Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 200
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(10): e2309957121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38422022

RESUMO

Hypoxia signaling influences tumor development through both cell-intrinsic and -extrinsic pathways. Inhibiting hypoxia-inducible factor (HIF) function has recently been approved as a cancer treatment strategy. Hence, it is important to understand how regulators of HIF may affect tumor growth under physiological conditions. Here we report that in aging mice factor-inhibiting HIF (FIH), one of the most studied negative regulators of HIF, is a haploinsufficient suppressor of spontaneous B cell lymphomas, particular pulmonary B cell lymphomas. FIH deficiency alters immune composition in aged mice and creates a tumor-supportive immune environment demonstrated in syngeneic mouse tumor models. Mechanistically, FIH-defective myeloid cells acquire tumor-supportive properties in response to signals secreted by cancer cells or produced in the tumor microenvironment with enhanced arginase expression and cytokine-directed migration. Together, these data demonstrate that under physiological conditions, FIH plays a key role in maintaining immune homeostasis and can suppress tumorigenesis through a cell-extrinsic pathway.


Assuntos
Linfoma de Células B , Proteínas Repressoras , Animais , Camundongos , Hipóxia/metabolismo , Oxigenases de Função Mista/metabolismo , Proteínas Repressoras/metabolismo , Microambiente Tumoral
2.
J Infect Dis ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709726

RESUMO

Tools to evaluate and accelerate tuberculosis (TB) vaccine development are needed to advance global TB control strategies. Validated human infection studies for TB have the potential to facilitate breakthroughs in understanding disease pathogenesis, identify correlates of protection, develop diagnostic tools, and accelerate and de-risk vaccine and drug development. However, key challenges remain for realizing the clinical utility of these models, which require further discussion and alignment amongst key stakeholders. In March 2023, the Wellcome Trust and the International AIDS Vaccine Initiative (IAVI) convened international experts involved in developing both TB and Bacillus Calmette-Guerin (BCG) human infection studies (including mucosal and intradermal challenge routes) to discuss the status of each of the models and the key enablers to move the field forward. This report provides a summary of the presentations and discussion from the meeting. Discussions identified key issues, including demonstrating model validity, to provide confidence for vaccine developers, which may be addressed through demonstration of known vaccine effects, e.g. BCG vaccination in specific populations, and by comparing results from field efficacy and human infection studies. The workshop underscored the importance of establishing safe and acceptable studies in high-burden settings, and the need to validate more than one model to allow for different scientific questions to be addressed as well as to provide confidence to vaccine developers and regulators around use of human infection study data in vaccine development and licensure pathways.

3.
Artigo em Inglês | MEDLINE | ID: mdl-35332386

RESUMO

Controlled human infection models (CHIMs) have provided pivotal scientific advancements, contributing to the licensure of new vaccines for many pathogens. Despite being one of the world's oldest known pathogens, there are still significant gaps in our knowledge surrounding the immunobiology of Mycobacterium tuberculosis (M. tb). Furthermore, the only licensed vaccine, BCG, is a century old and demonstrates limited efficacy in adults from endemic areas. Despite good global uptake of BCG, tuberculosis (TB) remains a silent epidemic killing 1.4 million in 2019 (WHO, Global tuberculosis report 2020). A mycobacterial CHIM could expedite the development pipeline of novel TB vaccines and provide critical understanding on the immune response to TB. However, developing a CHIM for such a complex organism is a challenging process. The first hurdle to address is which challenge agent to use, as it would not be ethical to use virulent M. tb. This chapter describes the current progress and outstanding issues in the development of a TB CHIM. Previous and current human studies include both aerosol and intradermal models using either BCG or purified protein derivative (PPD) as a surrogate agent. Future work investigating the use of attenuated M. tb is underway.

4.
Psychol Med ; 53(4): 1185-1195, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-34112276

RESUMO

BACKGROUND: When vaccination depends on injection, it is plausible that the blood-injection-injury cluster of fears may contribute to hesitancy. Our primary aim was to estimate in the UK adult population the proportion of COVID-19 vaccine hesitancy explained by blood-injection-injury fears. METHODS: In total, 15 014 UK adults, quota sampled to match the population for age, gender, ethnicity, income and region, took part (19 January-5 February 2021) in a non-probability online survey. The Oxford COVID-19 Vaccine Hesitancy Scale assessed intent to be vaccinated. Two scales (Specific Phobia Scale-blood-injection-injury phobia and Medical Fear Survey-injections and blood subscale) assessed blood-injection-injury fears. Four items from these scales were used to create a factor score specifically for injection fears. RESULTS: In total, 3927 (26.2%) screened positive for blood-injection-injury phobia. Individuals screening positive (22.0%) were more likely to report COVID-19 vaccine hesitancy compared to individuals screening negative (11.5%), odds ratio = 2.18, 95% confidence interval (CI) 1.97-2.40, p < 0.001. The population attributable fraction (PAF) indicated that if blood-injection-injury phobia were absent then this may prevent 11.5% of all instances of vaccine hesitancy, AF = 0.11; 95% CI 0.09-0.14, p < 0.001. COVID-19 vaccine hesitancy was associated with higher scores on the Specific Phobia Scale, r = 0.22, p < 0.001, Medical Fear Survey, r = 0.23, p = <0.001 and injection fears, r = 0.25, p < 0.001. Injection fears were higher in youth and in Black and Asian ethnic groups, and explained a small degree of why vaccine hesitancy is higher in these groups. CONCLUSIONS: Across the adult population, blood-injection-injury fears may explain approximately 10% of cases of COVID-19 vaccine hesitancy. Addressing such fears will likely improve the effectiveness of vaccination programmes.


Assuntos
COVID-19 , Transtornos Fóbicos , Adulto , Adolescente , Humanos , Vacinas contra COVID-19 , COVID-19/prevenção & controle , Transtornos Fóbicos/epidemiologia , Medo
5.
Br J Clin Pharmacol ; 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37903635

RESUMO

AIMS: The influence of human factors on safety in healthcare settings is well established, with targeted interventions reducing risk and enhancing team performance. In experimental and early phase clinical research participant safety is paramount and safeguarded by guidelines, protocolized care and staff training; however, the real-world interaction and implementation of these risk-mitigating measures has never been subjected to formal system-based assessment. METHODS: Independent structured observations, systematic review of study documents, and interviews and focus groups were used to collate data on three key tasks undertaken in a clinical research facility (CRF) during a SARS CoV-2 controlled human infection model (CHIM) study. The Systems Engineering Initiative for Patient Safety (SEIPS) was employed to analyse and categorize findings, and develop recommendations for safety interventions. RESULTS: High levels of team functioning and a clear focus on participant safety were evident throughout the study. Despite this, latent risks in both study-specific and CRF work systems were identified in all four SEIPS domains (people, environment, tasks and tools). Fourteen actionable recommendations were generated collaboratively. These included inter-organization and inter-study standardization, optimized checklists for safety critical tasks, and use of simulation for team training and exploration of work systems. CONCLUSIONS: This pioneering application of human factors techniques to analyse work systems during the conduct of research in a CRF revealed risks unidentified by routine review and appraisal, and despite international guideline adherence. SEIPS may aid categorization of system problems and the formulation of recommendations that reduce risk and mitigate potential harm applicable across a trials portfolio.

6.
J Med Ethics ; 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38159935

RESUMO

We extend recent conversation about the ethics of human challenge trials to tuberculosis (TB). TB challenge studies could accelerate vaccine development, but ethical concerns regarding risks to trial participants and third parties have been a limiting factor. We analyse the expected social value and risks of different challenge models, concluding that if a TB challenge trial has between a 10% and a 50% chance of leading to the authorisation and near-universal delivery of a more effective vaccine 3-5 years earlier, then the trial would save between 26 400 and 1 100 000 lives over the next 10 years. We also identify five important ethical considerations that differentiate TB from recent human challenge trials: an exceptionally high disease burden with no highly effective vaccine; heightened third party risk following the trial, and, partly for that reason, uniquely stringent biosafety requirements for the trial; risks associated with best available TB treatments; and difficulties with TB disease detection. We argue that there is good reason to consider conducting challenge trials with attenuated strains like Bacillus Calmette-Guérin or attenuated Mycobacterium tuberculosis.

7.
Psychol Med ; 52(14): 3127-3141, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-33305716

RESUMO

BACKGROUND: Our aim was to estimate provisional willingness to receive a coronavirus 2019 (COVID-19) vaccine, identify predictive socio-demographic factors, and, principally, determine potential causes in order to guide information provision. METHODS: A non-probability online survey was conducted (24th September-17th October 2020) with 5,114 UK adults, quota sampled to match the population for age, gender, ethnicity, income, and region. The Oxford COVID-19 vaccine hesitancy scale assessed intent to take an approved vaccine. Structural equation modelling estimated explanatory factor relationships. RESULTS: 71.7% (n=3,667) were willing to be vaccinated, 16.6% (n=849) were very unsure, and 11.7% (n=598) were strongly hesitant. An excellent model fit (RMSEA=0.05/CFI=0.97/TLI=0.97), explaining 86% of variance in hesitancy, was provided by beliefs about the collective importance, efficacy, side-effects, and speed of development of a COVID-19 vaccine. A second model, with reasonable fit (RMSEA=0.03/CFI=0.93/TLI=0.92), explaining 32% of variance, highlighted two higher-order explanatory factors: 'excessive mistrust' (r=0.51), including conspiracy beliefs, negative views of doctors, and need for chaos, and 'positive healthcare experiences' (r=-0.48), including supportive doctor interactions and good NHS care. Hesitancy was associated with younger age, female gender, lower income, and ethnicity, but socio-demographic information explained little variance (9.8%). Hesitancy was associated with lower adherence to social distancing guidelines. CONCLUSIONS: COVID-19 vaccine hesitancy is relatively evenly spread across the population. Willingness to take a vaccine is closely bound to recognition of the collective importance. Vaccine public information that highlights prosocial benefits may be especially effective. Factors such as conspiracy beliefs that foster mistrust and erode social cohesion will lower vaccine up-take.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Adulto , Feminino , Humanos , Vacinas contra COVID-19/uso terapêutico , COVID-19/prevenção & controle , Intenção , Oceanos e Mares , Reino Unido
8.
Health Res Policy Syst ; 20(1): 24, 2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35183199

RESUMO

With over 5 million COVID-19 deaths at the time of writing, the response of research leaders was and is critical to developing treatments to control the global pandemic. As clinical research leaders urgently repurposed existing research programmes and resources towards the COVID-19 pandemic, there is an opportunity to reflect on practices observed in Biomedical Research Centre (BRC) settings. BRCs are partnerships between leading National Health Service organizations and universities in England conducting translational research for patient benefit funded by the National Institute for Health Research (NIHR). Oxford BRC-supported researchers have led the rapid set-up of numerous COVID-19 research studies at record speed with global impact. However, the specific contribution of BRCs to the COVID-19 pandemic in the literature is sparse. Firstly, we reflect on the strategic work of clinical research leaders, creating resilient NIHR research infrastructure to facilitate rapid COVID-19 research. Secondly, we discuss how COVID-19 rapid research exemplars supported by Oxford BRC illustrate "capacity", "readiness" and "capability" at an organizational and individual level to respond to the global pandemic. Rapid response research in turbulent environments requires strategic organizational leadership to create resilient infrastructure and resources. The rapid research exemplars from the Oxford BRC illustrate capability and capacity at an organizational and individual level in a dynamic environment to respond during the COVID-19 public health challenge. This response was underpinned by swift adaptation and repurposing of existing research resources and expertise by the Oxford BRC to deliver rapid research to address different aspects of COVID-19.


Assuntos
Pesquisa Biomédica , COVID-19 , Humanos , Pandemias , SARS-CoV-2 , Medicina Estatal
9.
J Transl Med ; 19(1): 483, 2021 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-34838033

RESUMO

BACKGROUND: The evaluation of translational health research is important for various reasons such as the research impact assessment, research funding allocation, accountability, and strategic research policy formulation. The purpose of this study was to evaluate the research productivity, strength and diversity of research collaboration networks and impact of research supported by a large biomedical research centre in the United Kingdom (UK). METHODS: Bibliometric analysis of research publications by translational researchers affiliated with the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC) from April 2012 to March 2017. RESULTS: Analysis included 2377 translational research publications that were published during the second 5-year funding period of the NIHR Oxford BRC. Author details were available for 99.75% of the publications with DOIs (2359 of 2365 with DOIs), and the number of authors per publication was median 9 (mean = 18.03, SD = 3.63, maximum = 2467 authors). Author lists also contained many consortia, groups, committees, and teams (n = 165 in total), with 1238 additional contributors, where membership was reported. The BRC co-authorship i.e., research collaboration network for these publications involved 20,229 nodes (authors, of which 1606 nodes had Oxford affiliations), and approximately 4.3 million edges (authorship linkages). Articles with a valid DOIs (2365 of 2377, 99.5%) were collectively cited more than 155,000 times and the average Field Citation Ratio was median 6.75 (geometric mean = 7.12) while the average Relative Citation Ratio was median 1.50 (geometric mean = 1.83) for the analysed publications. CONCLUSIONS: The NIHR Oxford BRC generated substantial translational research publications and facilitated a huge collaborative network of translational researchers working in complex structures and consortia, which shows success across the whole of this BRC funding period. Further research involving continued uptake of unique persistent identifiers and the tracking of other research outputs such as clinical innovations and patents would allow a more detailed understanding of large research enterprises such as NIHR BRCs in the UK.


Assuntos
Pesquisa Biomédica , Pesquisa Translacional Biomédica , Autoria , Bibliometria , Publicações , Reino Unido
10.
Health Res Policy Syst ; 19(1): 54, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33794906

RESUMO

The COVID-19 pandemic has shed a spotlight on the resilience of healthcare systems, and their ability to cope efficiently and effectively with unexpected crises. If we are to learn one economic lesson from the pandemic, arguably it is the perils of an overfocus on short-term allocative efficiency at the price of lack of capacity to deal with uncertain future challenges. In normal times, building spare capacity with 'option value' into health systems may seem inefficient, the costs potentially exceeding the benefits. Yet the fatal weakness of not doing so is that this can leave health systems highly constrained when dealing with unexpected, but ultimately inevitable, shocks-such as the COVID-19 pandemic. In this article, we argue that the pandemic has highlighted the potentially enormous option value of biomedical research infrastructure. We illustrate this with reference to COVID-19 response work supported by the United Kingdom National Institute for Health Research Oxford Biomedical Research Centre. As the world deals with the fallout from the most serious economic crisis since the Great Depression, pressure will soon come to review government expenditure, including research funding. Developing a framework to fully account for option value, and understanding the public appetite to pay for it, should allow us to be better prepared for the next emerging problem.


Assuntos
Pesquisa Biomédica/economia , COVID-19/epidemiologia , COVID-19/prevenção & controle , Apoio à Pesquisa como Assunto , Humanos , SARS-CoV-2 , Medicina Estatal/economia , Reino Unido/epidemiologia
11.
PLoS Med ; 16(4): e1002790, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31039172

RESUMO

BACKGROUND: There is an urgent need for an effective tuberculosis (TB) vaccine. Heterologous prime-boost regimens induce potent cellular immunity. MVA85A is a candidate TB vaccine. This phase I clinical trial was designed to evaluate whether alternating aerosol and intradermal vaccination routes would boost cellular immunity to the Mycobacterium tuberculosis antigen 85A (Ag85A). METHODS AND FINDINGS: Between December 2013 and January 2016, 36 bacille Calmette-Guérin-vaccinated, healthy UK adults were randomised equally between 3 groups to receive 2 MVA85A vaccinations 1 month apart using either heterologous (Group 1, aerosol-intradermal; Group 2, intradermal-aerosol) or homologous (Group 3, intradermal-intradermal) immunisation. Bronchoscopy and bronchoalveolar lavage (BAL) were performed 7 days post-vaccination. Adverse events (AEs) and peripheral blood were collected for 6 months post-vaccination. The laboratory and bronchoscopy teams were blinded to treatment allocation. One participant was withdrawn and was replaced. Participants were aged 21-42 years, and 28/37 were female. In a per protocol analysis, aerosol delivery of MVA85A as a priming immunisation was well tolerated and highly immunogenic. Most AEs were mild local injection site reactions following intradermal vaccination. Transient systemic AEs occurred following vaccination by both routes and were most frequently mild. All respiratory AEs following primary aerosol MVA85A (Group 1) were mild. Boosting an intradermal MVA85A prime with an aerosolised MVA85A boost 1 month later (Group 2) resulted in transient moderate/severe respiratory and systemic AEs. There were no serious adverse events and no bronchoscopy-related complications. Only the intradermal-aerosol vaccination regimen (Group 2) resulted in modest, significant boosting of the cell-mediated immune response to Ag85A (p = 0.027; 95% CI: 28 to 630 spot forming cells per 1 × 106 peripheral blood mononuclear cells). All 3 regimens induced systemic cellular immune responses to the modified vaccinia virus Ankara (MVA) vector. Serum antibodies to Ag85A and MVA were only induced after intradermal vaccination. Aerosolised MVA85A induced significantly higher levels of Ag85A lung mucosal CD4+ and CD8+ T cell cytokines compared to intradermal vaccination. Boosting with aerosol-inhaled MVA85A enhanced the intradermal primed responses in Group 2. The magnitude of BAL MVA-specific CD4+ T cell responses was lower than the Ag85A-specific responses. A limitation of the study is that while the intradermal-aerosol regimen induced the most potent cellular Ag85A immune responses, we did not boost the last 3 participants in this group because of the AE profile. Timing of bronchoscopies aimed to capture peak mucosal response; however, peak responses may have occurred outside of this time frame. CONCLUSIONS: To our knowledge, this is the first human randomised clinical trial to explore heterologous prime-boost regimes using aerosol and systemic routes of administration of a virally vectored vaccine. In this trial, the aerosol prime-intradermal boost regime was well tolerated, but intradermal prime-aerosol boost resulted in transient but significant respiratory AEs. Aerosol vaccination induced potent cellular Ag85A-specific mucosal and systemic immune responses. Whilst the implications of inducing potent mucosal and systemic immunity for protection are unclear, these findings are of relevance for the development of aerosolised vaccines for TB and other respiratory and mucosal pathogens. TRIAL REGISTRATION: ClinicalTrials.gov NCT01954563.


Assuntos
Aciltransferases/imunologia , Antígenos de Bactérias/imunologia , Vacinas contra a Tuberculose/administração & dosagem , Tuberculose/prevenção & controle , Administração por Inalação , Adulto , Aerossóis , Esquema de Medicação , Feminino , Vetores Genéticos/administração & dosagem , Vetores Genéticos/efeitos adversos , Humanos , Imunização Secundária , Imunogenicidade da Vacina , Injeções Intradérmicas , Masculino , Mycobacterium tuberculosis/imunologia , Método Simples-Cego , Tuberculose/imunologia , Vacinas contra a Tuberculose/efeitos adversos , Vacinas contra a Tuberculose/imunologia , Vacinação/efeitos adversos , Vacinas de DNA , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/efeitos adversos , Vacinas Sintéticas/imunologia , Adulto Jovem
12.
14.
Immunol Rev ; 264(1): 88-102, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25703554

RESUMO

The immune response upon infection with the pathogen Mycobacterium tuberculosis is poorly understood, hampering the discovery of new treatments and the improvements in diagnosis. In the last years, a blood transcriptional signature in tuberculosis has provided knowledge on the immune response occurring during active tuberculosis disease. This signature was absent in the majority of asymptomatic individuals who are latently infected with M. tuberculosis (referred to as latent). Using modular and pathway analyses of the complex data has shown, now in multiple studies, that the signature of active tuberculosis is dominated by overexpression of interferon-inducible genes (consisting of both type I and type II interferon signaling), myeloid genes, and inflammatory genes. There is also downregulation of genes encoding B and T-cell function. The blood signature of tuberculosis correlates with the extent of radiographic disease and is diminished upon effective treatment suggesting the possibility of new improved strategies to support diagnostic assays and methods for drug treatment monitoring. The signature suggested a previously under-appreciated role for type I interferons in development of active tuberculosis disease, and numerous mechanisms have now been uncovered to explain how type I interferon impedes the protective response to M. tuberculosis infection.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Mycobacterium tuberculosis/imunologia , Tuberculose/imunologia , Tuberculose/terapia , Animais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Humanos , Prognóstico , Transcriptoma , Resultado do Tratamento , Tuberculose/sangue , Tuberculose/diagnóstico , Tuberculose/genética
16.
J Infect Dis ; 217(11): 1782-1792, 2018 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-29546381

RESUMO

Background: Human immunodeficiency virus (HIV)-infected individuals have a higher risk of developing active tuberculosis (TB) than HIV-uninfected individuals, but the mechanisms underpinning this are unclear. We hypothesized that depletion of specific components of Mycobacterium tuberculosis (Mtb)-specific CD4+ and CD8+ T-cell responses contributed to this increased risk. Methods: Mtb-specific T-cell responses in 147 HIV-infected and 44 HIV-uninfected control subjects in a TB-endemic setting in Bloemfontein, South Africa, were evaluated. Using a whole-blood flow cytometry assay, we measured expression of interferon gamma, tumor necrosis factor alpha, interleukin 2, and interleukin 17 in CD4+ and CD8+ T cells in response to Mtb antigens (PPD, ESAT-6/CFP-10 [EC], and DosR regulon-encoded α-crystallin [Rv2031c]). Results: Fewer HIV-infected individuals had detectable CD4+ and CD8+ T-cell responses to PPD and Rv2031c than HIV-uninfected subjects. Mtb-specific T cells showed distinct patterns of cytokine expression comprising both Th1 (CD4 and CD8) and Th17 (CD4) cytokines, the latter at highest frequency for Rv2031c. Th17 antigen-specific responses to all antigens tested were specifically impaired in HIV-infected individuals. Conclusions: HIV-associated impairment of CD4+ and CD8+Mtb-specific T-cell responses is antigen specific, particularly impacting responses to PPD and Rv2031c. Preferential depletion of Th17 cytokine-expressing CD4+ T cells suggests this T-cell subset may be key to TB susceptibility in HIV-infected individuals.


Assuntos
Infecções por HIV/imunologia , Mycobacterium tuberculosis/imunologia , Subpopulações de Linfócitos T/imunologia , Células Th1/imunologia , Células Th17/imunologia , Tuberculose/imunologia , Adulto , Antígenos de Bactérias/imunologia , Coinfecção/imunologia , Coinfecção/microbiologia , Coinfecção/virologia , Citocinas/imunologia , Feminino , HIV/imunologia , Infecções por HIV/microbiologia , Humanos , Interferon gama/imunologia , Masculino , Pessoa de Meia-Idade , África do Sul , Tuberculose/microbiologia , Tuberculose/virologia , Adulto Jovem
17.
Infect Immun ; 86(7)2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29661928

RESUMO

The development of a vaccine against tuberculosis (TB), a disease caused by Mycobacterium tuberculosis, is urgently needed. The only currently available vaccine, M. bovis BCG, has variable efficacy. One approach in the global vaccine development effort is focused on boosting BCG using subunit vaccines. The identification of novel antigens for inclusion in subunit vaccines is a critical step in the TB vaccine development pathway. We selected four novel mycobacterial antigens recognized during the course of human infection. A replication-deficient chimpanzee adenovirus (ChAdOx1) was constructed to express each antigen individually, and these vectors were evaluated for protective efficacy in murine M. tuberculosis challenge experiments. One antigen, PPE15 (Rv1039c), conferred significant and reproducible protection when administered alone and as a boost to BCG vaccination. We identified immunodominant epitopes to define the protective immune responses using tetramers and intravascular staining. Lung parenchymal CD4+ and CD8+ CXCR3+ KLRG1- T cells, previously associated with protection against M. tuberculosis, were enriched in the vaccinated groups compared to the control groups. Further work to evaluate the protective efficacy of PPE15 in more stringent preclinical animal models, together with the identification of further novel protective antigens using this selection strategy, is now merited.


Assuntos
Antígenos de Bactérias/imunologia , Vacinas contra a Tuberculose/imunologia , Adenoviridae/genética , Animais , Vacina BCG/imunologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Linfócitos T/imunologia , Vacinas de Subunidades Antigênicas/imunologia
18.
Clin Infect Dis ; 66(4): 554-563, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29028973

RESUMO

Background: Vaccination of human immunodeficiency virus (HIV)-infected infants with bacille Calmette-Guérin (BCG) is contraindicated. HIV-exposed newborns need a new tuberculosis vaccination strategy that protects against tuberculosis early in life and avoids the potential risk of BCG disease until after HIV infection has been excluded. Methods: This double-blind, randomized, controlled trial compared newborn MVA85A prime vaccination (1 × 108 PFU) vs Candin® control, followed by selective, deferred BCG vaccination at age 8 weeks for HIV-uninfected infants and 12 months follow-up for safety and immunogenicity. Results: A total of 248 HIV-exposed infants were enrolled. More frequent mild-moderate reactogenicity events were seen after newborn MVA85A vaccination. However, no significant difference was observed in the rate of severe or serious adverse events, HIV acquisition (n = 1 per arm), or incident tuberculosis disease (n = 5 MVA85A; n = 3 control) compared to the control arm. MVA85A vaccination induced modest but significantly higher Ag85A-specific interferon gamma (IFNγ)+ CD4+ T cells compared to control at weeks 4 and 8 (P < .0001). BCG did not further boost this response in MVA85A vaccinees. The BCG-induced Ag85A-specific IFNγ+ CD4+ T-cell response at weeks 16 and 52 was of similar magnitude in the control arm compared to the MVA85A arm at all time points. Proliferative capacity, functional profiles, and memory phenotype of BCG-specific CD4 responses were similar across study arms. Conclusions: MVA85A prime vaccination of HIV-exposed newborns was safe and induced an early modest antigen-specific immune response that did not interfere with, or enhance, immunogenicity of subsequent BCG vaccination. New protein-subunit and viral-vectored tuberculosis vaccine candidates should be tested in HIV-exposed newborns. Clinical Trials Registration: NCT01650389.


Assuntos
Vacina BCG/uso terapêutico , Infecções por HIV/imunologia , Imunogenicidade da Vacina , Vacinas contra a Tuberculose/uso terapêutico , Tuberculose/prevenção & controle , Adulto , Antirretrovirais/uso terapêutico , Antígenos de Bactérias/imunologia , Vacina BCG/efeitos adversos , Contagem de Linfócito CD4 , Linfócitos T CD4-Positivos/imunologia , Método Duplo-Cego , Feminino , Infecções por HIV/tratamento farmacológico , Humanos , Lactente , Recém-Nascido , Interferon gama/imunologia , Masculino , Mães , Mycobacterium tuberculosis , Teste Tuberculínico , Vacinas contra a Tuberculose/efeitos adversos , Vacinação , Vacinas de DNA
19.
Int J Mol Sci ; 18(2)2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28157153

RESUMO

Reverse vaccinology (RV) is a bioinformatics approach that can predict antigens with protective potential from the protein coding genomes of bacterial pathogens for subunit vaccine design. RV has become firmly established following the development of the BEXSERO® vaccine against Neisseria meningitidis serogroup B. RV studies have begun to incorporate machine learning (ML) techniques to distinguish bacterial protective antigens (BPAs) from non-BPAs. This research contributes significantly to the RV field by using permutation analysis to demonstrate that a signal for protective antigens can be curated from published data. Furthermore, the effects of the following on an ML approach to RV were also assessed: nested cross-validation, balancing selection of non-BPAs for subcellular localization, increasing the training data, and incorporating greater numbers of protein annotation tools for feature generation. These enhancements yielded a support vector machine (SVM) classifier that could discriminate BPAs (n = 200) from non-BPAs (n = 200) with an area under the curve (AUC) of 0.787. In addition, hierarchical clustering of BPAs revealed that intracellular BPAs clustered separately from extracellular BPAs. However, no immediate benefit was derived when training SVM classifiers on data sets exclusively containing intra- or extracellular BPAs. In conclusion, this work demonstrates that ML classifiers have great utility in RV approaches and will lead to new subunit vaccines in the future.


Assuntos
Antígenos de Bactérias/imunologia , Vacinas Bacterianas/imunologia , Biologia Computacional/métodos , Aprendizado de Máquina , Vacinas de Subunidades Antigênicas/imunologia , Antígenos de Bactérias/genética , Área Sob a Curva , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Vacinas Bacterianas/genética , Mapeamento de Epitopos , Epitopos/genética , Epitopos/imunologia , Humanos , Mutagênese , Curva ROC , Máquina de Vetores de Suporte , Vacinas de Subunidades Antigênicas/genética
20.
J Infect Dis ; 213(5): 824-30, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26450421

RESUMO

BACKGROUND: There is an urgent need for an improved tuberculosis vaccine. The lack of a validated correlate of protection slows progress in achieving this goal. A human mycobacterial challenge model, using bacille Calmette-Guérin (BCG) as a surrogate for a Mycobacterium tuberculosis challenge, would facilitate vaccine selection for field efficacy testing. Optimization of this model is required. METHODS: Healthy BCG-naive adults were assigned to receive intradermal standard-dose BCG SSI (group A), standard-dose BCG TICE (group B), high-dose BCG SSI (group C), and high-dose BCG TICE (group D). Two weeks after BCG challenge, skin biopsy of the challenge site was performed. BCG mycobacterial load was quantified by solid culture and quantitative polymerase chain reaction. RESULTS: BCG was well tolerated, and reactogenicity was similar between groups, regardless of strain and dose. There was significantly greater recovery of BCG from the high-dose challenge groups, compared with standard-dose challenge. BCG strain did not significantly affect BCG recovery. CONCLUSIONS: BCG challenge dose affects sensitivity of this model. We have selected high-dose BCG SSI to take forward in future challenge studies. Assessment of candidate tuberculosis vaccine effectiveness with this optimized model could contribute to vaccine selection for efficacy trials. CLINICAL TRIALS REGISTRATION: NCT02088892.


Assuntos
Vacina BCG/imunologia , Mycobacterium bovis/fisiologia , Vacinas contra a Tuberculose/imunologia , Adolescente , Adulto , Carga Bacteriana , ELISPOT , Feminino , Voluntários Saudáveis , Humanos , Injeções Intradérmicas , Interferon gama , Masculino , Pele/imunologia , Pele/microbiologia , Tuberculose/imunologia , Tuberculose/prevenção & controle , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA