Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(11)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34071916

RESUMO

Actively heated fiber-optic distributed temperature sensing (aFO-DTS) measures soil moisture content at sub-meter intervals across kilometres of fiber-optic cable. The technology has great potential for environmental monitoring but calibration at field scales with variable soil conditions is challenging. To better understand and quantify the errors associated with aFO-DTS soil moisture measurements, we use a parametric numerical modeling approach to evaluate different error factors for uniform soil. A thermo-hydrogeologic, unsaturated numerical model is used to simulate a 0.01 m by 0.01 m two-dimensional domain, including soil and a fiber-optic cable. Results from the model are compared to soil moisture values calculated using the commonly used Tcum calibration method for aFO-DTS. The model is found to have high accuracy between measured and observed saturations for static hydrologic conditions but shows discrepancies for more realistic settings with active recharge. We evaluate the performance of aFO-DTS soil moisture calculations for various scenarios, including varying recharge duration and heterogeneous soils. The aFO-DTS accuracy decreases as the variability in soil properties and intensity of recharge events increases. Further, we show that the burial of the fiber-optic cable within soil may adversely affect calculated results. The results demonstrate the need for careful selection of calibration data for this emerging method of measuring soil moisture content.

2.
Environ Monit Assess ; 189(12): 649, 2017 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-29178008

RESUMO

The objective of this research is to characterize the variability of trace metals in the Rio Santa watershed based on synoptic sampling applied at a large scale. To that end, we propose a combination of methods based on the collection of water, suspended sediments, and riverbed sediments at different points of the watershed within a very limited period. Forty points within the Rio Santa watershed were sampled between June 21 and July 8, 2013. Forty water samples, 36 suspended sediments, and 34 riverbed sediments were analyzed for seven trace metals. The results, which were normalized using the USEPA guideline for water and sediments, show that the Rio Santa water exhibits Mn concentrations higher than the guideline at more than 50% of the sampling points. As is the second highest contaminating element in the water, with approximately 10% of the samples containing concentrations above the guideline. Sediments collected in the Rio Santa riverbed were heavily contaminated by at least four of the tested elements at nearly 85% of the sample points, with As presenting the highest normalized concentration, at more than ten times the guideline. As, Cd, Fe, Pb, and Zn present similar concentration trends in the sediment all along the Rio Santa.The findings indicate that care should be taken in using the Rio Santa water and sediments for purposes that could affect the health of humans or the ecosystem. The situation is worse in some tributaries in the southern part of the watershed that host both active and abandoned mines and ore-processing plants.


Assuntos
Sedimentos Geológicos/química , Metais Pesados/análise , Poluentes Químicos da Água/análise , Ecossistema , Monitoramento Ambiental/métodos , Camada de Gelo , Mineração , Peru
3.
Ground Water ; 59(4): 549-561, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33462813

RESUMO

The design and construction of a waste rock pile influences water infiltration and may promote the production of contaminated mine drainage. The objective of this project is to evaluate the use of an active fiber optic distributed temperature sensing (aFO-DTS) protocol to measure infiltration and soil moisture within a flow control layer capping an experimental waste rock pile. Five hundred meters of fiber optic cable were installed in a waste rock pile that is 70 m long, 10 m wide, and was covered with 0.60 m of fine compacted sand and 0.25 m of non-reactive crushed waste rock. Volumetric water content was assessed by heating the fiber optic cable with 15-min heat pulses at 15 W/m every 30 min. To test the aFO-DTS system 14 mm of recharge was applied to the top surface of the waste rock pile over 4 h, simulating a major rain event. The average volumetric water content in the FCL increased from 0.10 to 0.24 over the duration of the test. The volumetric water content measured with aFO-DTS in the FCL and waste rock was within ±0.06 and ±0.03, respectively, compared with values measured using 96 dielectric soil moisture probes over the same time period. Additional results illustrate how water can be confined within the FCL and monitored through an aFO-DTS protocol serving as a practical means to measure soil moisture at an industrial capacity.


Assuntos
Água Subterrânea , Poluentes da Água , Chuva , Solo , Água , Poluentes da Água/análise
4.
Ground Water ; 55(2): 160-170, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27576019

RESUMO

Quantifying groundwater flow at seepage faces is crucial because seepage faces influence the hydroecology and water budgets of watersheds, lakes, rivers and oceans, and because measuring groundwater fluxes directly in aquifers is extremely difficult. Seepage faces provide a direct and measurable groundwater flux but there is no existing method to quantitatively image groundwater processes at this boundary. Our objective is to determine the possibilities and limitations of thermal imagery in quantifying groundwater discharge from discrete seeps. We developed a conceptual model of temperature below discrete seeps, observed 20 seeps spectacularly exposed in three dimensions at an unused limestone quarry and conducted field experiments to examine the role of diurnal changes and rock face heterogeneity on thermal imagery. The conceptual model suggests that convective air-water heat exchange driven by temperature differences is the dominant heat transfer mechanism. Thermal imagery is effective at locating and characterizing the flux of groundwater seeps. Areas of active groundwater flow and ice growth can be identified from thermal images in the winter, and seepage rates can be differentiated in the summer. However, the application of thermal imagery is limited by diverse factors including technical issues of image acquisition, diurnal changes in radiation and temperature, and rock face heterogeneity. Groundwater discharge rates could not be directly quantified from thermal imagery using our observations but our conceptual model and experiments suggest that thermal imagery could quantify groundwater discharge when there are large temperature differences, simple cliff faces, non-freezing conditions, and no solar radiation.


Assuntos
Água Subterrânea , Movimentos da Água , Lagos , Oceanos e Mares , Rios
5.
Ground Water ; 55(1): 10-26, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27696430

RESUMO

Heat is a powerful tracer to quantify fluid exchange between surface water and groundwater. Temperature time series can be used to estimate pore water fluid flux, and techniques can be employed to extend these estimates to produce detailed plan-view flux maps. Key advantages of heat tracing include cost-effective sensors and ease of data collection and interpretation, without the need for expensive and time-consuming laboratory analyses or induced tracers. While the collection of temperature data in saturated sediments is relatively straightforward, several factors influence the reliability of flux estimates that are based on time series analysis (diurnal signals) of recorded temperatures. Sensor resolution and deployment are particularly important in obtaining robust flux estimates in upwelling conditions. Also, processing temperature time series data involves a sequence of complex steps, including filtering temperature signals, selection of appropriate thermal parameters, and selection of the optimal analytical solution for modeling. This review provides a synthesis of heat tracing using diurnal temperature oscillations, including details on optimal sensor selection and deployment, data processing, model parameterization, and an overview of computing tools available. Recent advances in diurnal temperature methods also provide the opportunity to determine local saturated thermal diffusivity, which can improve the accuracy of fluid flux modeling and sensor spacing, which is related to streambed scour and deposition. These parameters can also be used to determine the reliability of flux estimates from the use of heat as a tracer.


Assuntos
Água Subterrânea , Temperatura Alta , Reprodutibilidade dos Testes , Temperatura , Água
6.
Environ Sci Technol ; 41(20): 6955-60, 2007 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-17993134

RESUMO

Glaciers in the tropical Andes are undergoing rapid retreat with potentially devastating consequences for populations who rely on them for water resources. We measured stable water isotope ratios in synoptically sampled streams discharging from glacierized watersheds to associate hydroisotopic variation with relative changes in glacierized area. A total of 73 water samples were collected from hydrological endmembers including streams, glacier meltwater, and groundwater during the dry seasons of 2004-2006 in the Callejon de Huaylas, a 5000 km2 watershed that drains the western side of the Cordillera Blanca in northern Perú. To differentiate the influence of elevation on isotopic values, we use samples from shallow groundwater springs and nonglacierized subcatchments to derive a local meteoric elevation effect. From published historical runoff data and satellite-mapped glacier cover, we estimate an average increase of 1.6 (+/-1.1)% in the specific discharge of the glacierized catchments as a function of isotopic changes from 2004 to 2006. These results confirm predicted short-term increases in discharge as glaciers melt and demonstrate the utility of stable isotopes in water for tracing relative glacier melt water contributions to watersheds.


Assuntos
Efeito Estufa , Gelo , Isótopos/análise , Água/química , Peru
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA