Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 603(7899): 95-102, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35197637

RESUMO

Genome-wide association studies (GWAS) have identified thousands of genetic variants linked to the risk of human disease. However, GWAS have so far remained largely underpowered in relation to identifying associations in the rare and low-frequency allelic spectrum and have lacked the resolution to trace causal mechanisms to underlying genes1. Here we combined whole-exome sequencing in 392,814 UK Biobank participants with imputed genotypes from 260,405 FinnGen participants (653,219 total individuals) to conduct association meta-analyses for 744 disease endpoints across the protein-coding allelic frequency spectrum, bridging the gap between common and rare variant studies. We identified 975 associations, with more than one-third being previously unreported. We demonstrate population-level relevance for mutations previously ascribed to causing single-gene disorders, map GWAS associations to likely causal genes, explain disease mechanisms, and systematically relate disease associations to levels of 117 biomarkers and clinical-stage drug targets. Combining sequencing and genotyping in two population biobanks enabled us to benefit from increased power to detect and explain disease associations, validate findings through replication and propose medical actionability for rare genetic variants. Our study provides a compendium of protein-coding variant associations for future insights into disease biology and drug discovery.


Assuntos
Estudo de Associação Genômica Ampla , Proteínas , Frequência do Gene/genética , Predisposição Genética para Doença/genética , Genótipo , Humanos , Polimorfismo de Nucleotídeo Único/genética , Proteínas/genética , Sequenciamento do Exoma
2.
Sci Rep ; 12(1): 20003, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36411329

RESUMO

Adult tendons heal via fibrovascular scarring with inferior biomechanical properties. Mohawk (Mkx) emerged as a pivotal actor in tenolineage commitment. However, its precise function in tendinopathy remains poorly understood. This study investigates the cellular and molecular mechanisms underlying Mkx' role in fibrovascular healing. Human samples were collected to test fibrovascular markers. We then performed RNAseq on Mkx-/- mice compared to their wild type littermates to decipher Mkx regulome. We therefore sought to reproduce TSPCs transition to myofibroblasts in-vitro by over-expressing MyoD and followed by phenotypic and experimental cells' characterization using microscopy, qRT-PCR, flow cytometry sorting, presto-blue cell viability assay and immunofluorescence. Two different in vivo models were used to assess the effect of the MyoD-expressing myofibroblasts: transplantation in the dorsal area of immunodeficient mice and in an adult Achilles tendon injury model. To prevent angiofibrosis, we tested the molecule Xav939 and proceeded with histological stainings, q-RT PCR transcriptional quantification of angifibrotic markers, mechanical tests, and immunofluorescence. Tendinopathy samples showed fibrovascular healing with decreased tenolineage phenotype. Transcriptomic analysis of Mkx-/- tendons revealed myofibroblast-associated biological processes. Over-expression of MyoD in WT tendon stem progenitor cells (TSPCs) gave rise to myofibroblasts reprogramming in-vitro and fibrovascular scarring in-vivo. MKX directly binds to MyoD promoter and underlies global regulative processes related to angiogenesis and Wnt signaling pathway. Blocking Wnt signaling with the small molecule Xav393 resulted in higher histological and biomechanical properties. Taken together, our data provide the first in vivo and in-vitro evidence of tendon stem progenitor cells to myofibroblasts transition and show improved tendon healing via angiofibrosis modulation, thus opening potential therapeutic avenues to treat tendinopathy patients.


Assuntos
Proteínas de Homeodomínio , Miofibroblastos , Tendinopatia , Animais , Humanos , Camundongos , Cicatriz/patologia , Proteínas de Homeodomínio/metabolismo , Miofibroblastos/metabolismo , Células-Tronco/metabolismo , Tendinopatia/patologia , Tendões/metabolismo , Via de Sinalização Wnt , Diferenciação Celular
3.
ACS Appl Mater Interfaces ; 12(20): 22467-22478, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32394696

RESUMO

Current biomaterials and tissue engineering techniques have shown a promising efficacy on full-thickness articular cartilage defect repair in clinical practice. However, due to the difficulty of implanting biomaterials or tissue engineering constructs into a partial-thickness cartilage defect, it remains a challenge to provide a satisfactory cure in joint surface regeneration in the early and middle stages of osteoarthritis. In this study, we focused on a ready-to-use tissue-adhesive joint surface paint (JS-Paint) capable of promoting and enhancing articular surface cartilage regeneration. The JS-Paint is mainly composed of N-(2-aminoethyl)-4-(4-(hydroxymethyl)-2-methoxy-5-nitrosophenoxy) butanamide (NB)-coated silk fibroin microparticles and possess optimal cell adhesion, migration, and proliferation properties. NB-modified silk fibroin microparticles can directly adhere to the cartilage and form a smooth layer on the surface via the photogenerated aldehyde group of NB reacting with the -NH2 groups of the cartilage tissue. JS-Paint treatment showed a significant promotion of cartilage regeneration and restored the smooth joint surface at 6 weeks postsurgery in a rabbit model of a partial-thickness cartilage defect. These findings revealed that silk fibroin can be utilized to bring about a tissue-adhesive paint. Thus, the JS-Paint strategy has some great potential to enhance joint surface regeneration and revolutionize future therapeutics of early and middle stages of osteoarthritis joint ailments.


Assuntos
Cartilagem Articular/fisiologia , Fibroínas/química , Regeneração/efeitos dos fármacos , Adesivos Teciduais/química , Animais , Álcoois Benzílicos/química , Álcoois Benzílicos/efeitos da radiação , Álcoois Benzílicos/toxicidade , Cartilagem Articular/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Fibroínas/toxicidade , Articulações/patologia , Articulações/cirurgia , Coelhos , Adesivos Teciduais/efeitos da radiação , Adesivos Teciduais/toxicidade , Raios Ultravioleta
4.
Am J Cardiol ; 123(5): 787-793, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30558760

RESUMO

Genome-wide studies have associated several genetic variants upstream of PITX2 on chromosome 4q25 with atrial fibrillation (AF), suggesting a potential role of PITX2 in AF. Our study aimed at identifying rare coding variants in PITX2 predisposing to AF. The Polymerase chain reaction sequencing of PITX2c was performed in 60 unrelated patients with idiopathic AF. The p.Met207Val variant was identified in 1 of 60 French patients with early onset AF and in none of 389 French referents. This variant, located in the inhibitory domain 1 distal to the homeodomain, was evaluated by the software MutationTaster as a disease-causing mutation with a probability of 0.999. Reporter gene assays demonstrated that p.Met207Val caused a 3.1-fold increase in transactivation activity of PITX2c in HeLa cells in comparison with its wild-type counterpart. When the variant was coexpressed with wild-type PITX2c in the HL-1 immortalized mouse atrial cell line, this gain-of-function caused an increase in the mRNA level of KCNH2 (2.6-fold), SCN1B (1.9-fold), GJA5 (3.1-fold), GJA1 (2.1-fold), and KCNQ1 in the homozygous form (1.8-fold). These genes encode for the IKr channel α subunit, the ß-1 Na+ channel subunit, connexin 40, connexin 43 and the IKs channel α subunit, respectively. These conditions may contribute to the propensity to AF found in patients carrying the p.Met207Val variant. In conclusion, the present report is the first to associate a gain-of-function mutation of PITX2c with increased vulnerability to AF, therefore, restoration of normal PITX2c function may be a potential therapeutic target in AF patients.


Assuntos
Fibrilação Atrial/genética , DNA/genética , Mutação com Ganho de Função , Proteínas de Homeodomínio/genética , Fatores de Transcrição/genética , Fibrilação Atrial/metabolismo , Análise Mutacional de DNA , Feminino , Frequência do Gene , Genótipo , Proteínas de Homeodomínio/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fatores de Transcrição/metabolismo , Proteína Homeobox PITX2
5.
Cell Death Dis ; 10(6): 427, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31160550

RESUMO

Characterized by their slow adhering property, skeletal muscle myogenic progenitor cells (MPCs) have been widely utilized in skeletal muscle tissue engineering for muscle regeneration, but with limited efficacy. Skeletal muscle regeneration is regulated by various cell types, including a large number of rapidly adhering cells (RACs) where their functions and mechanisms are still unclear. In this study, we explored the function of RACs by co-culturing them with MPCs in a biomimetic skeletal muscle organoid system. Results showed that RACs promoted the myogenic potential of MPCs in the organoid. Single-cell RNA-Seq was also performed, classifying RACs into 7 cell subtypes, including one newly described cell subtype: teno-muscular cells (TMCs). Connectivity map of RACs and MPCs subpopulations revealed potential growth factors (VEGFA and HBEGF) and extracellular matrix (ECM) proteins involvement in the promotion of myogenesis of MPCs during muscle organoid formation. Finally, trans-well experiments and small molecular inhibitors blocking experiments confirmed the role of RACs in the promotion of myogenic differentiation of MPCs. The RACs reported here revealed complex cell diversity and connectivity with MPCs in the biomimetic skeletal muscle organoid system, which not only offers an attractive alternative for disease modeling and in vitro drug screening but also provides clues for in vivo muscle regeneration.


Assuntos
Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Organoides/citologia , Animais , Diferenciação Celular/genética , Proliferação de Células/genética , Análise por Conglomerados , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/genética , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/citologia , Mioblastos/citologia , Organoides/ultraestrutura , RNA-Seq , Análise de Célula Única , Transcriptoma/genética , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
Gene ; 536(2): 348-56, 2014 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-24334129

RESUMO

BACKGROUND: A variant of the ether-à-go-go related channel (hERG), p.Arg148Trp (R148W) was found at heterozygous state in two infants who died from sudden infant death syndrome (SIDS), one with documented prolonged QTc and Torsade de Pointes (TdP), and in an adult woman with QTc >500 ms, atrioventricular block and TdP. This variant was previously reported in cases of severe ventricular arrhythmia but very rarely in control subjects. Its classification as mutation or polymorphism awaited electrophysiological characterization. METHODS: The properties of this N-terminal, proximal domain, hERG variant were explored in Xenopus oocytes injected with the same amount of RNA encoding for either hERG/WT or hERG/R148W or their equimolar mixture. The human ventricular cell (TNNP) model was used to test the effects of changes in hERG current. RESULTS: R148W alone produced a current similar to the WT (369 ± 76 nA (mean ± SEM), n=13 versus 342 ± 55 nA in WT, n=13), while the co-expression of 1/2 WT+1/2 R148W lowered the current by 29% versus WT (243 ± 35 nA, n=13, p<0.05). The voltage dependencies of steady-state activation and inactivation were not changed in the variant alone or in co-expression with the WT. The time constants of fast recovery from inactivation and of fast and slow deactivation analyzed between -120 and +20 mV were not changed. The voltage-dependent distribution of the current amplitudes among fast-, slow- and non-deactivating fractions was unaltered. A 6.6% increase in APD90 from 323.5 ms to 345 ms was observed using the human cardiac ventricular myocyte model. CONCLUSIONS: Such a decrease in hERG current as evidenced here when co-expressing the hERG/R148W variant with the WT may have predisposed to the observed long QT syndrome and associated TdP. Therefore, the heterozygous carriers of hERG/R148W may be at risk of cardiac sudden death.


Assuntos
Arritmias Cardíacas/genética , Sistema de Condução Cardíaco/anormalidades , Síndrome do QT Longo/genética , Mutação/genética , Transativadores/genética , Adulto , Animais , Arritmias Cardíacas/metabolismo , Síndrome de Brugada , Doença do Sistema de Condução Cardíaco , Linhagem Celular , Morte Súbita Cardíaca , Feminino , Células HEK293 , Coração/fisiopatologia , Sistema de Condução Cardíaco/metabolismo , Heterozigoto , Humanos , Lactente , Síndrome do QT Longo/metabolismo , Masculino , Miócitos Cardíacos/metabolismo , Oocistos/metabolismo , Transativadores/metabolismo , Regulador Transcricional ERG , Xenopus/genética , Xenopus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA