Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Biometals ; 34(6): 1295-1311, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34529183

RESUMO

Thallium (TI) is one of the most toxic heavy metals. Human exposure to Tl occurs through contaminated drinking water and from there to food, a threat to health. Recently, environmental contamination by Tl has been reported in several countries, urging the need for studies to determine the impact of endogenous and exogenous mechanisms preventing thallium toxicity. The cytoprotective effect of metallothionein (MT), a protein with high capacity to chelate metals, at two doses (100 and 600 µg/rat), was tested. Prussian blue (PB) (50 mg/kg) was administered alone or in combination with MT. A dose of Tl (16mg/kg) was injected i.p. to Wistar rats. Antidotes were administered twice daily, starting 24h after Tl injection, for 4 days. Tl concentrations diminished in most organs (p < 0.05) by effect of PB, alone or in combination with MT, whereas MT alone decreased Tl concentrations in testis, spleen, lung and liver. Likewise, brain thallium also diminished (p < 0.05) by effect of PB and MT alone or in combination in most of the regions analyzed (p < 0.05). The greatest diminution of Tl was achieved when the antidotes were combined. Plasma markers of renal damage increased after Tl administration, while PB and MT, either alone or in combination, prevented the raise of those markers. Only MT increased the levels of reduced glutathione (GSH) in the kidney. Finally, increased Nrf2 was observed in liver and kidney, after treatment with MT alone or in combination with PB. Results showed that MT alone or in combination with PB is cytoprotective after thallium exposure.


Assuntos
Metalotioneína , Tálio , Animais , Ferrocianetos , Masculino , Metalotioneína/metabolismo , Estresse Oxidativo , Ratos , Ratos Wistar , Tálio/metabolismo , Tálio/toxicidade
2.
Neurochem Res ; 40(6): 1243-51, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25931161

RESUMO

Spinal cord injury (SCI) is a condition producing irreversible damage to the neurological function. Among the leading mechanisms associated to cell death after SCI, excitotoxicity, oxidative stress, inflammatory response and apoptosis are considered potential targets to prevent tissue damage. We recently reported that dapsone an anti-inflammatory drug, decreases the activity of myeloperoxidase, lipid peroxidation, improve neurological function and increase the amount of spared tissue after SCI in rats. In this study, we characterized the anti-apoptotic effect of dapsone administered at 12.5 mg/kg/24 h dose, starting at 3 and 5 h after SCI. We monitored the activity of caspases-8, 9, and 3 and quantitated Annexin V and TUNEL positive cells in the core of the lesion. Results showed increased activities of caspase-8, 9 and 3 at 72 h by SCI to reach increments of 69, 143 and 293 %, respectively, as compared to sham group. Meanwhile, dapsone, administered at 3 and 5 after SCI, reduced caspase-8 activity by 36 and 44 % respectively, whereas the activity of caspase-9 was diminished by 37 %. Likewise, the activity of caspase-3 showed a decrease of 38 %. Finally, both Annexin V and TUNEL-positive cells were significantly reduced by DDS as compared to untreated SCI animals. Results showed that dapsone exerted anti-apoptotic effect after SCI.


Assuntos
Apoptose/efeitos dos fármacos , Dapsona/farmacologia , Dapsona/uso terapêutico , Antagonistas do Ácido Fólico/farmacologia , Antagonistas do Ácido Fólico/uso terapêutico , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/patologia , Animais , Caspases/metabolismo , Feminino , Marcação In Situ das Extremidades Cortadas , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Recuperação de Função Fisiológica/efeitos dos fármacos , Traumatismos da Medula Espinal/enzimologia
3.
Neurochem Res ; 38(9): 1819-27, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23729301

RESUMO

Excitotoxicity due to glutamate receptors (GluRs) overactivation is a leading mechanism of oxidative damage and neuronal death in various diseases. We have shown that dapsone (DDS) was able to reduce both neurotoxicity and seizures associated to the administration of kainic acid (KA), an agonist acting on AMPA/KA receptors (GluK1-GluK5). Recently, it has been shown that phenobarbital (PB) is also able to reduce epileptic activity evoked by that receptor. In the present study, we tested the antioxidative, anticonvulsive and neuroprotective effects of DDS and PB administered alone or in combination upon KA toxicity to rats. Results showed that KA increased lipid peroxidation and diminished reduced glutathione (GSH), 24 h after KA administration and both drugs in combination or individually inhibited these events. Likewise, KA promotes mortality and this event was antagonized by effect of both treatments. Additionally, the behavioral evaluation showed that DDS and PB administered alone or in combination decreased the number of limbic seizures and reduced the percentage of animals showing tonic-clonic seizures versus the control group, which was administered only with KA. Finally, our study demonstrated that all of the treatments prevented the neuronal death of the pyramidal cell layer of hippocampal CA-3. In conclusion, the treatment with DDS and PB administrated alone or in combination exerted antioxidant, anticonvulsive and neuroprotective effects against the neurotoxicity induced by KA in rats, but their effects were not additive. Thus, it may be good options of treatment in diseases such as epilepsy and status epilepicus, administered separately.


Assuntos
Anticonvulsivantes/farmacologia , Antioxidantes/farmacologia , Dapsona/farmacologia , Ácido Caínico/toxicidade , Fármacos Neuroprotetores/farmacologia , Fenobarbital/farmacologia , Animais , Morte Celular/efeitos dos fármacos , Glutationa/metabolismo , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar
4.
Heliyon ; 9(4): e14687, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37009237

RESUMO

Failure of therapeutic strategies for the management and recovery from traumatic spinal cord injury (SCI) is a serious concern. Dapsone (DDS) has been reported as a neuroprotective drug after SCI, although the phase after SC damage (acute or chronic) of its major impact on functional recovery has yet to be defined. Here, we evaluated DDS acute-phase anti-inflammatory effects and their impact on early functional recovery, one week after moderate SCI, and late functional recovery, 7 weeks thereafter. Female Wistar rats were randomly assigned to each of five experimental groups: sham group; four groups of rats with SCI, treated with DDS (0, 12.5, 25.0, and 37.5 mg/kg ip), starting 3 h after injury. Plasma levels of GRO/KC, and the number of neutrophils and macrophages in cell suspensions from tissue taken at the site of injury were measured as inflammation biomarkers. Hindlimb motor function of injured rats given DDS 12.5 and 25.0 mg/kg daily for 8 weeks was evaluated on the BBB open-field ordinal scale. Six hours after injury all DDS doses decreased GRO/KC plasma levels; 24 h after injury, neutrophil numbers decreased with DDS doses of 25.0 and 37.5 mg/kg; macrophage numbers decreased only at the 37.5 mg/kg dose. In the acute phase, functional recovery was dose-dependent. Final recovery scores were 57.5 and 106.2% above the DDS-vehicle treated control group, respectively. In conclusion, the acute phase dose-dependent anti-inflammatory effects of DDS impacted early motor function recovery affecting final recovery at the end of the study.

5.
Brain Res ; 1803: 148227, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36592802

RESUMO

BACKGROUND: Development of effective drugs for epilepsy are needed, as nearly 30 % of epileptic patients, are resistant to current treatments. This study is aimed to characterize the anticonvulsant effect of dapsone (DDS), in the kainic acid (KA)-induced Status Epilepticus (SE) by recording the brain metabolic activity with an [18F]FDG-PET analysis. METHODS: Wistar rats received KA (10 mg/kg, i.p., single dose) to produce sustained seizures. [18F]FDG-PET and electroencephalographic (EEG) studies were then performed. DDS or vehicle were administered 30 min before KA. [18F]FDG uptake and EEG were evaluated at baseline, 2 and 25 h after KA injection. Likewise, caspase-8, 3 hippocampal activities and Fluoro-Jade B neuronal degeneration and Hematoxylin-eosin staining were measured 25 h after KA. RESULTS: PET data evaluated at 2 h showed hyper-uptake of [18F]FDG in the control group, which was decreased by DDS. At 25 h, hypo-uptake was observed in the control group and higher values due to DDS effect. EEG spectral power was increased 2 h after KA administration in the control group during the generalized tonic-clonic seizures, which was reversed by DDS, correlated with [18F]FDG-PET uptake changes. The values of caspases-8 activity decreased 48 and 43 % vs control group in the groups treated with DDS (12.5 y 25 mg/kg respectively), likewise; caspase-3 activity diminished by 57 and 53 %. Fewer degenerated neurons were observed due to DDS treatments. CONCLUSIONS: This study pinpoints the anticonvulsant therapeutic potential of DDS. Given its safety and effectiveness, DDS may be a viable alternative for patients with drug-resistant epilepsy.


Assuntos
Epilepsia , Estado Epiléptico , Ratos , Animais , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Ácido Caínico/farmacologia , Fluordesoxiglucose F18/metabolismo , Dapsona/farmacologia , Ratos Wistar , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/diagnóstico por imagem , Estado Epiléptico/tratamento farmacológico , Convulsões/metabolismo , Hipocampo/metabolismo , Epilepsia/metabolismo
6.
J Mater Sci Mater Med ; 23(10): 2583-92, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22798167

RESUMO

We studied the use of three biocompatible materials obtained by plasma polymerization of pyrrole (PPy), pyrrole doped with iodine (PPy/I) and a copolymer formed with pyrrole and polyethylene glycol (PPy/PEG), implanted, separately, after a complete spinal cord transection in rats. Motor function assessed with the BBB scale and somatosensory evoked potentials (SEPs) in the implanted rats were studied. Results showed that the highest motor recovery was obtained in rats with PPy/I implants. They also showed a significant reduction in the latency of SEPs. Histological analyses showed no signs of implant rejection; on the contrary, implants based on PPy improved the SEPs conduction and motor function after lesion.


Assuntos
Materiais Biocompatíveis , Gases em Plasma , Polímeros/administração & dosagem , Próteses e Implantes , Pirróis/administração & dosagem , Traumatismos da Medula Espinal/fisiopatologia , Animais , Potenciais Somatossensoriais Evocados , Feminino , Microscopia Eletrônica de Varredura , Ratos , Ratos Long-Evans , Traumatismos da Medula Espinal/terapia
7.
J Neurosci Res ; 89(3): 373-80, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21259324

RESUMO

After spinal cord injury (SCI), a complex cascade of pathophysiological processes increases the primary damage. The inflammatory response plays a key role in this pathology. Recent evidence suggests that myeloperoxidase (MPO), an enzyme produced and released by neutrophils, is of special importance in spreading tissue damage. Dapsone (4,4'-diaminodiphenylsulfone) is an irreversible inhibitor of MPO. Recently, we demonstrated, in a model of brain ischemia/reperfusion, that dapsone has antioxidant, antiinflammatory, and antiapoptotic effects. The effects of dapsone on MPO activity, lipid peroxidation (LP) processes, motor function recovery, and the amount of spared tissue were evaluated in a rat model of SCI. MPO activity had increased 24.5-fold 24 hr after SCI vs. the sham group, and it had diminished by 38% and 19% in the groups treated with dapsone at 3 and 5 hr after SCI, respectively. SCI increased LP by 45%, and this increase was blocked by dapsone. In rats treated with dapsone, a significant motor function recovery (Basso-Beattie-Bresnahan score, BBB) was observed beginning during the first week of evaluation and continuing until the end of the study. Spontaneous recovery 8 weeks after SCI was 9.2 ± 1.12, whereas, in the dapsone-treated groups, it reached 13.6 ± 1.04 and 12.9 ± 1.17. Spared tissue increased by 42% and 33% in the dapsone-treated groups (3 and 5 hr after SCI, respectively) vs. SCI without treatment. Dapsone significantly prevented mortality. The results show that inhibition of MPO by dapsone significantly protected the spinal cord from tissue damage and enhanced motor recovery after SCI.


Assuntos
Dapsona/administração & dosagem , Antagonistas do Ácido Fólico/administração & dosagem , Recuperação de Função Fisiológica/efeitos dos fármacos , Traumatismos da Medula Espinal , Animais , Modelos Animais de Doenças , Feminino , Peroxidação de Lipídeos/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Peroxidase/metabolismo , Ratos , Ratos Wistar , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , Estatísticas não Paramétricas , Análise de Sobrevida , Fatores de Tempo
8.
Neurotoxicology ; 82: 18-25, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33127410

RESUMO

1-Methyl-4-phenylpyridinium ion (MPP+)-induced neurotoxicity produces cellular damage resembling that encountered in Parkinson's disease. The mechanisms of cellular death after MPP+ include the participation of oxidative stress in the loss of dopaminergic neurons. Among the mechanisms of defense against oxidative stress, several copper-dependent proteins have been implicated: Cu/Zn-SOD, ceruloplasmin, and metallothionein. Another important mechanism of damage, is MPP + interference with mitochondrial respiration. Both, oxidative stress and inhibition of mitochondrial respiration may trigger apoptosis in the neurons after MPP+. The aim of the present study was to characterize the time-course of apoptosis induced by MPP+ to determine if copper sulfate pretreatment is able to prevent the activation of caspases and decreased the neuronal apoptosis. MPP+ was microinjected into rat striatum using a stereotactic frame. The results showed increased activities of caspases 8, 9 and 3, between 72-120 hours after administration of MPP+, both in striatum and midbrain. After this study, we tested the effect of CuSO4 on MPP+ neurotoxicity, showing a diminution of the apoptotic damage induced by MPP+, decreased levels of enzymatic activity of caspases: 8 (-34 and -25 %), 9 (-25 and -42 %) and 3 (-40 and -29 %) in striatum and midbrain, respectively. Finally, we performed an immunohistochemical analysis, evidencing a decreased number of apoptotic cells in the groups pretreated with copper sulfate pretreatment compared to the control group. With these findings, it is concluded that pretreatment with copper sulfate may be a good alternative to prevent MPP+-induced apoptosis.


Assuntos
1-Metil-4-fenilpiridínio/toxicidade , Apoptose/efeitos dos fármacos , Sulfato de Cobre/farmacologia , Corpo Estriado/efeitos dos fármacos , Mesencéfalo/efeitos dos fármacos , 1-Metil-4-fenilpiridínio/antagonistas & inibidores , Animais , Anexina A5/metabolismo , Caspase 3/metabolismo , Caspase 8/metabolismo , Caspase 9/metabolismo , Marcação In Situ das Extremidades Cortadas , Masculino , Ratos , Ratos Wistar
9.
Brain Res ; 1769: 147621, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34403661

RESUMO

OBJECTIVE: Brain metabolic processes are not fully characterized in the kainic acid (KA)-induced Status Epilepticus (KASE). Thus, we evaluated the usefulness of 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) as an experimental strategy to evaluate in vivo, in a non-invasive way, the glucose consumption in several brain regions, in a semi-quantitative study to compare and to correlate with data from electroencephalography and histology studies. METHODS: Sixteen male Wistar rats underwent FDG-PET scans at basal state and after KA injection. FDG-PET images were normalized to an MRI-based atlas and segmented to locate regions. Standardized uptake values (SUV) were obtained at several time points. EEGs and cell viability by histological analysis, were also evaluated. RESULTS: FDG-PET data showed changes in regions such as: amygdala, hippocampus, accumbens, entorhinal cortex, motor cortex and hypothalamus. Remarkably, hippocampal hypermetabolism was found (mean SUV = 2.66 ± 0.057) 2 h after KA administration, while hypometabolism at 24 h (mean SUV = 1.83 ± 0.056) vs basal values (mean SUV = 2.19 ± 0.057). EEG showed increased spectral power values 2 h post-KA administration. Hippocampal viable-cell counting 24 h after KA was decreased, while Fluoro-Jade B-positive cells were increased, as compared to control rats, coinciding with the hypometabolism detected in the same region by semi-quantitative FDG-PET at 24 h after KASE. CONCLUSIONS: PET is suitable to measure metabolic brain changes in the rat model of status epilepticus induced by KA (KASE) at the first 24 h, compared to that of EEG; PET data may also be sensitive to cell viability.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Ácido Caínico/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Eletroencefalografia , Fluordesoxiglucose F18 , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Ratos , Ratos Wistar , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/metabolismo , Estado Epiléptico/patologia
10.
Neurochem Res ; 35(2): 343-7, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19777346

RESUMO

This study examined the neuroprotective ability of tetrapeptide L-Asp-Ala-His-Lys (DAHK) in permanent middle cerebral artery occlusion in rats. One DAHK dose (16 mg/kg) or saline solution were i.v. administered 30 min after occlusion and neurological deficit was evaluated at 2, 24, 48, 72 and 96 h using Longa scoring scale. The striatum infarction area was evaluated until 96 h after occlusion in both groups after staining with hematoxylin-eosin. DAHK-treated group showed a significant (P < 0.05) protection of 70% of neurological deficit at 96 h after occlusion, in comparison with the control-group that showed permanent neurological deficit. The DAHK-treated group showed a significant (P < 0.05) reduction of 52% infarction area in the striatum, as compared to control values. Results presented here support the possible therapeutic application of DAHK as a neuroprotective agent in human patients with stroke, as the peptide is part of human serum albumin, already being tested in clinical trials.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Infarto da Artéria Cerebral Média/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Oligopeptídeos/uso terapêutico , Animais , Ratos , Ratos Wistar , Acidente Vascular Cerebral/tratamento farmacológico
11.
Sci Rep ; 10(1): 3184, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-32081969

RESUMO

The immature brain is especially vulnerable to lead (Pb2+) toxicity, which is considered an environmental neurotoxin. Pb2+ exposure during development compromises the cognitive and behavioral attributes which persist even later in adulthood, but the mechanisms involved in this effect are still unknown. On the other hand, the kynurenine pathway metabolites are modulators of different receptors and neurotransmitters related to cognition; specifically, high kynurenic acid levels has been involved with cognitive impairment, including deficits in spatial working memory and attention process. The aim of this study was to evaluate the relationship between the neurocognitive impairment induced by Pb2+ toxicity and the kynurenine pathway. The dams were divided in control group and Pb2+ group, which were given tap water or 500 ppm of lead acetate in drinking water ad libitum, respectively, from 0 to 23 postnatal day (PND). The poison was withdrawn, and tap water was given until 60 PND of the progeny. The locomotor activity in open field, redox environment, cellular function, kynurenic acid (KYNA) and 3-hydroxykynurenine (3-HK) levels as well as kynurenine aminotransferase (KAT) and kynurenine monooxygenase (KMO) activities were evaluated at both 23 and 60 PND. Additionally, learning and memory through buried food location test and expression of KAT and KMO, and cellular damage were evaluated at 60 PND. Pb2+ group showed redox environment alterations, cellular dysfunction and KYNA and 3-HK levels increased. No changes were observed in KAT activity. KMO activity increased at 23 PND and decreased at 60 PND. No changes in KAT and KMO expression in control and Pb2+ group were observed, however the number of positive cells expressing KMO and KAT increased in relation to control, which correlated with the loss of neuronal population. Cognitive impairment was observed in Pb2+ group which was correlated with KYNA levels. These results suggest that the increase in KYNA levels could be a mechanism by which Pb2+ induces cognitive impairment in adult mice, hence the modulation of kynurenine pathway represents a potential target to improve behavioural alterations produced by this environmental toxin.


Assuntos
Disfunção Cognitiva/metabolismo , Cinurenina/metabolismo , Lactação , Chumbo/toxicidade , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/fisiopatologia , Disfunção Cognitiva/fisiopatologia , Exposição Ambiental , Feminino , Lactação/efeitos dos fármacos , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/metabolismo , Transtornos da Memória/fisiopatologia , Memória de Longo Prazo/efeitos dos fármacos , Camundongos , Atividade Motora/efeitos dos fármacos , Oxirredução
12.
Neurosci Lett ; 452(1): 56-9, 2009 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-19159657

RESUMO

Spinal cord injury (SCI) is a world-wide health problem. After traumatic injury, spinal cord tissue starts a series of self-destructive mechanisms, known as the secondary lesion. The leading mechanisms of damage after SCI are excitotoxicity, free radicals' overproduction, inflammation and apoptosis. Metallothionein (MT) and reduced glutathione (GSH) are low-molecular-weight, cysteine-rich peptides able to scavenge free radicals. MT and GSH participation as neuroprotective molecules after SCI is unknown. The aim of the present study is to describe the changes of MT and GSH contents and GSH peroxidase (GPx) activity in the acute phase after SCI in rats. Female Wistar rats weighing 200-250g were submitted to spinal cord contusion model, by means of a computer-controlled device (NYU impactor). Rats receiving laminectomy were used as a control group. Animals were killed 2, 4, 12 and 24h after surgery. MT was quantified by the silver-saturation method, using atomic absorption spectrophotometry. GSH and GPx were assayed by spectrophotometry. Results indicate an increased MT content by effect of SCI, only at 4 and 24h, as compared to sham group values. Meanwhile, GSH was found decreased at 4, 12 and 24h after SCI. Interestingly, GPx activity was raised at all time points, indicating that this enzymatic defense is activated soon after SCI. Results suggest that thiol-based defenses, MT and GSH, are differentially expressed by spinal cord tissue to cope with the various processes of damage after lesion.


Assuntos
Antioxidantes/metabolismo , Regulação da Expressão Gênica/fisiologia , Glutationa/metabolismo , Metalotioneína/metabolismo , Oxirredutases/metabolismo , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/fisiopatologia , Animais , Modelos Animais de Doenças , Feminino , Ratos , Ratos Wistar , Fatores de Tempo
13.
Oxid Med Cell Longev ; 2019: 1327986, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31019649

RESUMO

Epilepsy is a neurological disorder characterized by recurrent spontaneous seizures due to an imbalance between cerebral excitability and inhibition, with a tendency towards uncontrolled excitability. Epilepsy has been associated with oxidative and nitrosative stress due to prolonged neuronal hyperexcitation and loss neurons during seizures. The experimental animal models report level of ATP diminished and increase in lipid peroxidation, catalase, and glutathione altered activity in the brain. We studied the immunohistochemical expression and localization of antioxidant enzymes GPx, SOD, and CAT in the rat brains treated with KA and PTZ. A significant decrease was observed in the number of immunoreactive cells to GPx, without significant changes for SOD and CAT in KA-treated rats, and decrease in the number of immunoreactive cells to SOD, without significant changes for GPx and only CAT in PTZ-treated rats. Evident immunoreactivity of GPx, SOD, and CAT was observed mainly in astrocytes and neurons of the hippocampal brain region in rats exposed at KA; similar results were observed in rats treated with PTZ at the first hours. These results provide evidence supporting the role of activation of the Nrf2 antioxidant system pathway against oxidative stress effects in the experimental models of epileptic seizures.


Assuntos
Imuno-Histoquímica/métodos , Fator 2 Relacionado a NF-E2/metabolismo , Convulsões/enzimologia , Convulsões/patologia , Animais , Antioxidantes/metabolismo , Comportamento Animal , Hipocampo/patologia , Ácido Caínico , Masculino , Modelos Biológicos , Pentilenotetrazol , Ratos Wistar
14.
Neuroreport ; 30(5): 358-362, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30724852

RESUMO

Epilepsy is a neurological disorder of the central nervous system characterized by hypersynchronized neuronal activity and has been associated with oxidative stress. Oxidative stress interferes with the expression of genes as well as transcriptional factors such as nuclear factor-erythroid 2-related factor 2 (Nrf2). We evaluated the expression of Nrf2 in the rat brain in treated with kainic acid (KA) and pentylenetetrazole (PTZ). Nrf2 immunoreactivity was observed in astrocytes of the hippocampal region in rats exposed at KA. Nrf2 expression was increased significantly in rats with KA and PTZ. These results provide evidence that the increased expression of Nrf2 is part of the mechanism against KA and PTZ toxicity.


Assuntos
Encéfalo/metabolismo , Convulsivantes/toxicidade , Ácido Caínico/toxicidade , Fator 2 Relacionado a NF-E2/biossíntese , Pentilenotetrazol/toxicidade , Animais , Encéfalo/efeitos dos fármacos , Epilepsia/induzido quimicamente , Epilepsia/metabolismo , Masculino , Estresse Oxidativo/fisiologia , Ratos , Ratos Wistar
15.
Brain Res ; 1708: 181-187, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30571982

RESUMO

Status epilepticus (SE) is a serious medical condition, as it may trigger epileptogenesis. SE produces continuous generalized seizures resulting in irreversible brain damage. Therefore, the use of neuroprotective agents to prevent cell damage, may reduce the impact of SE. The use of diazepam (DZP), has shown limited neuroprotective effect in SE patients. According to previous reports, dapsone (DDS) is able to reduce both cell damage and seizures, when administered 30 min before the onset of seizures. This study is aimed to evaluate the ability of DDS, alone or in combination with DZP starting their administration once the SE is onset to evaluate the control of seizures in rats. Results showed a reduced convulsive electrical activity after 30 min, 1 and 2 h after SE induced by kainic acid (KA) administration, in the animals treated with DZP alone or in combination with DDS. At 24 h, we observed electrical activity similar to baseline in all groups receiving treatment. The animals treated with DDS and DZP alone or in combination showed an increase in the number of viable pyramidal cells but only the combination showed a lower number of damaged pyramidal neurons of hippocampal CA3. In conclusion, DDS plus DZP was able to control SE and to prevent SE-induced damage, when administered in combination with DZP. As DDS is already in use for patients with leprosy, that combination may be a safe, good option for human cases of SE.


Assuntos
Dapsona/farmacologia , Estado Epiléptico/tratamento farmacológico , Animais , Anticonvulsivantes/farmacologia , Diazepam/farmacologia , Eletroencefalografia , Hipocampo/efeitos dos fármacos , Ácido Caínico/efeitos adversos , Masculino , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Células Piramidais/efeitos dos fármacos , Ratos , Ratos Wistar , Convulsões/induzido quimicamente , Estado Epiléptico/induzido quimicamente
16.
Oxid Med Cell Longev ; 2018: 3265918, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30524652

RESUMO

After spinal cord injury (SCI), some self-destructive mechanisms start leading to irreversible neurological deficits. It is known that oxidative stress and apoptosis play a major role in increasing damage after SCI. Metallothioneins I and II (MT) are endogenous peptides with known antioxidant, neuroprotective capacities. Taking advantage of those capacities, we administered exogenous MT to rats after SCI in order to evaluate the protective effects of MT on the production of reactive oxygen species (ROS) and lipid peroxidation (LP), as markers of oxidative stress. The activities of caspases-9 and -3 and the number of annexin V and TUNEL-positive cells in the spinal cord tissue were also measured as markers of apoptosis. Rats were subjected to either sham surgery or SCI and received vehicle or two doses of MT (10 µg per rat) at 2 and 8 h after surgical procedure. The results showed a significant increase in levels of MT protein by effect of SCI and SCI plus treatment at 12 h, while at 24 h an increase of MT was observed only in the injury plus treatment group (p < 0.05). ROS production was decreased by effect of MT in lesioned tissue; likewise, we observed diminished LP levels by MT effect both in the sham group and in the group with SCI. Also, the results showed an increase in the activity of caspase-9 due to SCI, without changes by effect of MT, as compared to the sham group. Caspase-3 activity was increased by SCI, and again, MT treatment reduced this effect only at 24 h after injury. Finally, the results of the number of cells positive to annexin V and TUNEL showed a reduction due to MT treatment both at 24 and 72 h after the injury. With the findings of this work, we conclude that exogenously administered MT has antioxidant and antiapoptotic effects after SCI.


Assuntos
Antioxidantes/administração & dosagem , Apoptose/efeitos dos fármacos , Metalotioneína/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal/prevenção & controle , Animais , Feminino , Peroxidação de Lipídeos/efeitos dos fármacos , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia
17.
Environ Toxicol Pharmacol ; 23(3): 350-8, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-21783780

RESUMO

The Cd has been recognized as one of the most toxic environmental and industrial pollutants due to its ability to induce disturbances in several organs and tissues following either acute or chronic exposure. This review accounts for the recent evidence on its mechanisms to induce neurotoxicity, the role of the blood-brain barrier, oxidative stress, interference with calcium, and zinc-dependent processes and apoptosis induction as well as the modulatory effect of metallothionein. Discussion about cadmium neurotoxicity is centered on mechanisms of induction of cellular disfunctions. Future investigations must address those neuronal mechanisms in detail in order to understand cadmium-induced neurotoxicity.

18.
Oxid Med Cell Longev ; 2017: 5828056, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29085556

RESUMO

Metallothioneins are a family of proteins which are able to bind metals intracellularly, so their main function is to regulate the cellular metabolism of essential metals. There are 4 major isoforms of MTs (I-IV), three of which have been localized in the central nervous system. MT-I and MT-II have been localized in the spinal cord and brain, mainly in astrocytes, whereas MT-III has been found mainly in neurons. MT-I and MT-II have been considered polyvalent proteins whose main function is to maintain cellular homeostasis of essential metals such as zinc and copper, but other functions have also been considered: detoxification of heavy metals, regulation of gene expression, processes of inflammation, and protection against free radicals generated by oxidative stress. On the other hand, the MT-III has been related in events of pathogenesis of neurodegenerative diseases such as Parkinson and Alzheimer. Likewise, the participation of MTs in other neurological disorders has also been reported. This review shows recent evidence about the role of MT in the central nervous system and its possible role in neurodegenerative diseases as well as in brain disorders.


Assuntos
Encefalopatias/genética , Metalotioneína/metabolismo , Animais , Encefalopatias/metabolismo , Encefalopatias/patologia , Ratos
19.
Steroids ; 126: 7-14, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28827046

RESUMO

Estradiol (E2), in addition to its known hormone function, is a neuroactive steroid that has shown neuroprotective profile in several models of neurological diseases. The present study explores the antioxidant effect of ß-estradiol-3-benzoate (EB) on the neurotoxicity elicited by MPP+ in rat striatum. Male Wistar rats, that were gonadectomized 30days prior to EB, were given 100µgEB per rat every 48h for 11days and animals were infused with MPP+ via intrastriatal at day six after beginning EB treatment. EB treatment completely prevented the fall in dopamine caused by MPP+, such result was related with decreased lipid peroxidation, a marker of oxidative stress; diminished number of ipsilateral-to-lesion turns and increased signal of the dopamine-synthesizing enzyme Tyrosin Hydroxylase in substantia nigra. The protection elicited by EB was not related to Mn or Cu-Zn superoxide dismutase enzymatic activities or glutathione modulation since none of these parameters were influenced by EB at the times assayed. Whereas, increased expression of PON2 as a result of EB treatment was observed, this phenomenon could be one of the mechanism by which the steroid conferred protection to dopaminergic cells against MPP+ injury.


Assuntos
1-Metil-4-fenilpiridínio/toxicidade , Estradiol/análogos & derivados , Peroxidação de Lipídeos/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/etiologia , Doença de Parkinson/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Relação Dose-Resposta a Droga , Estradiol/farmacologia , Masculino , Neostriado/efeitos dos fármacos , Neostriado/metabolismo , Doença de Parkinson/patologia , Ratos , Ratos Wistar
20.
J Clin Neurosci ; 39: 87-90, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28087193

RESUMO

Epilepsy is characterized by spontaneous recurrent seizures and temporal lobe epilepsy (TLE) is the most common serious neurological example of acquired and frequent epilepsy. Oxidative stress is recognized as playing a contributing role in several neurological disorders, and most recently have been implicated in acquired epilepsies. The MTs occur in several brain regions and may serve as neuroprotective proteins against reactive oxygen species causing oxidative damage and stress. The main aim of this work was to describe the immunohistochemical localization of MT in the specimens derived from the patients affected by TLE. Histopathological examination showed NeuN, GFAP and MT immunopositive cells that were analyzed for determinate in hippocampal and parietal cortex samples. An increase in the reactive gliosis associated with increased MT expression was observed in patients with TLE.


Assuntos
Epilepsia do Lobo Temporal/metabolismo , Epilepsia do Lobo Temporal/patologia , Metalotioneína/análise , Metalotioneína/biossíntese , Adulto , Feminino , Hipocampo/química , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Masculino , Estresse Oxidativo/fisiologia , Lobo Parietal/química , Lobo Parietal/metabolismo , Lobo Parietal/patologia , Lobo Temporal/química , Lobo Temporal/metabolismo , Lobo Temporal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA