilatation varied across the body, and the contribution to cholinergic sweating was negligible. These findings advance our understanding of the mechanisms influencing regional variations in cutaneous vasodilatation and sweating during pharmacological stimulation.


Assuntos
Agonistas Muscarínicos/administração & dosagem , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase/metabolismo , Pele/enzimologia , Sudorese/fisiologia , Vasodilatação/fisiologia , Adulto , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/administração & dosagem , Humanos , Injeções Subcutâneas , Masculino , Cloreto de Metacolina/administração & dosagem , Nitroarginina/administração & dosagem , Pele/irrigação sanguínea , Pele/efeitos dos fármacos , Sudorese/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Adulto Jovem
17.
Exp Physiol ; 105(5): 773-782, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32176373

RESUMO

NEW FINDINGS: What is the central question of this study? Do regional differences exist in nitric oxide synthase (NOS)-dependent cutaneous vasodilatation and sweating during exercise-heat stress in young men. What is the main finding and its importance? Exercise-induced increases in cutaneous vasodilatation and sweating were greater on the chest and upper back compared to the forearm, although the NOS contribution to cutaneous vasodilatation was similar across all regions. Conversely, there was a greater NOS-dependent rate of change in sweating on the chest compared to the forearm, with a similar trend on the back. ABSTRACT: While it is established that nitric oxide synthase (NOS) is an important modulator of forearm cutaneous vasodilatation and sweating during an exercise-heat stress in young men, it remains unclear if regional differences exist in this response. In 15 habitually active young men (24 ± 4 (SD) years), cutaneous vascular conductance (CVC) and local sweat rate (LSR) were assessed at three body regions. On each of the dorsal forearm, chest and upper-back (trapezius), sites were continuously perfused with either (1) lactated Ringer solution (control) or (2) 10 Mm Nω -nitro-l-arginine (l-NNA, NOS inhibitor), via microdialysis. Participants rested in the heat (35°C) for ∼75 min, followed by 60 min of semi-recumbent cycling performed at a fixed rate of heat production of 200 W m-2 (equivalent to ∼42% V̇O2peak ). During exercise, the chest and upper-back regions showed higher CVC and LSR responses relative to the forearm (all P < 0.05). Within each region, l-NNA attenuated CVC and LSR relative to control (all P < 0.05). However, the NOS contribution was not different across regions for the rate of change and plateau for CVC or for the LSR plateau (all P > 0.05). Conversely, there was a greater NOS contribution to the rate of change for LSR at the chest relative to the forearm (P < 0.05) with a similar trend for the back. In habitually active young men, NOS-dependent cutaneous vasodilatation was similar across regions while the NOS contribution to LSR was greater on the chest relative to the forearm. These findings advance our understanding of the mechanisms influencing regional variations in cutaneous vasodilatation and sweating during an exercise-heat stress.


Assuntos
Exercício Físico/fisiologia , Resposta ao Choque Térmico , Óxido Nítrico/fisiologia , Sudorese , Vasodilatação , Adulto , Dorso , Antebraço , Humanos , Óxido Nítrico Sintase/fisiologia , Fenômenos Fisiológicos da Pele , Tórax , Adulto Jovem
18.
Exp Physiol ; 105(10): 1720-1729, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32818310

RESUMO

NEW FINDINGS: What is the central question of this study? ß-Adrenergic receptor activation modulates cutaneous vasodilatation and sweating in young adults. In this study, we assessed whether age-related differences in ß-adrenergic regulation of these responses exist and whether they differ between men and women. What is the main finding and its importance? We showed that ageing augmented ß-adrenergic cutaneous vasodilatation, although the pattern of response differed between men and women. Ageing had no effect on ß-adrenergic sweating in men or women. Our findings advance our understanding of age-related changes in the regulation of cutaneous vasodilatation and sweating and provide new directions for research on the significance of enhanced ß-adrenergic cutaneous vasodilatation in older adults. ABSTRACT: ß-Adrenergic receptor agonists, such as isoprenaline, can induce cutaneous vasodilatation and sweating in young adults. Given that cutaneous vasodilatation and sweating responses to whole-body heating and to pharmacological agonists, such as acetylcholine, ATP and nicotine, can differ in older adults, we assessed whether ageing also modulates ß-adrenergic cutaneous vasodilatation and sweating and whether responses differ between men and women. In the context of the latter, prior reports showed that the effects of ageing on cutaneous vasodilatation (evoked with ATP and nicotine) and sweating (stimulated by acetylcholine) were sex dependent. Thus, in the present study, we assessed the role of ß-adrenergic receptor activation on forearm cutaneous vasodilatation and sweating in 11 young men (24 ± 4 years of age), 11 young women (23 ± 5 years of age), 11 older men (61 ± 8 years of age) and 11 older women (60 ± 8 years of age). Initially, a high dose (100 µm) of isoprenaline was administered via intradermal microdialysis for 5 min to induce maximal ß-adrenergic sweating. Approximately 60 min after the washout period, three incremental doses of isoprenaline were administered (1, 10 and 100 µm, each for 25 min) to assess dose-dependent cutaneous vasodilatation. Isoprenaline-mediated cutaneous vasodilatation was greater in both older men and older women relative to their young counterparts. Augmented cutaneous vasodilatory responses were observed at 1 and 10 µm in women and at 100 µm in men. Isoprenaline-mediated sweating was unaffected by ageing, regardless of sex. We show that ageing augments ß-adrenergic cutaneous vasodilatation differently in men and women, without influencing ß-adrenergic sweating.


Assuntos
Adrenérgicos/metabolismo , Envelhecimento/metabolismo , Pele/metabolismo , Sudorese/fisiologia , Acetilcolina/farmacologia , Adulto , Envelhecimento/efeitos dos fármacos , Envelhecimento/fisiologia , Feminino , Antebraço/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Nicotina/farmacologia , Pele/efeitos dos fármacos , Pele/fisiopatologia , Sudorese/efeitos dos fármacos , Doenças Vasculares/metabolismo , Doenças Vasculares/fisiopatologia , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia , Adulto Jovem
19.
Skin Pharmacol Physiol ; 33(2): 86-93, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32008009

RESUMO

INTRODUCTION: Prolonged exercise in the heat stimulates plasma release of atrial natriuretic peptide (ANP) in association with dehydration-induced reductions in blood volume. Elevated plasma ANP levels under these conditions may indirectly attenuate cutaneous blood flow and sweating responses due to the effects of this hormone on central blood volume and plasma osmolality and the resulting stimulation of nonthermal reflexes. However, it remains unclear whether cutaneous blood flow and sweating are directly modulated by ANP at the level of the cutaneous end organs (cutaneous microvessels and eccrine sweat glands) during prolonged exercise in the heat. OBJECTIVE: Therefore, we evaluated the effects of local ANP administration on forearm cutaneous vascular conductance (CVC) and local sweat rate (LSR) during rest and exercise in the heat. METHODS: In 9 habitually active young men (26 ± 6 years) CVC and LSR were evaluated at 3 intradermal microdialysis sites continuously perfused with lactated Ringer solution (control) or ANP (0.1 or 1.0 µM). Participants rested in a non-heat-stress condition (25°C) for approximately 60 min followed by 70 min in the heat (35°C). They then performed 50 min of moderate-intensity cycling (approx. 55% VO2 peak), with a 30-min recovery. Thereafter, 50 mM sodium nitroprusside was administered at all sites to elicit maximum CVC, which was subsequently used to normalize all values (CVC%max). RESULTS: No effects of ANP on CVC%max were observed in the non-heat-stress resting condition compared to the untreated control site (both p > 0.05). Conversely during rest in the heat there was an 11% (5-17%) reduction in CVC%max at the 1.0 µM ANP site relative to the untreated control site (p < 0.05). At the end of exercise CVC%max was attenuated by 12% (1-23%) at the 0.1 µM ANP site and by 21% (7-35%) at the 1.0 µM ANP site relative to the untreated control site (all p < 0.05). Conversely, neither concentration of ANP influenced sweating at any time point (all p > 0.05). CONCLUSION: Intradermal ANP administration directly attenuated cutaneous blood flow, but not sweating, in habitually active young men during rest and exercise in the heat.


Assuntos
Fator Natriurético Atrial/farmacologia , Exercício Físico/fisiologia , Antebraço/fisiopatologia , Temperatura Alta/efeitos adversos , Fenômenos Fisiológicos da Pele/efeitos dos fármacos , Sudorese/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Administração Cutânea , Adulto , Fator Natriurético Atrial/sangue , Humanos , Masculino
20.
Microcirculation ; 26(6): e12541, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30828931

RESUMO

OBJECTIVES: Heat shock protein 90 (HSP90) contributes to cutaneous vasodilatation during exercise in the heat through nitric oxide (NO) synthase (NOS)-dependent mechanisms in young adults. We hypothesized that similar responses would be observed in older middle-aged adults. METHODS: In nineteen habitually active older middle-aged (56 ± 5 years) men (n = 9) and women (n = 10), cutaneous vascular conductance (CVC) was measured at four forearm skin sites continuously treated with (a) lactated Ringers solution (Control), (b) 10 mmol/L L-NAME (NOS inhibitor), (c) 178 µmol/L geldanamycin (HSP90 inhibitor), or (d) 10 mmol/L L-NAME and 178 µmol/L geldanamycin combined. Participants rested in an upright semi-recumbent position in the heat (35°C) for 70 minutes, followed by a 50-minute bout of moderate-intensity cycling (~55% peak oxygen uptake) and a 30-minute recovery period in the heat. RESULTS: In both men and women, we observed no significant effects of HSP90 inhibition on CVC throughout rest, exercise, and recovery in the heat (all P > 0.27). Conversely, NOS inhibition and dual NOS and HSP90 inhibition attenuated CVC relative to Control throughout the protocol (all P ≤ 0.05). CONCLUSIONS: While NOS mediates cutaneous vasodilatation during rest, exercise, and recovery in the heat, HSP90 does not measurably influence this response in habitually active older middle-aged men or women under these conditions.


Assuntos
Proteínas de Choque Térmico HSP90/biossíntese , Transtornos de Estresse por Calor/metabolismo , Transtornos de Estresse por Calor/fisiopatologia , Pele , Vasodilatação , Idoso , Feminino , Antebraço/irrigação sanguínea , Antebraço/patologia , Antebraço/fisiopatologia , Transtornos de Estresse por Calor/tratamento farmacológico , Transtornos de Estresse por Calor/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Pele/irrigação sanguínea , Pele/patologia , Pele/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA