Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Arch Biochem Biophys ; 552-553: 117-27, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24486373

RESUMO

Diminished skeletal muscle performance with aging, disuse, and disease may be partially attributed to the loss of myofilament proteins. Several laboratories have found a disproportionate loss of myosin protein content relative to other myofilament proteins, but due to methodological limitations, the structural manifestation of this protein loss is unknown. To investigate how variations in myosin content affect ensemble cross-bridge behavior and force production we simulated muscle contraction in the half-sarcomere as myosin was removed either (i) uniformly, from the Z-line end of thick-filaments, or (ii) randomly, along the length of thick-filaments. Uniform myosin removal decreased force production, showing a slightly steeper force-to-myosin content relationship than the 1:1 relationship that would be expected from the loss of cross-bridges. Random myosin removal also decreased force production, but this decrease was less than observed with uniform myosin loss, largely due to increased myosin attachment time (ton) and fractional cross-bridge binding with random myosin loss. These findings support our prior observations that prolonged ton may augment force production in single fibers with randomly reduced myosin content from chronic heart failure patients. These simulations also illustrate that the pattern of myosin loss along thick-filaments influences ensemble cross-bridge behavior and maintenance of force throughout the sarcomere.


Assuntos
Músculo Esquelético/metabolismo , Miosinas/metabolismo , Sarcômeros/metabolismo , Fenômenos Biomecânicos , Simulação por Computador , Humanos , Cinética , Modelos Biológicos , Modelos Moleculares , Músculo Esquelético/química , Miosinas/química , Sarcômeros/química
2.
Nat Genet ; 30(2): 201-4, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11788824

RESUMO

Congestive heart failure (CHF) can result from various disease states with inadequate cardiac output. CHF due to dilated cardiomyopathy (DCM) is a familial disease in 20-30% of cases and is associated with mutations in genes encoding cytoskeletal, contractile or inner-nuclear membrane proteins. We show that mutations in the gene encoding giant-muscle filament titin (TTN) cause autosomal dominant DCM linked to chromosome 2q31 (CMD1G; MIM 604145). Titin molecules extend from sarcomeric Z-discs to M-lines, provide an extensible scaffold for the contractile machinery and are crucial for myofibrillar elasticity and integrity. In a large DCM kindred, a segregating 2-bp insertion mutation in TTN exon 326 causes a frameshift, truncating A-band titin. The truncated protein of approximately 2 mD is expressed in skeletal muscle, but western blot studies with epitope-specific anti-titin antibodies suggest that the mutant protein is truncated to a 1.14-mD subfragment by site-specific cleavage. In another large family with DCM linked to CMD1G, a TTN missense mutation (Trp930Arg) is predicted to disrupt a highly conserved hydrophobic core sequence of an immunoglobulin fold located in the Z-disc-I-band transition zone. The identification of TTN mutations in individuals with CMD1G should provide further insights into the pathogenesis of familial forms of CHF and myofibrillar titin turnover.


Assuntos
Cardiomiopatia Dilatada/genética , Proteínas Musculares/genética , Mutação , Proteínas Quinases/genética , Sequência de Bases , Conectina , DNA/genética , Análise Mutacional de DNA , Feminino , Humanos , Masculino , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Musculares/química , Miocárdio/metabolismo , Linhagem , Dobramento de Proteína , Proteínas Quinases/química
3.
Circulation ; 121(6): 768-74, 2010 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-20124120

RESUMO

BACKGROUND: The sarcomeric protein titin is a molecular spring responsible for passive tension and restoring forces of cardiomyocytes. Extension of titin as a function of sarcomere length (SL) has been studied in rodents, which predominantly express the smaller, stiffer N2B titin isoform. Large mammals coexpress roughly equal proportions of N2B and N2BA titin, the larger, more compliant isoform. We hypothesized that extension of titin in relation to SL differs in large mammals and that this difference is functionally important. METHODS AND RESULTS: We characterized the filling pressure-SL relation in diastolic-arrested miniswine left ventricles. SL was 2.15 to 2.25 mum at a filling pressure of approximately 0 mm Hg and reached a maximum of approximately 2.50 mum with overfilling. In the normal filling pressure range, SL ranged from approximately 2.32 to approximately 2.40 mum. We assessed titin extension as a function of SL using immunoelectron microscopy, which allowed delineation of the behavior of specific spring segments. The major isoform difference was that the N2B-Us segment extended approximately 4-fold more as a function of SL in N2B compared with N2BA titin. Using this segment, we estimated sarcomeric force development with a worm-like chain model and found that N2B develops markedly greater force than N2BA titin. The resulting force with coexpression of N2B and N2BA titin is intermediate. CONCLUSIONS: In light of murine studies showing that operating SLs are shorter than in miniswine, our results indicate that coexpression of the 2 titin isoforms in large mammals allows longer SLs without the development of excessive diastolic tension.


Assuntos
Proteínas Musculares/fisiologia , Proteínas Quinases/fisiologia , Sarcômeros/fisiologia , Função Ventricular Esquerda/fisiologia , Animais , Conectina , Diástole/fisiologia , Masculino , Microscopia Imunoeletrônica , Modelos Animais , Proteínas Musculares/ultraestrutura , Contração Miocárdica/fisiologia , Miócitos Cardíacos/fisiologia , Isoformas de Proteínas , Proteínas Quinases/ultraestrutura , Sarcômeros/ultraestrutura , Suínos , Porco Miniatura
4.
Circ Res ; 105(6): 557-64, 2009 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-19679835

RESUMO

RATIONALE: The giant protein titin plays key roles in myofilament assembly and determines the passive mechanical properties of the sarcomere. The cardiac titin molecule has 2 mayor elastic elements, the N2B and the PEVK region. Both have been suggested to determine the elastic properties of the heart with loss of function data only available for the N2B region. OBJECTIVE: The purpose of this study was to investigate the contribution of titin's proline-glutamate-valine-lysine (PEVK) region to biomechanics and growth of the heart. METHODS AND RESULTS: We removed a portion of the PEVK segment (exons 219 to 225; 282 aa) that corresponds to the PEVK element of N2B titin, the main cardiac titin isoform. Adult homozygous PEVK knockout (KO) mice developed diastolic dysfunction, as determined by pressure-volume loops, echocardiography, isolated heart experiments, and muscle mechanics. Immunoelectron microscopy revealed increased strain of the N2B element, a spring region retained in the PEVK-KO. Interestingly, the PEVK-KO mice had hypertrophied hearts with an induction of the hypertrophy and fetal gene response that includes upregulation of FHL proteins. This contrasts the cardiac atrophy phenotype with decreased FHL2 levels that result from the deletion of the N2B element. CONCLUSIONS: Titin's PEVK region contributes to the elastic properties of the cardiac ventricle. Our findings are consistent with a model in which strain of the N2B spring element and expression of FHL proteins trigger cardiac hypertrophy. These novel findings provide a molecular basis for the future differential therapy of isolated diastolic dysfunction versus more complex cardiomyopathies.


Assuntos
Cardiomiopatia Hipertrófica/metabolismo , Ventrículos do Coração/metabolismo , Proteínas Musculares/metabolismo , Proteínas Quinases/metabolismo , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Sequência de Aminoácidos/genética , Animais , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/patologia , Cardiomiopatia Hipertrófica/fisiopatologia , Conectina , Elasticidade , Ventrículos do Coração/fisiopatologia , Ventrículos do Coração/ultraestrutura , Camundongos , Camundongos Knockout , Proteínas Musculares/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Quinases/genética , Estrutura Terciária de Proteína/genética , Sarcômeros/genética , Sarcômeros/metabolismo , Sarcômeros/ultraestrutura , Deleção de Sequência/genética
5.
J Mol Biol ; 362(4): 664-81, 2006 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-16949617

RESUMO

While the role of titin as a sarcomeric protein is well established, its potential functional role(s) in smooth muscles and non-muscle tissues are controversial. We used a titin exon array to search for which part(s) of the human titin transcriptional unit encompassing 363 exons is(are) expressed in non-striated muscle tissues. Expression profiling of adult smooth muscle tissues (aorta, bladder, carotid, stomach) identified alternatively spliced titin isoforms, encompassing 80 to about 100 exons. These exons code for parts of the titin Z-disk, I-band and A-band regions, allowing the truncated smooth muscle titin isoform to link Z-disks/dense bodies together with thick filaments. Consistent with the array data, Western blot studies detected the expression of approximately 1 MDa smooth muscle titin in adult smooth muscles, reacting with selected Z-disc, I-band, and A-band titin antibodies. Immunofluorescence with these antibodies located smooth muscle titin in the cytoplasm of cultured human aortic smooth muscle cells and in the tunica media of intact adult bovine aorta. Real time PCR studies suggested that smooth muscle titins are expressed from a promoter located 35 kb or more upstream of the transcription initiation site used for striated muscle titin, driving expression of a bi-cistronic mRNA, coding 5' for the anonymous gene FL39502, followed 3' by titin, respectively. Our work showed that smooth muscle and striated muscle titins share in their conserved amino-terminal regions binding sites for alpha-actinin and filamins: Yeast two-hybrid screens using Z2-Zis1 titin baits identified prey clones coding for alpha-actinin-1 and filamin-A from smooth muscle, and alpha-actinin-2/3, filamin-C, and nebulin from skeletal muscle cDNA libraries, respectively. This suggests that the titin Z2-Zis1 domain can link filamins and alpha-actinin together in the periphery of the Z-line/dense bodies in a fashion that is conserved in smooth and striated muscles.


Assuntos
Processamento Alternativo/genética , Proteínas Contráteis/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Músculo Liso/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Actinina/metabolismo , Adulto , Sequência de Aminoácidos , Animais , Aorta/citologia , Western Blotting , Bovinos , Células Cultivadas , Conectina , Éxons/genética , Filaminas , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Dados de Sequência Molecular , Proteínas Musculares/química , Proteínas Musculares/classificação , Músculo Esquelético/citologia , Músculo Liso/citologia , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Proteínas Quinases/química , Proteínas Quinases/classificação , Estrutura Terciária de Proteína , Transporte Proteico , Suínos , Transcrição Gênica
6.
J Mol Med (Berl) ; 84(6): 478-83, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16733766

RESUMO

Dilated cardiomyopathy (DCM) is an etiologically heterogeneous cardiac disease characterized by left ventricular dilation and systolic dysfunction. Approximately 25-30% of DCM patients show a family history of mainly autosomal dominant inheritance. We and others have previously demonstrated that mutations in the giant muscle filament titin (TTN) can cause DCM. However, the prevalence of titin mutations in familial DCM is unknown. In this paper, we report a novel heterozygous 1-bp deletion mutation (c.62890delG) in TTN that cosegregates with DCM in a large Australian pedigree (A3). The TTN deletion mutation c.62890delG causes a frameshift, thereby generating a truncated A-band titin due to a premature stop codon (p.E20963KfsX10) and the addition of ten novel amino acid residues. The clinical phenotype of DCM in kindred A3 demonstrates incomplete penetrance and variable expressivity. Finally, protein analysis of a skeletal muscle biopsy sample from an affected member did not reveal the predicted truncated titin isoform although the aberrant mRNA was present, suggesting posttranslational modification and degradation of the truncated protein. The identification of a novel disease-causing mutation in the giant titin gene in a third large family with DCM indicates that mutations in titin may account for a significant portion of the genetic etiology in familial DCM.


Assuntos
Cardiomiopatia Dilatada/genética , Ligação Genética , Proteínas Musculares/genética , Proteínas Quinases/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Austrália , Cardiomiopatia Dilatada/metabolismo , Cromossomos Humanos Par 2/genética , Conectina , Feminino , Mutação da Fase de Leitura , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Musculares/biossíntese , Músculo Esquelético/metabolismo , Linhagem , Desnaturação Proteica , Proteínas Quinases/biossíntese , Processamento de Proteína Pós-Traducional
7.
J Mol Biol ; 336(1): 145-54, 2004 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-14741210

RESUMO

Muscular dystrophy with myositis (mdm) is a recessive mouse mutation that is caused by a small deletion in the giant elastic muscle protein titin. Homozygous mdm/mdm mice develop a progressive muscular dystrophy, leading to death at approximately 2 months of age. We surveyed the transcriptomes of skeletal muscles from 24 day old homozygous mdm/mdm and +/+ wild-type mice, an age when MDM animals have normal passive and active tensions and sarcomeric structure. Of the 12488 genes surveyed (U74 affymetrix array), 75 genes were twofold to 30-fold differentially expressed, including CARP (cardiac ankyrin repeat protein), ankrd2/Arpp (a CARP-like protein) and MLP (muscle LIM protein), all of which associate with the titin filament system. The four genes most strongly affected (eightfold to 30-fold change) were all members of the CARP-regulated Nkx-2.5-dependent signal pathway, and CARP mRNA level was 30-fold elevated in MDM skeletal muscle tissues. The CARP protein overexpressed in MDM became associated with the I-band region of the sarcomere. The mdm mutation excises the C-terminal portion of titin's N2A region, abolishing its interaction with p94/calpain-3 protease. Thus, the composition of the titin N2A protein complex is altered in MDM by incorporation of CARP and loss of p94/calpain-3. These changes were absent from the following control tissues (1). cardiac muscles from homozygous mdm/mdm animals, (2). skeletal and cardiac muscle from heterozygous mdm/+ animals, and (3). dystrophic muscles from MDX mice. Thus, the altered composition of the titin N2A complex is specific for the titin-based skeletal muscular dystrophy in MDM.


Assuntos
Regulação da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Proteínas Musculares/metabolismo , Miofibrilas/metabolismo , Proteínas Nucleares/genética , Proteínas Quinases/metabolismo , Proteínas Repressoras/genética , Transdução de Sinais/fisiologia , Sequência de Aminoácidos , Animais , Conectina , Proteínas de Homeodomínio/genética , Substâncias Macromoleculares , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Dados de Sequência Molecular , Proteínas Musculares/genética , Músculo Esquelético/citologia , Músculo Esquelético/patologia , Músculo Esquelético/fisiologia , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/metabolismo , Miofibrilas/patologia , Miofibrilas/ultraestrutura , Miosite/genética , Miosite/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Quinases/genética , Proteínas Repressoras/metabolismo , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
8.
Proc Natl Acad Sci U S A ; 104(9): 3444-9, 2007 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-17360664

RESUMO

Titin is a giant protein that is in charge of the assembly and passive mechanical properties of the sarcomere. Cardiac titin contains a unique N2B region, which has been proposed to modulate elasticity of the titin filament and to be important for hypertrophy signaling and the ischemic stress response through its binding proteins FHL2 and alphaB-crystallin, respectively. To study the role of the titin N2B region in systole and diastole of the heart, we generated a knockout (KO) mouse deleting only the N2B exon 49 and leaving the remainder of the titin gene intact. The resulting mice survived to adulthood and were fertile. Although KO hearts were small, they produced normal ejection volumes because of an increased ejection fraction. FHL2 protein levels were significantly reduced in the KO mice, a finding consistent with the reduced size of KO hearts. Ultrastructural analysis revealed an increased extension of the remaining spring elements of titin (tandem Ig segments and the PEVK region), which, together with the reduced sarcomere length and increased passive tension derived from skinned cardiomyocyte experiments, translates to diastolic dysfunction as documented by echocardiography. We conclude from our work that the titin N2B region is dispensable for cardiac development and systolic properties but is important to integrate trophic and elastic functions of the heart. The N2B-KO mouse is the first titin-based model of diastolic dysfunction and, considering the high prevalence of diastolic heart failure, it could provide future mechanistic insights into the disease process.


Assuntos
Cardiomiopatias/genética , Diástole , Proteínas Musculares/genética , Miocárdio/patologia , Proteínas Quinases/genética , Sarcômeros/metabolismo , Deleção de Sequência/genética , Animais , Atrofia/patologia , Western Blotting , Cardiomiopatias/metabolismo , Conectina , Ecocardiografia , Eletroforese em Gel de Poliacrilamida , Éxons/genética , Imunofluorescência , Proteínas de Homeodomínio/metabolismo , Proteínas com Homeodomínio LIM , Camundongos , Camundongos Knockout , Microscopia Imunoeletrônica , Proteínas Musculares/metabolismo , Proteínas Musculares/ultraestrutura , Proteínas Quinases/metabolismo , Proteínas Quinases/ultraestrutura , Sarcômeros/patologia , Fatores de Transcrição/metabolismo
9.
EMBO J ; 25(16): 3843-55, 2006 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-16902413

RESUMO

The precise assembly of the highly organized filament systems found in muscle is critically important for its function. It has been hypothesized that nebulin, a giant filamentous protein extending along the entire length of the thin filament, provides a blueprint for muscle thin filament assembly. To test this hypothesis, we generated a KO mouse model to investigate nebulin functions in vivo. Nebulin KO mice assemble thin filaments of reduced lengths and approximately 15% of their Z-disks are abnormally wide. Our data demonstrate that nebulin functions in vivo as a molecular ruler by specifying pointed- and barbed-end thin filament capping. Consistent with the shorter thin filament length of nebulin deficient mice, maximal active tension was significantly reduced in KO animals. Phenotypically, the murine model recapitulates human nemaline myopathy (NM), that is, the formation of nemaline rods combined with severe skeletal muscle weakness. The myopathic changes in the nebulin KO model include depressed contractility, loss of myopalladin from the Z-disk, and dysregulation of genes involved in calcium homeostasis and glycogen metabolism; features potentially relevant for understanding human NM.


Assuntos
Contração Muscular/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Proteínas Musculares/fisiologia , Músculo Esquelético/fisiologia , Sequência de Aminoácidos , Animais , Cálcio/fisiologia , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Miopatias da Nemalina/metabolismo , Miopatias da Nemalina/patologia , Sarcômeros/fisiologia
10.
J Biol Chem ; 278(8): 6059-65, 2003 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-12464612

RESUMO

Titin is a giant protein responsible for muscle elasticity and provides a scaffold for several sarcomeric proteins, including the novel titin-binding protein MURF-1, which binds near the titin M-line region. Another unique feature of titin is the presence of a serine/threonine kinase-like domain at the edge of the M-line region of the sarcomere, for which no physiological catalytic function has yet been shown. To investigate the role(s) of the titin M-line segment, we have conditionally deleted the exons MEx1 and MEx2 (encoding the kinase domain plus flanking sequences) at different stages of embryonic development. Our data demonstrate an important role for MEx1 and MEx2 in early cardiac development (embryonic lethality) as well as postnatally when disruption of M-line titin leads to muscle weakness and death at approximately 5 weeks of age. Myopathic changes include pale M-lines devoid of MURF-1, and gradual sarcomeric disassembly. The animal model presented here indicates a critical role for the M-line region of titin in maintaining the structural integrity of the sarcomere.


Assuntos
Cardiomiopatias/genética , Regulação da Expressão Gênica , Proteínas Musculares/genética , Proteínas Quinases/genética , Sarcômeros/patologia , Actinas/genética , Animais , Sítios de Ligação , Cardiomiopatias/patologia , Cromossomos Artificiais Bacterianos , Clonagem Molecular , Conectina , Elasticidade , Complexo Principal de Histocompatibilidade , Camundongos , Camundongos Knockout , Proteínas Musculares/química , Proteínas Musculares/deficiência , Proteínas Musculares/metabolismo , Músculo Esquelético/fisiologia , Cadeias Pesadas de Miosina/genética , Especificidade de Órgãos , Regiões Promotoras Genéticas , Proteínas Quinases/química , Proteínas Quinases/deficiência , Proteínas Quinases/metabolismo , Recombinação Genética , Sarcômeros/ultraestrutura , Células-Tronco/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA