Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Phytopathology ; 114(6): 1295-1304, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38148162

RESUMO

Despite its global importance as a primary source of table sugar and bioethanol, sugarcane faces a significant threat to its production due to diseases. One of these diseases, sugarcane smut, involves the emergence of a whip-like structure from the host apical shoot. The slow onset of this pathogenesis is the most substantial challenge for researchers to investigate the molecular events leading to resistance or susceptibility. In this study, we explored the early interaction between the smut fungus Sporisorium scitamineum and foliar tissues of the model plants Arabidopsis thaliana and Nicotiana benthamiana. Upon inoculation with the fungus, A. thaliana showed a compatible reaction, producing lesions during fungus colonization, whereas N. benthamiana showed signs of nonhost resistance. In addition, we propose a sugarcane detached leaf assay using plants cultivated in vitro to reveal sugarcane smut response outcomes. We used two sugarcane genotypes with known contrasting reactions to smut in the field. Although there is no evidence of sugarcane smut fungus infecting host leaves naturally, the sugarcane detached leaf assay enabled a rapid assessment of disease outcomes. Different symptoms in the detached leaves after inoculation distinguished smut-susceptible and smut-resistant sugarcane genotypes. Microscopic observations and gene expression analysis of S. scitamineum candidate effectors confirmed the fungal growth and its restriction on the compatible and incompatible interactions, respectively. These findings offer new prospects into the disease phenotyping of S. scitamineum, which could greatly expedite the comprehension of the initial stages of the pathogenesis and predict smut resistance in sugarcane genotypes.


Assuntos
Arabidopsis , Nicotiana , Doenças das Plantas , Folhas de Planta , Saccharum , Doenças das Plantas/microbiologia , Saccharum/microbiologia , Folhas de Planta/microbiologia , Nicotiana/microbiologia , Arabidopsis/microbiologia , Interações Hospedeiro-Patógeno , Ustilaginales/fisiologia , Ustilaginales/patogenicidade , Ustilaginales/genética , Regulação da Expressão Gênica de Plantas , Genótipo , Resistência à Doença/genética
2.
Int J Mol Sci ; 24(22)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38003212

RESUMO

Anthracnose (ANT) and angular leaf spot (ALS) are significant diseases in common bean, leading to considerable yield losses under specific environmental conditions. The California Dark Red Kidney (CDRK) bean cultivar is known for its resistance to multiple races of both pathogens. Previous studies have identified the CoPv01CDRK/PhgPv01CDRK resistance loci on chromosome Pv01. Here, we evaluated the expression levels of ten candidate genes near the CoPv01CDRK/PhgPv01CDRK loci and plant defense genes using quantitative real-time PCR in CDRK cultivar inoculated with races 73 of Colletotrichum lindemuthianum and 63-39 of Pseudocercospora griseola. Gene expression analysis revealed that the Phvul.001G246300 gene exhibited the most elevated levels, showing remarkable 7.8-fold and 8.5-fold increases for ANT and ALS, respectively. The Phvul.001G246300 gene encodes an abscisic acid (ABA) receptor with pyrabactin resistance, PYR1-like (PYL) protein, which plays a central role in the crosstalk between ABA and jasmonic acid responses. Interestingly, our results also showed that the other defense genes were initially activated. These findings provide critical insights into the molecular mechanisms underlying plant defense against these diseases and could contribute to the development of more effective disease management strategies in the future.


Assuntos
Colletotrichum , Phaseolus , Mapeamento Cromossômico , Colletotrichum/genética , Resistência à Doença/genética , Ligação Genética , Marcadores Genéticos , Rim , Phaseolus/genética , Doenças das Plantas/genética
3.
Plant J ; 108(5): 1266-1282, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34562337

RESUMO

Jasmonic acid (JA) signaling controls several processes related to plant growth, development, and defense, which are modulated by the transcription regulator and receptor JASMONATE-ZIM DOMAIN (JAZ) proteins. We recently discovered that a member of the JAZ family, JAZ4, has a prominent function in canonical JA signaling as well as other mechanisms. Here, we discovered the existence of two naturally occurring splice variants (SVs) of JAZ4 in planta, JAZ4.1 and JAZ4.2, and employed biochemical and pharmacological approaches to determine protein stability and repression capability of these SVs within JA signaling. We then utilized quantitative and qualitative transcriptional studies to determine spatiotemporal expression and splicing patterns in vivo, which revealed developmental-, tissue-, and organ-specific regulation. Detailed phenotypic and expression analyses suggest a role of JAZ4 in ethylene (ET) and auxin signaling pathways differentially within the zones of root development in seedlings. These results support a model in which JAZ4 functions as a negative regulator of ET signaling and auxin signaling in root tissues above the apex. However, in the root apex JAZ4 functions as a positive regulator of auxin signaling possibly independently of ET. Collectively, our data provide insight into the complexity of spatiotemporal regulation of JAZ4 and how this impacts hormone signaling specificity and diversity in Arabidopsis roots.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ciclopentanos , Regulação da Expressão Gênica de Plantas , Oxilipinas , Reguladores de Crescimento de Plantas , Transdução de Sinais , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Ácidos Indolacéticos/metabolismo , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Splicing de RNA , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/fisiologia
4.
Planta ; 256(2): 25, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35768557

RESUMO

MAIN CONCLUSION: Candidate resistance genes encoding malectin-like and LRR domains mapped to halo blight resistance loci throughout the common bean genome are co-expressed to fight a range of Pph races. Common bean (Phaseolus vulgaris L.) is an important crop both as a source of protein and other nutrients for human nutrition and as a nitrogen fixer that benefits sustainable agriculture. This crop is affected by halo blight disease, caused by the bacterium Pseudomonas syringae pv. phaseolicola (Pph), which can lead to 45% yield losses. Common bean resistance to Pph is conferred by six loci (Pse-1 to Pse-6) and minor-effect quantitative trait loci (QTLs); however, information is lacking on the molecular mechanisms implicated in this resistance. Here, we describe an in-depth RNA-sequencing (RNA-seq) analysis of the tolerant G2333 bean line in response to the Pph strain NPS3121. We identified 275 upregulated and 357 downregulated common bean genes in response to Pph infection. These differentially expressed genes were mapped to all 11 chromosomes of P. vulgaris. The upregulated genes were primarily components of plant immune responses and negative regulation of photosynthesis, with enrichment for leucine-rich repeat (LRRs) and/or malectin-like carbohydrate-binding domains. Interestingly, LRRs and malectin genes mapped to the same location as previously identified Pph resistance loci or QTLs. For instance, the major loci Pse-6/HB4.2 involved in broad-resistance to many Pph races co-located with induced LRR-encoding genes on Pv04. These findings indicate a coordinated modulation of genes involved in pathogen perception and signal transduction. In addition, the results further support these LRR/malectin loci as resistance genes in response to halo blight. Thus, these genes are potential targets for future genetic manipulation, enabling the introduction of resistance to Pph into elite cultivars of common bean.


Assuntos
Phaseolus , Doenças das Plantas , Leucina/metabolismo , Phaseolus/microbiologia , Doenças das Plantas/microbiologia , Pseudomonas syringae/fisiologia , Locos de Características Quantitativas/genética
5.
Plant J ; 101(2): 371-383, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31557372

RESUMO

Jasmonate zim-domain (JAZ) proteins comprise a family of transcriptional repressors that modulate jasmonate (JA) responses. JAZ proteins form a co-receptor complex with the F-box protein coronatine insensitive1 (COI1) that recognizes both jasmonoyl-l-isoleucine (JA-Ile) and the bacterial-produced phytotoxin coronatine (COR). Although several JAZ family members have been placed in this pathway, the role of JAZ4 in this model remains elusive. In this study, we observed that the jaz4-1 mutant of Arabidopsis is hyper-susceptible to Pseudomonas syringae pv. tomato (Pst) DC3000, while Arabidopsis lines overexpressing a JAZ4 protein lacking the Jas domain (JAZ4∆Jas) have enhanced resistance to this bacterium. Our results show that the Jas domain of JAZ4 is required for its physical interaction with COI1, MYC2 or MYC3, but not with the repressor complex adaptor protein NINJA. Furthermore, JAZ4 degradation is induced by COR in a proteasome- and Jas domain-dependent manner. Phenotypic evaluations revealed that expression of JAZ4∆Jas results in early flowering and increased length of root, hypocotyl, and petiole when compared with Col-0 and jaz4-1 plants, although JAZ4∆Jas lines remain sensitive to MeJA- and COR-induced root and hypocotyl growth inhibition. Additionally, jaz4-1 mutant plants have increased anthocyanin accumulation and late flowering compared with Col-0, while JAZ4∆Jas lines showed no alteration in anthocyanin production. These findings suggest that JAZ4 participates in the canonical JA signaling pathway leading to plant defense response in addition to COI1/MYC-independent functions in plant growth and development, supporting the notion that JAZ4-mediated signaling may have distinct branches.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Arabidopsis/genética , Proteínas Repressoras/genética , Proteínas Repressoras/fisiologia , Aminoácidos , Antocianinas/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Ciclopentanos , Regulação da Expressão Gênica de Plantas , Hipocótilo/crescimento & desenvolvimento , Indenos , Isoleucina/análogos & derivados , Solanum lycopersicum/metabolismo , Fenótipo , Raízes de Plantas/crescimento & desenvolvimento , Pseudomonas syringae , Transdução de Sinais , Transativadores/metabolismo
6.
Mol Plant Microbe Interact ; 33(3): 519-527, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31973654

RESUMO

Xylella fastidiosa is a worldwide multihost pathogen that causes diseases in different crops. It is considered a new global threat and substantial efforts have been made in order to identify sources of resistance. Indeed, many genes have been associated with resistance to X. fastidiosa, but without functional validation. Here, we describe a C. reticulata gene homologous to the transcriptional factor RAP2.2 from Arabidopsis thaliana that increases resistance to citrus variegated chlorosis (CVC). This gene was previously detected in C. reticulata challenged with X. fastidiosa. Bioinformatics analysis together with subcellular localization and auto-activation assays indicated that RAP2.2 from C. reticulata (CrRAP2.2) is a transcriptional factor orthologous to AtRAP2.2. Thus, we used A. thaliana as a model host to evaluate the functional role of CrRAP2.2 in X. fastidiosa resistance. The inoculation of X. fastidiosa in the A. thaliana rap2.2 mutant resulted in a larger bacterial population, which was complemented by CrRAP2.2. In addition, symptoms of anthocyanin accumulation were higher in the mutant, whose phenotype was restored by CrRAP2.2, indicating that they have conserved functions in plant defense response. We therefore transformed C. sinensis with CrRAP2.2 and verified a positive correlation between CVC resistance and gene expression in transgenic lines. This is the first study using A. thaliana as model host that characterizes the function of a gene related to X. fastidiosa defense response and its application in genetic engineering to obtain citrus resistance to CVC.


Assuntos
Citrus/genética , Resistência à Doença/genética , Doenças das Plantas/genética , Fatores de Transcrição/genética , Xylella/patogenicidade , Arabidopsis , Proteínas de Arabidopsis , Citrus/microbiologia , Proteínas de Ligação a DNA , Doenças das Plantas/microbiologia
7.
BMC Plant Biol ; 20(1): 16, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31914927

RESUMO

BACKGROUND: Food contamination with Salmonella enterica and enterohemorrhagic Escherichia coli is among the leading causes of foodborne illnesses worldwide and crop plants are associated with > 50% of the disease outbreaks. However, the mechanisms underlying the interaction of these human pathogens with plants remain elusive. In this study, we have explored plant resistance mechanisms against these enterobacteria and the plant pathogen Pseudomonas syringae pv. tomato (Pst) DC3118, as an opportunity to improve food safety. RESULTS: We found that S. enterica serovar Typhimurium (STm) transcriptionally modulates stress responses in Arabidopsis leaves, including induction of two hallmark processes of plant defense: ROS burst and cell wall modifications. Analyses of plants with a mutation in the potentially STm-induced gene EXO70H4 revealed that its encoded protein is required for stomatal defense against STm and E. coli O157:H7, but not against Pst DC3118. In the apoplast however, EXO70H4 is required for defense against STm and Pst DC3118, but not against E. coli O157:H7. Moreover, EXO70H4 is required for callose deposition, but had no function in ROS burst, triggered by all three bacteria. The salicylic acid (SA) signaling and biosynthesis proteins NPR1 and ICS1, respectively, were involved in stomatal and apoplastic defense, as well as callose deposition, against human and plant pathogens. CONCLUSIONS: The results show that EXO70H4 is involved in stomatal and apoplastic defenses in Arabidopsis and suggest that EXO70H4-mediated defense play a distinct role in guard cells and leaf mesophyll cells in a bacteria-dependent manner. Nonetheless, EXO70H4 contributes to callose deposition in response to both human and plant pathogens. NPR1 and ICS1, two proteins involved in the SA signaling pathway, are important to inhibit leaf internalization and apoplastic persistence of enterobacteria and proliferation of phytopathogens. These findings highlight the existence of unique and shared plant genetic components to fight off diverse bacterial pathogens providing specific targets for the prevention of foodborne diseases.


Assuntos
Proteínas de Arabidopsis , Escherichia coli O157 , Glucanos/metabolismo , Imunidade Vegetal , Salmonella enterica , Proteínas de Transporte Vesicular , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Parede Celular/metabolismo , Escherichia coli O157/metabolismo , Escherichia coli O157/patogenicidade , Doenças Transmitidas por Alimentos/microbiologia , Doenças Transmitidas por Alimentos/prevenção & controle , Humanos , Transferases Intramoleculares/metabolismo , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Imunidade Vegetal/fisiologia , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Estômatos de Plantas/metabolismo , Pseudomonas syringae/metabolismo , Pseudomonas syringae/patogenicidade , Espécies Reativas de Oxigênio/metabolismo , Ácido Salicílico/metabolismo , Salmonella enterica/metabolismo , Salmonella enterica/patogenicidade , Transdução de Sinais , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
8.
Mol Plant Microbe Interact ; 31(9): 899-902, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29547357

RESUMO

Yeast-two-hybrid (Y2H) cDNA library screening is a valuable tool to uncover protein-protein interactions and represents a widely used method to investigate protein function. However, low transcript representation in cDNA libraries limits the depth of the screening. We have developed a Y2H library with cDNA made from Arabidopsis leaves exposed to several stressors as well as untreated leaves. The library was built using pooled mRNA extracted from plants challenged with plant and human bacterial pathogens, the flg22 elicitor, the phytotoxin coronatine, and several hormones associated with environmental stress responses. The purpose of such a library is to maximize the discovery of protein-protein interactions that occur under optimum conditions as well as during biotic and abiotic stresses.


Assuntos
Arabidopsis/genética , Biblioteca Gênica , Mapeamento de Interação de Proteínas/métodos , Aminoácidos/metabolismo , Arabidopsis/fisiologia , Escherichia coli O157/fisiologia , Indenos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/genética , Folhas de Planta/fisiologia , Pseudomonas syringae/fisiologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Salmonella typhimurium/fisiologia , Estresse Fisiológico , Técnicas do Sistema de Duplo-Híbrido
9.
Phytopathology ; 108(12): 1455-1466, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29969065

RESUMO

Despite of the importance of ratoon stunting disease, little is known on the responses of sugarcane to its causal agent, the vascular bacterial endophyte Leifsonia xyli subsp. xyli. The transcriptome and proteome of young plants of a susceptible cultivar with no symptoms of stunting but with relative low and high bacterial titers were compared at 30 and 60 days after inoculation. Increased bacterial titers were associated with alterations in the expression of 267 cDNAs and in the abundance of 150 proteins involved in plant growth, hormone metabolism, signal transduction and defense responses. Some alterations are predicted to benefit the pathogen, such as the up-regulation of genes involved in the synthesis of methionine. Also, genes and proteins of the cell division cycle were all down-regulated in plants with higher titers at both times. It is hypothesized that the negative effects on cell division related to increased bacterial titers is cumulative over time and its modulation by other host and environmental factors results in the stunting symptom.


Assuntos
Actinomycetales/fisiologia , Resistência à Doença/genética , Doenças das Plantas/imunologia , Proteoma , Saccharum/imunologia , Transcriptoma , Etiquetas de Sequências Expressas , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/microbiologia , Saccharum/genética , Saccharum/metabolismo , Saccharum/microbiologia , Transdução de Sinais
10.
Plant Physiol ; 172(3): 2021-2032, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27702841

RESUMO

It has long been observed that environmental conditions play crucial roles in modulating immunity and disease in plants and animals. For instance, many bacterial plant disease outbreaks occur after periods of high humidity and rain. A critical step in bacterial infection is entry into the plant interior through wounds and natural openings, such as stomata, which are adjustable microscopic pores in the epidermal tissue. Several studies have shown that stomatal closure is an integral part of the plant immune response to reduce pathogen invasion. In this study, we found that high humidity can effectively compromise Pseudomonas syringae-triggered stomatal closure in both Phaseolus vulgaris and Arabidopsis (Arabidopsis thaliana), which is accompanied by early up-regulation of the jasmonic acid (JA) pathway and simultaneous down-regulation of salicylic acid (SA) pathway in guard cells. Furthermore, SA-dependent response, but not JA-dependent response, is faster in guard cells than in whole leaves, suggesting that the SA signaling in guard cells may be independent from other cell types. Thus, we conclude that high humidity, a well-known disease-promoting environmental condition, acts in part by suppressing stomatal defense and is linked to hormone signaling in guard cells.


Assuntos
Ar , Arabidopsis/fisiologia , Umidade , Estômatos de Plantas/fisiologia , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Oxilipinas/metabolismo , Estômatos de Plantas/citologia , Pseudomonas syringae/fisiologia , Ácido Salicílico/metabolismo , Transdução de Sinais/genética , Regulação para Cima/genética
11.
J Exp Bot ; 68(6): 1371-1385, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28069779

RESUMO

Plants synthesize jasmonates (JAs) in response to developmental cues or environmental stresses, in order to coordinate plant growth, development or defense against pathogens and herbivores. Perception of pathogen or herbivore attack promotes synthesis of jasmonoyl-L-isoleucine (JA-Ile), which binds to the COI1-JAZ receptor, triggering the degradation of JAZ repressors and induction of transcriptional reprogramming associated with plant defense. Interestingly, some virulent pathogens have evolved various strategies to manipulate JA signaling to facilitate their exploitation of plant hosts. In this review, we focus on recent advances in understanding the mechanism underlying the enigmatic switch between transcriptional repression and hormone-dependent transcriptional activation of JA signaling. We also discuss various strategies used by pathogens and insects to manipulate JA signaling and how interfering with this could be used as a novel means of disease control.


Assuntos
Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Herbivoria , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Fenômenos Fisiológicos Vegetais , Plantas/microbiologia , Transdução de Sinais , Animais , Cadeia Alimentar , Insetos/fisiologia
12.
Theor Appl Genet ; 128(6): 1193-208, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25805316

RESUMO

KEY MESSAGE: The common bean locus Co - 4, traditionally referred to as an anthracnose-resistant gene, contains a cluster of predicted receptor-like kinases (COK-4 and CrRLK1-like), and at least two of these kinases are co-regulated with the plant's basal immunity. Genetic resistance to anthracnose, caused by the fungus Colletotrichum lindemuthianum (Sacc. and Magnus) Briosi and Cavara, is conferred by major loci throughout the Phaseolus vulgaris genome, named Co. The complex Co-4 locus was previously reported to have several copies of the COK-4 gene that is predicted to code for a receptor-like kinase (RLK). In general, plant RLKs are involved in pathogen perception and signal transduction; however, the molecular function of COK-4 remains elusive. Using newly identified molecular markers (PvTA25 and PvSNPCOK-4), the SAS13 marker, COK-4 sequences and phylogeny, and the recently released bean genome sequence, we determined the most probable boundaries of the Co-4 locus: a 325-Kbp region on chromosome Pv08. Out of the 49 predicted transcripts in that region, 24 encode for putative RLKs (including 18 COK-4 copies) with high similarity to members of the Catharanthus roseus RLK1-like (CrRLK1L) protein family from different plant species, including the well-described FERONIA (FER) and ANXUR. We also determined that two RLK-coding genes in the Co-4 locus (COK-4-3 and FER-like) are transcriptionally regulated when bean plants are challenged with the flg22 peptide, a commonly used elicitor of plant immunity, or the bacterium Pseudomonas syringae pv. phaseolicola, the causal agent of halo blight. While COK-4-3 is activated during immune response, FER-like is downregulated suggesting that these genes could play a role in plant responses to biotic stress. These results highlight the importance of dissecting the regulation and molecular function of individual genes within each locus, traditionally referred to as resistance gene based on genetic segregation analysis.


Assuntos
Família Multigênica , Phaseolus/genética , Imunidade Vegetal/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Mapeamento Cromossômico , Cromossomos de Plantas , Colletotrichum , DNA de Plantas/genética , Resistência à Doença/genética , Marcadores Genéticos , Repetições de Microssatélites , Phaseolus/imunologia , Filogenia , Doenças das Plantas/genética , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Proteínas Quinases/genética , Pseudomonas syringae , Análise de Sequência de DNA
13.
Proc Natl Acad Sci U S A ; 109(49): 20148-53, 2012 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-23169619

RESUMO

The plant hormone jasmonate (JA) plays an important role in regulating growth, development and immunity. A key step in JA signaling is ligand-dependent assembly of a coreceptor complex consisting of the F-box protein COI1 and JAZ transcriptional repressors. Assembly of this receptor complex results in proteasome-mediated degradation of JAZ repressors, which at resting state bind to and repress the MYC transcription factors. Although the JA receptor complex is believed to function within the nucleus, how this receptor complex enters the nucleus and, more generally, the cell biology of jasmonate signaling are not well understood. In this study, we conducted mutational analysis of the C termini (containing the conserved Jas motif) of two JAZ repressors, JAZ1 and JAZ9. These analyses unexpectedly revealed different subcellular localization patterns of JAZ1ΔJas and JAZ9ΔJas, which were associated with differential interaction of JAZ1ΔJas and JAZ9ΔJas with MYC2 and differential repressor activity in vivo. Importantly, physical interaction with MYC2 appears to play an active role in the nuclear targeting of JAZ1 and JAZ9, and the nuclear localization of JAZ9 was compromised in myc2 mutant plants. We identified a highly conserved arginine residue in the Jas motif that is critical for coupling MYC2 interaction with nuclear localization of JAZ9 and JAZ9 repressor function in vivo. Our results suggest a model for explaining why some JAZΔJas proteins, but not others, confer constitutive JA-insensitivity when overexpressed in plants. Results also provide evidence for a transcription factor-dependent mechanism for nuclear import of a cognate transcriptional repressor JAZ9 in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Núcleo Celular/metabolismo , Ciclopentanos/metabolismo , Complexos Multiproteicos/metabolismo , Oxilipinas/metabolismo , Transdução de Sinais/imunologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Análise Mutacional de DNA , Modelos Biológicos , Ligação Proteica , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
14.
Annu Rev Plant Biol ; 75(1): 551-577, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39038249

RESUMO

Stomata serve as the battleground between plants and plant pathogens. Plants can perceive pathogens, inducing closure of the stomatal pore, while pathogens can overcome this immune response with their phytotoxins and elicitors. In this review, we summarize new discoveries in stomata-pathogen interactions. Recent studies have shown that stomatal movement continues to occur in a close-open-close-open pattern during bacterium infection, bringing a new understanding of stomatal immunity. Furthermore, the canonical pattern-triggered immunity pathway and ion channel activities seem to be common to plant-pathogen interactions outside of the well-studied Arabidopsis-Pseudomonas pathosystem. These developments can be useful to aid in the goal of crop improvement. New technologies to study intact leaves and advances in available omics data sets provide new methods for understanding the fight at the stomatal gate. Future studies should aim to further investigate the defense-growth trade-off in relation to stomatal immunity, as little is known at this time.


Assuntos
Imunidade Vegetal , Estômatos de Plantas , Estômatos de Plantas/fisiologia , Interações Hospedeiro-Patógeno/imunologia , Arabidopsis/imunologia , Arabidopsis/microbiologia , Arabidopsis/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia
15.
J Food Prot ; 87(9): 100334, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39074612

RESUMO

Lettuce has been commonly associated with the contamination of human pathogens, such as Escherichia coli O157:H7 (hereafter O157:H7), which has resulted in serious foodborne illnesses. Contamination events may happen throughout the farm-to-fork chain, when O157:H7 colonizes edible tissues and closely interacts with the plant. Environmental conditions have a significant impact on many plant-microbe interactions; however, it is currently unknown whether temperature affects O157:H7 colonization of the lettuce phyllosphere. In this study, we investigated the relationship between elevated growth temperatures, O157:H7 persistence, and lettuce head growth using 25 lettuce genotypes. Plants were grown under optimal or elevated temperatures for 3.5 weeks before being inoculated with O157:H7. The bacterial population size in the phyllosphere and lettuce head area was estimated at 0- and 10-days postinoculation (DPI) to assess bacterial persistence and head growth during contamination. We found that growing temperature can have a positive, negative, or no effect on O157:H7 persistence depending on the lettuce genotype. Furthermore, temperature had a greater effect on head area size than the presence of O157:H7. The results suggested that the combination of plant genotype and temperature level is an important factor for O157:H7 colonization of lettuce and the possibility to combine desirable food safety traits with heat tolerance into the lettuce germplasm.


Assuntos
Escherichia coli O157 , Genótipo , Lactuca , Temperatura , Lactuca/microbiologia , Escherichia coli O157/crescimento & desenvolvimento , Humanos , Microbiologia de Alimentos , Contagem de Colônia Microbiana , Contaminação de Alimentos/análise
16.
Front Plant Sci ; 15: 1302047, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38352648

RESUMO

Multiple Salmonella enterica serovars and strains have been reported to be able to persist inside the foliar tissue of lettuce (Lactuca sativa L.), potentially resisting washing steps and reaching the consumer. Intraspecies variation of the bacterial pathogen and of the plant host can both significantly affect the outcome of foliar colonization. However, current understanding of the mechanisms underlying this phenomenon is still very limited. In this study, we evaluated the foliar fitness of 14 genetically barcoded S. enterica isolates from 10 different serovars, collected from plant and animal sources. The S. enterica isolates were vacuum-infiltrated individually or in pools into the leaves of three- to four-week-old lettuce plants. To estimate the survival capacity of individual isolates, we enumerated the bacterial populations at 0- and 10- days post-inoculation (DPI) and calculated their net growth. The competition of isolates in the lettuce apoplast was assessed through the determination of the relative abundance change of barcode counts of each isolate within pools during the 10 DPI experimental period. Isolates exhibiting varying apoplast fitness phenotypes were used to evaluate their capacity to grow in metabolites extracted from the lettuce apoplast and to elicit the reactive oxygen species burst immune response. Our study revealed that strains of S. enterica can substantially differ in their ability to survive and compete in a co-inhabited lettuce leaf apoplast. The differential foliar fitness observed among these S. enterica isolates might be explained, in part, by their ability to utilize nutrients available in the apoplast and to evade plant immune responses in this niche.

17.
Plants (Basel) ; 13(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732460

RESUMO

Anthracnose, caused by the fungus Colletotrichum lindemuthianum, poses a significant and widespread threat to the common bean crop. The use of plant genetic resistance has proven to be the most effective strategy for managing anthracnose disease. The Amendoim Cavalo (AC) Andean cultivar has resistance against multiple races of C. lindemuthianum, which is conferred by the Co-AC gene. Fine mapping of this resistance gene to common bean chromosome Pv01 enabled the identification of Phvul.001G244300, Phvul.001G244400, and Phvul.001G244500 candidate genes for further validation. In this study, the relative expression of Co-AC candidate genes was assessed, as well as other putative genes in the vicinity of this locus and known resistance genes, in the AC cultivar following inoculation with the race 73 of C. lindemuthianum. Gene expression analysis revealed significantly higher expression levels of Phvul.001G244500. Notably, Phvul.001G244500 encodes a putative Basic Helix-Loop-Helix transcription factor, suggesting its involvement in the regulation of defense responses. Furthermore, a significant modulation of the expression of defense-related genes PR1a, PR1b, and PR2 was observed in a time-course experiment. These findings contribute to the development of improved strategies for breeding anthracnose-resistant common bean cultivars, thereby mitigating the impact of this pathogen on crop yields and ensuring sustainable bean production.

18.
Mol Plant Microbe Interact ; 26(8): 844-9, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23634837

RESUMO

Stomata, micro-pores on the leaf surface, are formed by a pair of guard cells. In addition to controlling water loss and gas exchange between the plant and the environment, these cells act as immunity gates to prevent pathogen invasion of the plant apoplast. Here, we report a brief procedure to obtain highly pure guard cell preparations using conditions that preserve the guard cell transcriptome as much as possible for a robust high-throughput RNA sequence analysis. The advantages of this procedure included i) substantial shortening of the time required for obtaining high yield of >97% pure guard cell protoplasts (GCP), ii) extraction of enough high quality RNA for direct sequencing, and iii) limited RNA decay during sample manipulation. Gene expression analysis by reverse transcription quantitative polymerase chain reaction revealed that wound-related genes were not induced during release of guard cells from leaves. To validate our approach, we performed a high-throughput deep-sequencing of guard cell transcriptome (RNA-seq). A total of 18,994 nuclear-encoded transcripts were detected, which expanded the transcriptome by 70%. The optimized GCP isolation and RNA extraction protocols are simple, reproducible, and fast, allowing the discovery of genes and regulatory networks inherent to the guard cells under various stresses.


Assuntos
Arabidopsis/citologia , Técnicas de Cultura de Células/métodos , Regulação da Expressão Gênica de Plantas/fisiologia , RNA de Plantas/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Arabidopsis/fisiologia , Protoplastos/fisiologia , RNA de Plantas/genética , Transcrição Gênica
20.
Nature ; 448(7154): 661-5, 2007 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-17637677

RESUMO

Jasmonate and related signalling compounds have a crucial role in both host immunity and development in plants, but the molecular details of the signalling mechanism are poorly understood. Here we identify members of the jasmonate ZIM-domain (JAZ) protein family as key regulators of jasmonate signalling. JAZ1 protein acts to repress transcription of jasmonate-responsive genes. Jasmonate treatment causes JAZ1 degradation and this degradation is dependent on activities of the SCF(COI1) ubiquitin ligase and the 26S proteasome. Furthermore, the jasmonoyl-isoleucine (JA-Ile) conjugate, but not other jasmonate-derivatives such as jasmonate, 12-oxo-phytodienoic acid, or methyl-jasmonate, promotes physical interaction between COI1 and JAZ1 proteins in the absence of other plant proteins. Our results suggest a model in which jasmonate ligands promote the binding of the SCF(COI1) ubiquitin ligase to and subsequent degradation of the JAZ1 repressor protein, and implicate the SCF(COI1)-JAZ1 protein complex as a site of perception of the plant hormone JA-Ile.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Ciclopentanos/farmacologia , Isoleucina/análogos & derivados , Proteínas Repressoras/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sistema Livre de Células , Genes de Plantas/genética , Glucuronidase/genética , Glucuronidase/metabolismo , Isoleucina/farmacologia , Dados de Sequência Molecular , Família Multigênica/genética , Oxilipinas , Fenótipo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Repressoras/química , Proteínas Repressoras/genética , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA