Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Cell ; 186(23): 5135-5150.e28, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37865090

RESUMO

Mycobacterium tuberculosis (Mtb) cultured axenically without detergent forms biofilm-like cords, a clinical identifier of virulence. In lung-on-chip (LoC) and mouse models, cords in alveolar cells contribute to suppression of innate immune signaling via nuclear compression. Thereafter, extracellular cords cause contact-dependent phagocyte death but grow intercellularly between epithelial cells. The absence of these mechanopathological mechanisms explains the greater proportion of alveolar lesions with increased immune infiltration and dissemination defects in cording-deficient Mtb infections. Compression of Mtb lipid monolayers induces a phase transition that enables mechanical energy storage. Agent-based simulations demonstrate that the increased energy storage capacity is sufficient for the formation of cords that maintain structural integrity despite mechanical perturbation. Bacteria in cords remain translationally active despite antibiotic exposure and regrow rapidly upon cessation of treatment. This study provides a conceptual framework for the biophysics and function in tuberculosis infection and therapy of cord architectures independent of mechanisms ascribed to single bacteria.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Camundongos , Biofilmes , Pulmão/microbiologia , Pulmão/patologia , Mycobacterium tuberculosis/fisiologia , Tuberculose/microbiologia , Tuberculose/patologia , Virulência , Fenômenos Biomecânicos
2.
EMBO J ; 42(9): e113490, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36920246

RESUMO

Mycobacterium tuberculosis (Mtb) infection is initiated by inhalation of bacteria into lung alveoli, where they are phagocytosed by resident macrophages. Intracellular Mtb replication induces the death of the infected macrophages and the release of bacterial aggregates. Here, we show that these aggregates can evade phagocytosis by killing macrophages in a contact-dependent but uptake-independent manner. We use time-lapse fluorescence microscopy to show that contact with extracellular Mtb aggregates triggers macrophage plasma membrane perturbation, cytosolic calcium accumulation, and pyroptotic cell death. These effects depend on the Mtb ESX-1 secretion system, however, this system alone cannot induce calcium accumulation and macrophage death in the absence of the Mtb surface-exposed lipid phthiocerol dimycocerosate. Unexpectedly, we found that blocking ESX-1-mediated secretion of the EsxA/EsxB virulence factors does not eliminate the uptake-independent killing of macrophages and that the 50-kDa isoform of the ESX-1-secreted protein EspB can mediate killing in the absence of EsxA/EsxB secretion. Treatment with an ESX-1 inhibitor reduces uptake-independent killing of macrophages by Mtb aggregates, suggesting that novel therapies targeting this anti-phagocytic mechanism could prevent the propagation of extracellular bacteria within the lung.


Assuntos
Mycobacterium tuberculosis , Proteínas de Bactérias/metabolismo , Cálcio/metabolismo , Macrófagos/metabolismo , Fatores de Virulência/metabolismo
3.
EMBO J ; 38(22): e101876, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31583725

RESUMO

Clonal microbial populations are inherently heterogeneous, and this diversification is often considered as an adaptation strategy. In clinical infections, phenotypic diversity is found to be associated with drug tolerance, which in turn could evolve into genetic resistance. Mycobacterium tuberculosis, which ranks among the top ten causes of mortality with high incidence of drug-resistant infections, exhibits considerable phenotypic diversity. In this study, we quantitatively analyze the cellular dynamics of DNA damage responses in mycobacteria using microfluidics and live-cell fluorescence imaging. We show that individual cells growing under optimal conditions experience sporadic DNA-damaging events manifested by RecA expression pulses. Single-cell responses to these events occur as transient pulses of fluorescence expression, which are dependent on the gene-network structure but are triggered by extrinsic signals. We demonstrate that preexisting subpopulations, with discrete levels of DNA damage response, are associated with differential susceptibility to fluoroquinolones. Our findings reveal that the extent of DNA integrity prior to drug exposure impacts the drug activity against mycobacteria, with conceivable therapeutic implications.


Assuntos
Proteínas de Bactérias/metabolismo , Ciprofloxacina/farmacologia , Dano ao DNA/genética , Mycobacterium tuberculosis/genética , Análise de Célula Única , Estresse Fisiológico , Tuberculose/patologia , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Dano ao DNA/efeitos dos fármacos , Humanos , Microfluídica , Mycobacterium tuberculosis/efeitos dos fármacos , Recombinases Rec A/genética , Recombinases Rec A/metabolismo , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia
4.
EMBO Rep ; 22(6): e52744, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-33908688

RESUMO

Severe cases of SARS-CoV-2 infection are characterized by hypercoagulopathies and systemic endotheliitis of the lung microvasculature. The dynamics of vascular damage, and whether it is a direct consequence of endothelial infection or an indirect consequence of an immune cell-mediated cytokine storm remain unknown. Using a vascularized lung-on-chip model, we find that infection of alveolar epithelial cells leads to limited apical release of virions, consistent with reports of monoculture infection. However, viral RNA and proteins are rapidly detected in underlying endothelial cells, which are themselves refractory to apical infection in monocultures. Although endothelial infection is unproductive, it leads to the formation of cell clusters with low CD31 expression, a progressive loss of barrier integrity and a pro-coagulatory microenvironment. Viral RNA persists in individual cells generating an inflammatory response, which is transient in epithelial cells but persistent in endothelial cells and typified by IL-6 secretion even in the absence of immune cells. Inhibition of IL-6 signalling with tocilizumab reduces but does not prevent loss of barrier integrity. SARS-CoV-2-mediated endothelial cell damage thus occurs independently of cytokine storm.


Assuntos
COVID-19 , SARS-CoV-2 , Síndrome da Liberação de Citocina , Células Endoteliais , Humanos , Pulmão
5.
J Bacteriol ; 203(10)2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33468595

RESUMO

Mycobacteria have unique cell envelopes, surface properties, and growth dynamics, which all play a part in the ability of these important pathogens to infect, evade host immunity, disseminate, and resist antibiotic challenges. Recent atomic force microscopy (AFM) studies have brought new insights into the nanometer-scale ultrastructural, adhesive, and mechanical properties of mycobacteria. The molecular forces with which mycobacterial adhesins bind to host factors, like heparin and fibronectin, and the hydrophobic properties of the mycomembrane have been unraveled by AFM force spectroscopy studies. Real-time correlative AFM and fluorescence imaging have delineated a complex interplay between surface ultrastructure, tensile stresses within the cell envelope, and cellular processes leading to division. The unique capabilities of AFM, which include subdiffraction-limit topographic imaging and piconewton force sensitivity, have great potential to resolve important questions that remain unanswered on the molecular interactions, surface properties, and growth dynamics of this important class of pathogens.


Assuntos
Membrana Celular/ultraestrutura , Mycobacterium/ultraestrutura , Adesinas Bacterianas/metabolismo , Antibacterianos/farmacologia , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/fisiologia , Interações Hidrofóbicas e Hidrofílicas , Lipídeos de Membrana/química , Lipídeos de Membrana/fisiologia , Microscopia de Força Atômica , Mycobacterium/química , Mycobacterium/crescimento & desenvolvimento , Mycobacterium/fisiologia , Propriedades de Superfície
6.
Mol Microbiol ; 103(1): 13-25, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27677649

RESUMO

There is an urgent need to discover new anti-tubercular agents with novel mechanisms of action in order to tackle the scourge of drug-resistant tuberculosis. Here, we report the identification of such a molecule - an AminoPYrimidine-Sulfonamide (APYS1) that has potent, bactericidal activity against M. tuberculosis. Mutations in APYS1-resistant M. tuberculosis mapped exclusively to wag31, a gene that encodes a scaffolding protein thought to orchestrate cell elongation. Recombineering confirmed that a Gln201Arg mutation in Wag31 was sufficient to cause resistance to APYS1, however, neither overexpression nor conditional depletion of wag31 impacted M. tuberculosis susceptibility to this compound. In contrast, expression of the wildtype allele of wag31 in APYS1-resistant M. tuberculosis was dominant and restored susceptibility to APYS1 to wildtype levels. Time-lapse imaging and scanning electron microscopy revealed that APYS1 caused gross malformation of the old pole of M. tuberculosis, with eventual lysis. These effects resembled the morphological changes observed following transcriptional silencing of wag31 in M. tuberculosis. These data show that Wag31 is likely not the direct target of APYS1, but the striking phenotypic similarity between APYS1 exposure and genetic depletion of Wag31 in M. tuberculosis suggests that APYS1 might indirectly affect Wag31 through an as yet unknown mechanism.


Assuntos
Antituberculosos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Pirimidinas/farmacocinética , Antibacterianos/farmacocinética , Crescimento Celular , Descoberta de Drogas/métodos , Regulação Bacteriana da Expressão Gênica/genética , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Pirimidinas/química , Pirimidinas/metabolismo , Homologia de Sequência de Aminoácidos , Sulfonamidas/metabolismo , Sulfonamidas/farmacocinética , Imagem com Lapso de Tempo
7.
IUBMB Life ; 70(9): 836-844, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30092117

RESUMO

Bacterial persistence, the ability of bacteria to survive high concentrations of antibiotics for extended periods of time, is an important contributing factor to therapy failure and development of chronic and recurrent infections. Several recent studies have suggested that this persistence is mediated primarily by (p)ppGpp, through its interactions with toxin-antitoxin modules and polyphosphates. In this study, we address whether these key players play a role in mycobacterial persistence against antibiotics. We targeted these specific pathways in Mycobacterium smegmatis by constructing deletion strains of (p)ppGpp synthetase/hydrolase (relA), polyphosphate kinases (ppk1 and ppk2), exopolyphosphatases (ppx1 and ppx2), and the lon protease. None of these mutant strains exhibited altered levels of persisters against isoniazid and ciprofloxacin, when compared with wild-type strain. Even under conditions in which the stringent response usually gets activated, these strains displayed wild-type persister levels. Interestingly, we also found that unlike Escherichia coli, maintaining M. smegmatis in exponential phase by repeated passaging does not eliminate persisters suggesting that at least against the antibiotics tested, stationary-phase dependent persisters (type I) are not the major contributors. Thus, our data demonstrate that multiple mechanisms of antibiotic persistence exist and that these vary widely among different bacterial species. © 2018 IUBMB Life, 70(9):836-844, 2018.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Guanosina Pentafosfato/metabolismo , Mycobacterium smegmatis/efeitos dos fármacos , Tuberculose/tratamento farmacológico , Humanos , Mycobacterium smegmatis/crescimento & desenvolvimento , Mycobacterium smegmatis/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Tuberculose/metabolismo , Tuberculose/microbiologia
8.
Int J Mol Sci ; 19(10)2018 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-30274330

RESUMO

Imaging living cells by atomic force microscopy (AFM) promises not only high-resolution topographical data, but additionally, mechanical contrast, both of which are not obtainable with other microscopy techniques. Such imaging is however challenging, as cells need to be measured with low interaction forces to prevent either deformation or detachment from the surface. Off-resonance modes which periodically probe the surface have been shown to be advantageous, as they provide excellent force control combined with large amplitudes, which help reduce lateral force interactions. However, the low actuation frequency in traditional off-resonance techniques limits the imaging speed significantly. Using photothermal actuation, we probe the surface by directly actuating the cantilever. Due to the much smaller mass that needs to be actuated, the achievable measurement frequency is increased by two orders of magnitude. Additionally, photothermal off-resonance tapping (PORT) retains the precise force control of conventional off-resonance modes and is therefore well suited to gentle imaging. Here, we show how photothermal off-resonance tapping can be used to study live cells by AFM. As an example of imaging mammalian cells, the initial attachment, as well as long-term detachment, of human thrombocytes is presented. The membrane disrupting effect of the antimicrobial peptide CM-15 is shown on the cell wall of Escherichia coli. Finally, the dissolution of the cell wall of Bacillus subtilis by lysozyme is shown. Taken together, these evolutionarily disparate forms of life exemplify the usefulness of PORT for live cell imaging in a multitude of biological disciplines.


Assuntos
Imageamento Tridimensional , Luz , Microscopia de Força Atômica/métodos , Temperatura , Bacillus subtilis/citologia , Plaquetas/citologia , Adesão Celular , Sobrevivência Celular , Escherichia coli/citologia , Humanos , Muramidase/metabolismo , Imagem com Lapso de Tempo
9.
Mol Cell Proteomics ; 13(11): 3014-28, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24997995

RESUMO

Mycobacterium tuberculosis has a remarkable ability to persist within the human host as a clinically inapparent or chronically active infection. Fatty acids are thought to be an important carbon source used by the bacteria during long term infection. Catabolism of fatty acids requires reprogramming of metabolic networks, and enzymes central to this reprogramming have been targeted for drug discovery. Mycobacterium smegmatis, a nonpathogenic relative of M. tuberculosis, is often used as a model system because of the similarity of basic cellular processes in these two species. Here, we take a quantitative proteomics-based approach to achieve a global view of how the M. smegmatis metabolic network adjusts to utilization of fatty acids as a carbon source. Two-dimensional liquid chromatography and mass spectrometry of isotopically labeled proteins identified a total of 3,067 proteins with high confidence. This number corresponds to 44% of the predicted M. smegmatis proteome and includes most of the predicted metabolic enzymes. Compared with glucose-grown cells, 162 proteins showed differential abundance in acetate- or propionate-grown cells. Among these, acetate-grown cells showed a higher abundance of proteins that could constitute a functional glycerate pathway. Gene inactivation experiments confirmed that both the glyoxylate shunt and the glycerate pathway are operational in M. smegmatis. In addition to proteins with annotated functions, we demonstrate carbon source-dependent differential abundance of proteins that have not been functionally characterized. These proteins might play as-yet-unidentified roles in mycobacterial carbon metabolism. This study reveals several novel features of carbon assimilation in M. smegmatis, which suggests significant functional plasticity of metabolic networks in this organism.


Assuntos
Acetatos/metabolismo , Metabolismo Energético/fisiologia , Glucose/metabolismo , Mycobacterium smegmatis/enzimologia , Propionatos/metabolismo , Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Ácidos Graxos/metabolismo , Perfilação da Expressão Gênica , Redes e Vias Metabólicas/fisiologia , Infecções por Mycobacterium não Tuberculosas/metabolismo , Mycobacterium smegmatis/metabolismo , Proteoma/análise , Proteômica
10.
Infect Immun ; 84(3): 735-46, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26712204

RESUMO

Mycobacterium tuberculosis requires the phosphate-sensing signal transduction system Pst/SenX3-RegX3 to resist host immune responses. A ΔpstA1 mutant lacking a Pst phosphate uptake system component is hypersensitive to diverse stress conditions in vitro and is attenuated in vivo due to constitutive expression of the phosphate starvation-responsive RegX3 regulon. Transcriptional profiling of the ΔpstA1 mutant revealed aberrant expression of certain pe and ppe genes. PE and PPE proteins, defined by conserved N-terminal domains containing Pro-Glu (PE) or Pro-Pro-Glu (PPE) motifs, account for a substantial fraction of the M. tuberculosis genome coding capacity, but their functions are largely uncharacterized. Because some PE and PPE proteins localize to the cell wall, we hypothesized that overexpression of these proteins sensitizes M. tuberculosis to stress by altering cell wall integrity. To test this idea, we deleted pe and ppe genes that were overexpressed by ΔpstA1 bacteria. Deletion of a single pe gene, pe19, suppressed hypersensitivity of the ΔpstA1 mutant to both detergent and reactive oxygen species. Ethidium bromide uptake assays revealed increased envelope permeability of the ΔpstA1 mutant that was dependent on PE19. The replication defect of the ΔpstA1 mutant in NOS2(-/-) mice was partially reversed by deletion of pe19, suggesting that increased membrane permeability due to PE19 overexpression sensitizes M. tuberculosis to host immunity. Our data indicate that PE19, which comprises only a 99-amino-acid PE domain, has a unique role in the permeability of the M. tuberculosis envelope that is regulated to resist stresses encountered in the host.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Mycobacterium tuberculosis/fisiologia , Tuberculose/microbiologia , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/genética , Estrutura Terciária de Proteína
11.
Mol Microbiol ; 92(1): 194-211, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24517327

RESUMO

In Mycobacterium tuberculosis the decaprenyl-phospho-d-arabinofuranose (DPA) pathway is a validated target for the drugs ethambutol and benzothiazinones. To identify other potential drug targets in the pathway, we generated conditional knock-down mutants of each gene involved using the TET-PIP OFF system. dprE1, dprE2, ubiA, prsA, rv2361c, tkt and rpiB were confirmed to be essential under non-permissive conditions, whereas rv3807c was not required for survival. In the most vulnerable group, DprE1-depleted cells died faster in vitro and intracellularly than those lacking UbiA and PrsA. Downregulation of DprE1 and UbiA resulted in similar phenotypes, namely swelling of the bacteria, cell wall damage and lysis as observed at the single cell level, by real time microscopy and electron microscopy. By contrast, depletion of PrsA led to cell elongation and implosion, which was suggestive of a more pleiotropic effect. Drug sensitivity assays with known DPA-inhibitors supported the use of conditional knock-down strains for target-based whole-cell screens. Together, our work provides strong evidence for the vulnerability of all but one of the enzymes in the DPA pathway and generates valuable tools for the identification of lead compounds targeting the different biosynthetic steps. PrsA, phosphoribosyl-pyrophosphate synthetase, appears to be a particularly attractive new target for drug discovery.


Assuntos
Arabinose/análogos & derivados , Genes Bacterianos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Transdução de Sinais , Antibacterianos/farmacologia , Arabinose/antagonistas & inibidores , Arabinose/biossíntese , Proteínas de Bactérias , Linhagem Celular Tumoral , Parede Celular/ultraestrutura , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Genes Bacterianos/efeitos dos fármacos , Genes Essenciais/efeitos dos fármacos , Humanos , Lipoproteínas , Macrófagos/microbiologia , Proteínas de Membrana , Microscopia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/ultraestrutura , Transdução de Sinais/efeitos dos fármacos
12.
Antimicrob Agents Chemother ; 59(2): 1308-19, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25421469

RESUMO

Recent clinical studies indicate that meropenem, a ß-lactam antibiotic, is a promising candidate for therapy of drug-resistant tuberculosis. However, meropenem is chemically unstable, requires frequent intravenous injection, and must be combined with a ß-lactamase inhibitor (clavulanate) for optimal activity. Here, we report that faropenem, a stable and orally bioavailable ß-lactam, efficiently kills Mycobacterium tuberculosis even in the absence of clavulanate. The target enzymes, L,D-transpeptidases, were inactivated 6- to 22-fold more efficiently by faropenem than by meropenem. Using a real-time assay based on quantitative time-lapse microscopy and microfluidics, we demonstrate the superiority of faropenem to the frontline antituberculosis drug isoniazid in its ability to induce the rapid cytolysis of single cells. Faropenem also showed superior activity against a cryptic subpopulation of nongrowing but metabolically active cells, which may correspond to the viable but nonculturable forms believed to be responsible for relapses following prolonged chemotherapy. These results identify faropenem to be a potential candidate for alternative therapy of drug-resistant tuberculosis.


Assuntos
Antituberculosos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , beta-Lactamas/farmacologia , Isoniazida/farmacologia , Peptidil Transferases/metabolismo
13.
Antimicrob Agents Chemother ; 59(8): 4997-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25987618

RESUMO

We report here a dehydropeptidase-deficient murine model of tuberculosis (TB) infection that is able to partially uncover the efficacy of marketed broad-spectrum ß-lactam antibiotics alone and in combination. Reductions of up to 2 log CFU in the lungs of TB-infected mice after 8 days of treatment compared to untreated controls were obtained at blood drug concentrations and time above the MIC (T>MIC) below clinically achievable levels in humans. These findings provide evidence supporting the potential of ß-lactams as safe and mycobactericidal components of new combination regimens against TB with or without resistance to currently used drugs.


Assuntos
Antibacterianos/farmacologia , Dipeptidases/deficiência , Infecções Respiratórias/tratamento farmacológico , Tuberculose/tratamento farmacológico , beta-Lactamas/farmacologia , Animais , Modelos Animais de Doenças , Quimioterapia Combinada/métodos , Proteínas Ligadas por GPI/deficiência , Pulmão/metabolismo , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana/métodos , Mycobacterium tuberculosis/efeitos dos fármacos , Infecções Respiratórias/metabolismo , Infecções Respiratórias/microbiologia , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologia , Tuberculose/metabolismo , Tuberculose/microbiologia
14.
Curr Top Microbiol Immunol ; 374: 135-61, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23793585

RESUMO

A long-standing and fundamental problem in microbiology is the non-trivial discrimination between live and dead cells. The existence of physically intact and possibly viable bacterial cells that fail to replicate during a more or less protracted period of observation, despite environmental conditions that are ostensibly propitious for growth, has been extensively documented in many different organisms. In clinical settings, non-culturable cells may contribute to non-apparent infections capable of reactivating after months or years of clinical latency, a phenomenon that has been well documented in the specific case of Mycobacterium tuberculosis. The prevalence of these silent but potentially problematic bacterial reservoirs has been highlighted by classical approaches such as limiting culture dilution till extinction of growing cells, followed by resuscitation of apparently "viable but non-culturable" (VBNC) subpopulations. Although these assays are useful to demonstrate the presence of VBNC cells in a population, they are effectively retrospective and are not well suited to the analysis of non-replicating cells per se. Here, we argue that research on a closely related problem, which we shall refer to as the "non-growing but metabolically active" state, is poised to advance rapidly thanks to the recent development of novel technologies and methods for real-time single-cell analysis. In particular, the combination of fluorescent reporter dyes and strains, microfluidic and microelectromechanical systems, and time-lapse fluorescence microscopy offers tremendous and largely untapped potential for future exploration of the physiology of non-replicating cells.


Assuntos
Viabilidade Microbiana , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/ultraestrutura , Análise de Célula Única/métodos , Animais , Antituberculosos/farmacologia , Meios de Cultura , Genes Reporter , Humanos , Proteínas Luminescentes/metabolismo , Camundongos , Técnicas Analíticas Microfluídicas , Mycobacterium tuberculosis/patogenicidade , Recidiva , Imagem com Lapso de Tempo/métodos , Tuberculose Pulmonar/tratamento farmacológico , Tuberculose Pulmonar/microbiologia , Gravação em Vídeo
15.
Methods Mol Biol ; 2813: 167-188, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38888778

RESUMO

Quantification of Mycobacterium tuberculosis (Mtb) growth dynamics in cell-based in vitro infection models is traditionally carried out by measurement of colony forming units (CFU). However, Mtb being an extremely slow growing organism (16-24 h doubling time), this approach requires at least 3 weeks of incubation to obtain measurable readouts. In this chapter, we describe an alternative approach based on time-lapse microscopy and quantitative image analysis that allows faster quantification of Mtb growth dynamics in host cells. In addition, this approach provides the capability to capture other readouts from the same experimental setup, such as host cell viability, bacterial localization as well as the dynamics of propagation of infection between the host cells.


Assuntos
Microscopia de Fluorescência , Mycobacterium tuberculosis , Imagem com Lapso de Tempo , Mycobacterium tuberculosis/crescimento & desenvolvimento , Imagem com Lapso de Tempo/métodos , Microscopia de Fluorescência/métodos , Humanos , Tuberculose/microbiologia , Processamento de Imagem Assistida por Computador/métodos , Interações Hospedeiro-Patógeno
16.
Sci Adv ; 10(1): eadh7957, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38170768

RESUMO

Invading microbes face a myriad of cidal mechanisms of phagocytes that inflict physical damage to microbial structures. How intracellular bacterial pathogens adapt to these stresses is not fully understood. Here, we report the discovery of a virulence mechanism by which changes to the mechanical stiffness of the mycobacterial cell surface confer refraction to killing during infection. Long-term time-lapse atomic force microscopy was used to reveal a process of "mechanical morphotype switching" in mycobacteria exposed to host intracellular stress. A "soft" mechanical morphotype switch enhances tolerance to intracellular macrophage stress, including cathelicidin. Both pharmacologic treatment, with bedaquiline, and a genetic mutant lacking uvrA modified the basal mechanical state of mycobacteria into a soft mechanical morphotype, enhancing survival in macrophages. Our study proposes microbial cell mechanical adaptation as a critical axis for surviving host-mediated stressors.


Assuntos
Mycobacterium , Macrófagos/metabolismo , Fagócitos , Membrana Celular
17.
Nat Commun ; 15(1): 1550, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378733

RESUMO

Super-resolution techniques expand the abilities of researchers who have the knowledge and resources to either build or purchase a system. This excludes the part of the research community without these capabilities. Here we introduce the openSIM add-on to upgrade existing optical microscopes to Structured Illumination super-resolution Microscopes (SIM). The openSIM is an open-hardware system, designed and documented to be easily duplicated by other laboratories, making super-resolution modality accessible to facilitate innovative research. The add-on approach gives a performance improvement for pre-existing lab equipment without the need to build a completely new system.

18.
Infect Immun ; 81(1): 317-28, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23132496

RESUMO

Mycobacterium tuberculosis persists in the tissues of mammalian hosts despite inducing a robust immune response dominated by the macrophage-activating cytokine gamma interferon (IFN-γ). We identified the M. tuberculosis phosphate-specific transport (Pst) system component PstA1 as a factor required to resist IFN-γ-dependent immunity. A ΔpstA1 mutant was fully virulent in IFN-γ(-/-) mice but attenuated in wild-type (WT) mice and mice lacking specific IFN-γ-inducible immune mechanisms: nitric oxide synthase (NOS2), phagosome-associated p47 GTPase (Irgm1), or phagocyte oxidase (phox). These phenotypes suggest that ΔpstA1 bacteria are sensitized to an IFN-γ-dependent immune mechanism(s) other than NOS2, Irgm1, or phox. In other species, the Pst system has a secondary role as a negative regulator of phosphate starvation-responsive gene expression through an interaction with a two-component signal transduction system. In M. tuberculosis, we found that ΔpstA1 bacteria exhibited dysregulated gene expression during growth in phosphate-rich medium that was mediated by the two-component sensor kinase/response regulator system SenX3-RegX3. Remarkably, deletion of the regX3 gene suppressed the replication and virulence defects of ΔpstA1 bacteria in NOS2(-/-) mice, suggesting that M. tuberculosis requires the Pst system to negatively regulate activity of RegX3 in response to available phosphate in vivo. We therefore speculate that inorganic phosphate is readily available during replication in the lung and is an important signal controlling M. tuberculosis gene expression via the Pst-SenX3-RegX3 signal transduction system. Inability to sense this environmental signal, due to Pst deficiency, results in dysregulation of gene expression and sensitization of the bacteria to the host immune response.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/imunologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Regulação Bacteriana da Expressão Gênica , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/imunologia , Fosfatos/imunologia , Tuberculose/imunologia , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Feminino , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/imunologia , Proteínas de Ligação ao GTP/metabolismo , Expressão Gênica/genética , Expressão Gênica/imunologia , Interferon gama/genética , Interferon gama/imunologia , Interferon gama/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/imunologia , Óxido Nítrico Sintase Tipo II/metabolismo , Oxirredutases/genética , Oxirredutases/imunologia , Oxirredutases/metabolismo , Fagócitos/imunologia , Fagócitos/metabolismo , Fosfatos/metabolismo , Fosfotransferases/genética , Fosfotransferases/imunologia , Fosfotransferases/metabolismo , Tuberculose/genética , Tuberculose/metabolismo , Tuberculose/microbiologia , Virulência
19.
J Immunol ; 187(7): 3776-84, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21859958

RESUMO

Leptin is a pleiotropic hormone proposed to link nutritional status to the development of strong Th1 immunity. Because Mycobacterium tuberculosis control is affected by starvation and diabetes, we studied the role of the leptin receptor in regulating distinct immune cells during chronic infection. Infected db/db mice, bearing a natural mutation in the leptin receptor, have a markedly increased bacterial load in their lungs when compared with that of their wild-type counterparts. In response to M. tuberculosis infection, db/db mice exhibited disorganized granulomas, neutrophilia, and reduced B cell migration to the lungs, correlating with dysfunctional lung chemokine responses that include XCL1, CCL2, CXCL1, CXCL2, and CXCL13. In a db/db lung, myeloid cells were delayed in their production of inducible NO synthase and had reduced expression of MHC I and II. Although the Th1 cell response developed normally in the absence of leptin signaling, production of pulmonary IFN-γ was delayed and ineffective. Surprisingly, a proper immune response took place in bone marrow (BM) chimeras lacking leptin receptor exclusively in BM-derived cells, indicating that leptin acts indirectly on immune cells to modulate the antituberculosis response and bacterial control. Together, these findings suggest that the pulmonary response to M. tuberculosis is affected by the host's nutritional status via the regulation of non-BM-derived cells, not through direct action of leptin on Th1 immunity.


Assuntos
Macrófagos Alveolares/metabolismo , Complexo Principal de Histocompatibilidade/imunologia , Receptores para Leptina/biossíntese , Tuberculose/metabolismo , Animais , Carga Bacteriana/imunologia , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Separação Celular , Quimiotaxia de Leucócito/imunologia , Citometria de Fluxo , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Macrófagos Alveolares/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Receptores para Leptina/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Th1/imunologia , Tuberculose/imunologia
20.
Proc Natl Acad Sci U S A ; 107(27): 12275-80, 2010 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-20566858

RESUMO

Tuberculosis (TB) is notoriously difficult to cure, requiring administration of multiple antibiotics for 6 mo or longer. Conventional anti-TB drugs inhibit biosynthetic processes involved in cell growth and division, such as DNA replication, RNA transcription, protein translation, and cell wall biogenesis. Although highly effective against bacteria cultured in vitro under optimal growth conditions, these antibiotics are less effective against bacteria grown in vivo in the tissues of a mammalian host. The factors that contribute to the antibiotic tolerance of bacteria grown in vivo are unknown, although altered metabolism and sluggish growth are hypothesized to play a role. To address this question, we identified mutations in Mycobacterium tuberculosis that impaired or enhanced persistence in mice treated with isoniazid (INH), a front-line anti-TB drug. Disruption of cydC, encoding a putative ATP-binding cassette transporter subunit, accelerated bacterial clearance in INH-treated mice without affecting growth or survival in untreated mice. Conversely, transposon insertions within the rv0096-rv0101 gene cluster attenuated bacterial growth and survival in untreated mice but paradoxically prevented INH-mediated killing of bacteria in treated mice. These contrasting phenotypes were dependent on the interaction of the bacteria with the tissue environment because both mutants responded normally to INH when grown in macrophages ex vivo or in axenic cultures in vitro. Our findings have important implications because persistence-impairing mutations would be missed by conventional genetic screens to identify candidate drug targets. Conversely, persistence-enhancing mutations would be missed by standard diagnostic methods, which are performed on bacteria grown in vitro, to detect drug resistance.


Assuntos
Isoniazida/farmacologia , Mutação , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose/tratamento farmacológico , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Antituberculosos/farmacologia , Proteínas de Bactérias/genética , Células Cultivadas , Farmacorresistência Bacteriana/genética , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Teste de Complementação Genética , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crescimento & desenvolvimento , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Tuberculose/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA