Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Gut ; 2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33558272

RESUMO

OBJECTIVE: Stroke is a leading cause of death and disability worldwide. Neuroprotective approaches have failed in clinical trials, thus warranting therapeutic innovations with alternative targets. The gut microbiota is an important contributor to many risk factors for stroke. However, the bidirectional interactions between stroke and gut microbiota remain largely unknown. DESIGN: We performed two clinical cohort studies to capture the gut dysbiosis dynamics after stroke and their relationship with stroke prognosis. Then, we used a middle cerebral artery occlusion model to explore gut dysbiosis post-stroke in mice and address the causative relationship between acute ischaemic stroke and gut dysbiosis. Finally, we tested whether aminoguanidine, superoxide dismutase and tungstate can alleviate post-stroke brain infarction by restoring gut dysbiosis. RESULTS: Brain ischaemia rapidly induced intestinal ischaemia and produced excessive nitrate through free radical reactions, resulting in gut dysbiosis with Enterobacteriaceae expansion. Enterobacteriaceae enrichment exacerbated brain infarction by enhancing systemic inflammation and is an independent risk factor for the primary poor outcome of patients with stroke. Administering aminoguanidine or superoxide dismutase to diminish nitrate generation or administering tungstate to inhibit nitrate respiration all resulted in suppressed Enterobacteriaceae overgrowth, reduced systemic inflammation and alleviated brain infarction. These effects were gut microbiome dependent and indicated the translational value of the brain-gut axis in stroke treatment. CONCLUSIONS: This study reveals a reciprocal relationship between stroke and gut dysbiosis. Ischaemic stroke rapidly triggers gut microbiome dysbiosis with Enterobacteriaceae overgrowth that in turn exacerbates brain infarction.

2.
Acta Pharmacol Sin ; 41(3): 348-357, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31506573

RESUMO

Intestinal mucositis is a common side effect of anticancer regimens that exerts a negative impact on chemotherapy. Superoxide dismutase (SOD) is a potential therapy for mucositis but efficient product is not available because the enzyme is degraded following oral administration or induces an immune reaction after intravascular infusion. Multi-modified Stable Anti-Oxidant Enzymes® (MS-AOE®) is a new recombinant SOD with better resistance to pepsin and trypsin. We referred it as MS-SOD to distinguish from other SODs. In this study we investigated its potential to alleviate 5-FU-induced intestinal injury and the mechanisms. An intestinal mucositis model was established in C57/BL6 mice by 5-day administration of 5-FU (50 mg/kg every day, ip). MS-SOD (800 IU/10 g, ig) was given once daily for 9 days. 5-FU caused severe mucositis with intestinal morphological damage, bodyweight loss and diarrhea; MS-SOD significantly decreased the severity. 5-FU markedly increased reactive oxygen species (ROS) and inflammatory cytokines in the intestine which were ameliorated by MS-SOD. Furthermore, MS-SOD modified intestinal microbes, particularly reduced Verrucomicrobia, compared with the 5-FU group. In Caco2 cells, MS-SOD (250-1000 U/mL) dose-dependently decreased tBHP-induced ROS generation. In RAW264.7 cells, MS-SOD (500 U/mL) had no effect on LPS-induced inflammatory cytokines, but inhibited iNOS expression. These results demonstrate that MS-SOD can scavenge ROS at the initial stage of injury, thus play an indirect role in anti-inflammatory and barrier protein protection. In conclusion, MS-SOD attenuates 5-FU-induced intestinal mucositis by suppressing oxidative stress and inflammation, and influencing microbes. MS-SOD may exert beneficial effect in prevention of intestinal mucositis during chemotherapy in clinic.


Assuntos
Fluoruracila/efeitos adversos , Mucosa Intestinal/metabolismo , Superóxido Dismutase/metabolismo , Administração Oral , Animais , Fluoruracila/administração & dosagem , Fluoruracila/metabolismo , Injeções Intraperitoneais , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/metabolismo , Superóxido Dismutase/administração & dosagem
3.
J Appl Toxicol ; 35(12): 1473-80, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25727789

RESUMO

Basic Violet 14, Direct Red 28 and Acid Red 26 are classified as carcinogenic dyes in the European textile ecology standard, despite insufficient toxicity data. In this study, the toxicity of these dyes was assessed in a zebrafish model, and the underlying toxic mechanisms were investigated. Basic Violet 14 and Direct Red 28 showed acute toxicity with a LC50 value at 60.63 and 476.84 µg ml(-1) , respectively, whereas the LC50 of Acid Red 26 was between 2500 and 2800 µg ml(-1) . Treatment with Basic Violet 14, Direct Red 28 and Acid Red 26 resulted in common developmental abnormalities including delayed yolk sac absorption and swimming bladder deflation. Hepatotoxicity was observed in zebrafish treated with Basic Violet 14, and cardiovascular toxicity was found in zebrafish treated with Acid Red 26 at concentrations higher than 2500 µg ml(-1) . Basic Violet 14 also caused significant up-regulation of GCLC gene expression in a dose-dependent manner whereas Acid Red 26 induced significant up-regulation of NKX2.5 and down-regulation of GATA4 at a high concentration in a dose-dependent manner. These results suggest that Basic Violet 14, Direct Red 28 and Acid Red 26 induce developmental and organ-specific toxicity, and oxidative stress may play a role in the hepatotoxicity of Basic Violet 14, the suppressed GATA4 expression may have a relation to the cardiovascular toxicity of Acid Red 26.


Assuntos
Compostos Azo/toxicidade , Vermelho Congo/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Corantes de Rosanilina/toxicidade , Peixe-Zebra/embriologia , Alternativas ao Uso de Animais , Animais , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Coração/efeitos dos fármacos , Coração/embriologia , Larva , Dose Letal Mediana , Fígado/efeitos dos fármacos , Fígado/embriologia , Fígado/ultraestrutura , Testes de Toxicidade
4.
Biochim Biophys Acta ; 1834(1): 464-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22819876

RESUMO

Substantial evidence suggests that transient production of reactive oxygen species (ROS) such as hydrogen peroxide (H(2)O(2)) is an important signaling event triggered by the activation of various cell surface receptors. Major targets of H(2)O(2) include protein tyrosine phosphatases (PTPs). Oxidation of the active site Cys by H(2)O(2) abrogates PTP catalytic activity, thereby potentially furnishing a mechanism to ensure optimal tyrosine phosphorylation in response to a variety of physiological stimuli. Unfortunately, H(2)O(2) is poorly reactive in chemical terms and the second order rate constants for the H(2)O(2)-mediated PTP inactivation are ~10M(-1)s(-1), which is too slow to be compatible with the transient signaling events occurring at the physiological concentrations of H(2)O(2). We find that hydroxyl radical is produced from H(2)O(2) solutions in the absence of metal chelating agent by the Fenton reaction. We show that the hydroxyl radical is capable of inactivating the PTPs and the inactivation is active site directed, through oxidation of the catalytic Cys to sulfenic acid, which can be reduced by low molecular weight thiols. We also show that hydroxyl radical is a kinetically more efficient oxidant than H(2)O(2) for inactivating the PTPs. The second-order rate constants for the hydroxyl radical-mediated PTP inactivation are at least 2-3 orders of magnitude higher than those mediated by H(2)O(2) under the same conditions. Thus, hydroxyl radical generated in vivo may serve as a more physiologically relevant oxidizing agent for PTP inactivation. This article is part of a Special Issue entitled: Chemistry and mechanism of phosphatases, diesterases and triesterases.


Assuntos
Peróxido de Hidrogênio/química , Radical Hidroxila/química , Proteína Tirosina Fosfatase não Receptora Tipo 1/química , Animais , Catálise , Bovinos , Humanos , Cinética , Oxirredução , Ácidos Sulfênicos/química
5.
Biochim Biophys Acta Mol Cell Res ; 1871(7): 119766, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38823528

RESUMO

BACKGROUND: Interstitial cystitis/bladder pain syndrome (IC/BPS) is a bladder syndrome of unknown etiology. Reactive oxygen species (ROS) plays a major role in ferroptosis and bladder dysfunction of IC/BPS, while the role of ferroptosis in IC/BPS progression is still unclear. This study aims to investigate the role and mechanism of ROS-induced ferroptosis in IC/BPS using cell and rat model. METHODS: We collected IC/BPS patient bladder tissue samples and established a LPS-induced IC/BPS rat model (LRM). The level of oxidative stress and ferroptosis in IC/BPS patients and LRM rats was analyzed. Function and regulatory mechanism of ferroptosis in IC/BPS were explored by in vitro and in vivo experiments. RESULTS: The patients with IC/BPS showed mast cells and inflammatory cells infiltration in bladder epithelial tissues. Expression of NRF2 was up-regulated, and GPX4 was decreased in IC/BPS patients compared with normal tissues. IC model cells underwent oxidative stress, which induced ferroptosis. These above results were validated in LRM rat models, and inhibition of ferroptosis ameliorated bladder dysfunction in LRM rats. Wnt/ß-catenin signaling was deactivated in IC/BPS patients and animals, and activation of Wnt/ß-catenin signaling reduced cellular free radical production, thereby inhibited ferroptosis in IC model cells. Mechanistically, the Wnt/ß-catenin signaling pathway inhibited oxidative stress-induced ferroptosis by down-regulating NF-κB, thus contributing to recover IC/BPS both in vitro and in vivo. CONCLUSIONS: We demonstrate for the first time that oxidative stress-induced ferroptosis plays an important role in the pathology of IC/BPS. Mechanistically, the Wnt/ß-catenin signaling suppressed oxidative stress-induced ferroptosis by down-regulating NF-κB to improve bladder injury in IC/BPS.


Assuntos
Cistite Intersticial , Ferroptose , NF-kappa B , Estresse Oxidativo , Via de Sinalização Wnt , Animais , Cistite Intersticial/metabolismo , Cistite Intersticial/patologia , Cistite Intersticial/genética , Humanos , NF-kappa B/metabolismo , Ratos , Feminino , Ratos Sprague-Dawley , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , beta Catenina/metabolismo , beta Catenina/genética , Espécies Reativas de Oxigênio/metabolismo , Modelos Animais de Doenças , Bexiga Urinária/metabolismo , Bexiga Urinária/patologia , Pessoa de Meia-Idade , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Masculino
6.
Sci China Life Sci ; 67(9): 1899-1914, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38902450

RESUMO

Energy status is linked to the production of reactive oxygen species (ROS) in macrophages, which is elevated in obesity. However, it is unclear how ROS production is upregulated in macrophages in response to energy overload for mediating the development of obesity. Here, we show that the Rab-GTPase activating protein (RabGAP) TBC1D1, a substrate of the energy sensor AMP-activated protein kinase (AMPK), is a critical regulator of macrophage ROS production and consequent adipose inflammation for obesity development. TBC1D1 deletion decreases, whereas an energy overload-mimetic non-phosphorylatable TBC1D1S231A mutation increases, ROS production and M1-like polarization in macrophages. Mechanistically, TBC1D1 and its downstream target Rab8a form an energy-responsive complex with NOX2 for ROS generation. Transplantation of TBC1D1S231A bone marrow aggravates diet-induced obesity whereas treatment with an ultra-stable TtSOD for removal of ROS selectively in macrophages alleviates both TBC1D1S231A mutation- and diet-induced obesity. Our findings therefore have implications for drug discovery to combat obesity.


Assuntos
Proteínas Ativadoras de GTPase , Macrófagos , Obesidade , Espécies Reativas de Oxigênio , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Ativadoras de GTPase/genética , Espécies Reativas de Oxigênio/metabolismo , Obesidade/metabolismo , Obesidade/genética , Animais , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NADPH Oxidase 2/metabolismo , NADPH Oxidase 2/genética , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Metabolismo Energético , Masculino , Mutação , Dieta Hiperlipídica/efeitos adversos , Camundongos Knockout , Humanos , Proteínas Quinases Ativadas por AMP/metabolismo , Inflamação/metabolismo
7.
Biochem J ; 441(2): 623-32, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21967612

RESUMO

The formation of intracellular nitrogen-based oxidants has important physiological and pathological consequences. CK (creatine kinase), which plays a key role in intracellular energy metabolism, is a main target of low concentrations of oxidative and nitrative stresses. In the present study, the interaction between cytosolic CKs [MM-CK (muscle-type CK) and BB-CK (brain-type CK)] and MTs [metallothioneins; hMT2A (human MT-IIA) and hMT3 (human MT-III)] were characterized by both in vitro and intact-cell assays. MTs could successfully protect the cytosolic CKs against inactivation induced by low concentrations of PN (peroxynitrite) and NO both in vitro and in hMT2A-overexpressing H9c2 cells and hMT3-knockdown U-87 MG cells. Under high PN concentrations, CK formed granule-like structures, and MTs were well co-localized in these aggregated granules. Further analysis indicated that the number of cells containing the CK aggregates negatively correlated with the expression levels of MTs. In vitro experiments indicated that MTs could effectively protect CKs against aggregation during refolding, suggesting that MT might function as a chaperone to assist CK re-activation. The findings of the present study provide direct evidence of the connection between the two well-characterized intracellular systems: the precisely balanced energy homoeostasis by CKs and the oxidative-stress response system using MTs.


Assuntos
Creatina Quinase Forma BB/metabolismo , Creatina Quinase Forma MM/metabolismo , Metalotioneína/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Óxido Nítrico/farmacologia , Ácido Peroxinitroso/farmacologia , Animais , Células CHO , Creatina Quinase Forma BB/antagonistas & inibidores , Creatina Quinase Forma MM/antagonistas & inibidores , Cricetinae , Citosol/enzimologia , Humanos , Metalotioneína 3 , Camundongos , Chaperonas Moleculares/farmacologia
8.
Zhongguo Zhong Yao Za Zhi ; 38(12): 1915-8, 2013 Jun.
Artigo em Zh | MEDLINE | ID: mdl-24066583

RESUMO

The dried Whitmania pigra is used for the treatment of cardiovascular and cerebrovascular diseases in traditional Chinese medicine. Bellamya purificata is widely distributed in the Chang Jiang River basin, it is natural diets of W. pigra. Current study was conducted to compare and analyze the nutritional ingredient in W. pigra, body fluid and flesh of B. purificata. Results showed that the contents of protein, crude fat and total sugar in W. pigra, body fluid and flesh of B. purificata were significantly different (P < 0.05). Protein content in W. pigra accounts up to 65.01%. The contents of inorganic elements and amino acid were abundant in W. pigra, body fluid and flesh of B. purificata. The content of essential amino acids in them were 32.6, 221.59, 40.78 mg x g(-1), respectively. The content of flavor amino acid in them were 27.51, 14.5, 32.03 mg x g(-1), while the coresponding content of antioxidant amino acid were 8.81, 5.91, 9.73 mg x g(-1), respectively. The individual amino acids of high content in them were Glu, Asp and Leu. Macro elements Ca, P, Mg and trace elements Zn, Si, Fe were abundant. It could be speculated that W. pigra may be a promising novel food, and the present results provide a foundation to develop artificial feed for W. Pigra.


Assuntos
Gastrópodes/química , Sanguessugas/química , Aminoácidos/análise , Animais , Medicina Tradicional Chinesa
9.
Sci China Life Sci ; 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37202543

RESUMO

Gut barrier disruption is a key event in bridging gut microbiota dysbiosis and high-fat diet (HFD)-associated metabolic disorders. However, the underlying mechanism remains elusive. In the present study, by comparing HFD- and normal diet (ND)-treated mice, we found that the HFD instantly altered the composition of the gut microbiota and subsequently damaged the integrity of the gut barrier. Metagenomic sequencing revealed that the HFD upregulates gut microbial functions related to redox reactions, as confirmed by the increased reactive oxygen species (ROS) levels in fecal microbiota incubation in vitro and in the lumen, which were detected using in vivo fluorescence imaging. This microbial ROS-producing capability induced by HFD can be transferred through fecal microbiota transplantation (FMT) into germ-free (GF) mice, downregulating the gut barrier tight junctions. Similarly, mono-colonizing GF mice with an Enterococcus strain excelled in ROS production, damaged the gut barrier, induced mitochondrial malfunction and apoptosis of the intestinal epithelial cells, and exacerbated fatty liver, compared with other low-ROS-producing Enterococcus strains. Oral administration of recombinant high-stability-superoxide dismutase (SOD) significantly reduced intestinal ROS, protected the gut barrier, and improved fatty liver against the HFD. In conclusion, our study suggests that extracellular ROS derived from gut microbiota play a pivotal role in HFD-induced gut barrier disruption and is a potential therapeutic target for HFD-associated metabolic diseases.

10.
Biochem J ; 436(2): 437-45, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21426302

RESUMO

Muscle contraction requires high energy fluxes, which are supplied by MM-CK (muscle-type creatine kinase) which couples to the myofibril. However, little is known about the detailed molecular mechanisms of how MM-CK participates in and is regulated during muscle contraction. In the present study, MM-CK is found to physically interact with the slow skeletal muscle-type MyBPC1 (myosin-binding protein C1). The interaction between MyBPC1 and MM-CK depended on the creatine concentration in a dose-dependent manner, but not on ATP, ADP or phosphocreatine. The MyBPC1-CK interaction favoured acidic conditions, and the two molecules dissociated at above pH 7.5. Domain-mapping experiments indicated that MM-CK binds to the C-terminal domains of MyBPC1, which is also the binding site of myosin. The functional coupling of myosin, MyBPC1 and MM-CK is further corroborated using an ATPase activity assay in which ATP expenditure accelerates upon the association of the three proteins, and the apparent K(m) value of myosin is therefore reduced. The results of the present study suggest that MyBPC1 acts as an adaptor to connect the ATP consumer (myosin) and the regenerator (MM-CK) for efficient energy metabolism and homoeostasis.


Assuntos
Proteínas de Transporte/fisiologia , Creatina Quinase Forma MM/metabolismo , Fibras Musculares de Contração Lenta/fisiologia , Miosinas/metabolismo , Animais , Metabolismo Energético/fisiologia , Células HEK293 , Homeostase/fisiologia , Humanos , Camundongos , Fibras Musculares de Contração Lenta/enzimologia , Músculo Esquelético/citologia , Músculo Esquelético/enzimologia , Músculo Esquelético/metabolismo , Ligação Proteica/fisiologia , Recrutamento Neurofisiológico/fisiologia
11.
Int Urol Nephrol ; 54(7): 1681-1691, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34783980

RESUMO

PURPOSE: To evaluate the effects of manganese superoxide dismutase (Mn-SOD) from thermophilic bacterium HB27 (name as Tt-SOD) on chemical cystitis. METHODS: Control and experimental rats were infused by intravesical saline or hydrochloric acid (HCl) on the first day of the experiments. Saline, sodium hyaluronate (SH) or Tt-SOD were infused intravesically once a day for three consequent days. On the fifth day, the rats were weighted and sacrificed following a pain threshold test. The bladder was harvested for histological and biochemical analyses. RESULTS: Tt-SOD could reduce the bladder index, infiltration of inflammatory cells in tissues, serum inflammatory factors and SOD levels, mRNA expression of inflammatory factors in tissues, and increase perineal mechanical pain threshold and serum MDA and ROS levels in HCl-induced chemical cystitis. Furthermore, Tt-SOD alleviated inflammation and oxidative stress by the negative regulation of the NF-κB p65 and p38 MAPK signaling pathway. CONCLUSIONS: Intravesical instillation of Tt-SOD provides protective effects against HCl-induced cystitis.


Assuntos
Proteínas de Bactérias , Cistite , Superóxido Dismutase , Animais , Proteínas de Bactérias/uso terapêutico , Cistite/induzido quimicamente , Cistite/terapia , Ácido Clorídrico/efeitos adversos , Inflamação/metabolismo , Ratos , Ratos Sprague-Dawley , Superóxido Dismutase/uso terapêutico , Bexiga Urinária/patologia
12.
Mol Cancer ; 10: 125, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-21962244

RESUMO

BACKGROUND: Ovarian cancer has the highest mortality rate of all gynecologic malignancy. The receptor tyrosine kinases (RTKs), including EGFR, ERBB2, PDGFR, VEGFR and MET, are activated in subsets of ovarian cancer, suggesting that these kinases might represent novel therapeutic targets. However, clinical trials have not or just partially shown benefit to ovarian cancers treated with EGFR, ERBB2, or PDGFR inhibitors. Despite multiple RTK activation in ovarian cancer pathogenesis, it is unclear whether transforming activity is dependent on an individual kinase oncoprotein or the coordinated activity of multiple kinases. We hypothesized that a coordinated network of multi-RTK activation is important for the tumorigenesis of ovarian cancers. RESULTS: Herein, we demonstrate co-activation of multiple RTKs (EGFR, ERBB2, ERBB4, MET and/or AXL) in individual ovarian cancer cell lines and primary tumors. We also show that coordinate inhibition of this multi-kinase signaling has substantially greater effect on ovarian cancer proliferation and survival, compared to inhibition of individual activated kinases. The inhibition of this multi-RTK signaling by HSP90 suppression results in profound pro-apoptotic and anti-proliferative effects, and is associated with the inactivation of RTK downstream PI3-K/AKT/mTOR and RAF/MAPK signaling. CONCLUSION: These studies suggest that anti-multiple RTK strategy could be useful in the treatment of ovarian cancer.


Assuntos
Proteínas de Choque Térmico HSP90/metabolismo , Terapia de Alvo Molecular , Neoplasias Ovarianas/tratamento farmacológico , Receptores Proteína Tirosina Quinases/metabolismo , Antineoplásicos/farmacologia , Apoptose , Benzoquinonas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ativação Enzimática , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Feminino , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Humanos , Lactamas Macrocíclicas/farmacologia , Neoplasias Ovarianas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/metabolismo , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/metabolismo , Receptor ErbB-4 , Receptor Tirosina Quinase Axl
13.
J Biomol Struct Dyn ; 38(10): 2884-2897, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31345118

RESUMO

In this study, we aimed to identify critical factors associated with superoxide dismutase 2 (SOD2) in human keratinocytes through gene and protein expression profiling approaches. After recombinant SOD2 was exogenously added to culture media, we conducted serial OMICS studies, which included RNA sequencing analysis, integrated antibody-chip arrays, and the implementation of bioinformatics algorithms, in order to reveal genes and proteins that are possibly associated with SOD2 in keratinocytes. These approaches identified several novel genes and proteins in keratinocytes that are associated with exogenous SOD2. These novel genes included DCT, which was up-regulated, and CD38, GPR151, HCK, KIT, and AFP, which were down-regulated. Among them, CD38 and KIT were also predicted as hub proteins in PPI mappings. By integrating the datasets obtained from these complementary high-throughput OMICS studies and utilizing the strengths of each method, we obtained new insights into the functional role of externally added SOD2 in skin cells and into several critical genes that are thought to play important roles in SOD2-associated skin function. The approach used here could help contribute to our clinical understanding of SOD2-associated applications and may be broadly applicable to a wider range of diseases. AbbreviationsSOD2superoxide dismutase 2DAVIDthe database for annotation, visualization and integrated discoveryKEGGKyoto Encyclopedia of Genes and GenomesPPIprotein-protein interactionsHTSHigh-throughput screeningCommunicated by Ramaswamy H. Sarma.


Assuntos
Biologia Computacional , Superóxido Dismutase , Humanos , Queratinócitos , Análise de Sequência de RNA , Superóxido Dismutase/genética
14.
Mol Biotechnol ; 42(2): 146-53, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19191037

RESUMO

Metal binding of superoxide dismutase from Thermus thermophilus HB27 was analyzed by comparing the related structures and sequences from different origins. Mutants (Ile166Leu, Asp167Glu, and Ile166Leu-Asp167Glu) were prepared and characterized. The mutants Asp167Glu and Ile166Leu-Asp167Glu changed their binding specificities from manganese to iron, which were manifested by the differences in color of the enzyme solutions and by flame atomic absorption analysis. Specific activities of the three mutants were 112, 52, and 62% of that of the wild-type enzyme, respectively. Asp167Glu and Ile166Leu-Asp167Glu only retained 6.8 and 6.1%, respectively, of the original activities after dialysis against 1 mM EDTA. Tryptophan fluorescence measurement and native gel electrophoresis implied that the three mutants could fold into a less condensed structure. Their folding and changes in the ion binding sites of the modeled structures might be the reason for their low affinities to metal ions. These findings increased our understanding of metal binding specificity of superoxide dismutase.


Assuntos
Ferro/química , Manganês/química , Engenharia de Proteínas/métodos , Superóxido Dismutase/química , Superóxido Dismutase/metabolismo , Thermus thermophilus/genética , Thermus thermophilus/metabolismo , Sítios de Ligação , Ativação Enzimática , Mutagênese Sítio-Dirigida/métodos , Mutação , Ligação Proteica , Relação Estrutura-Atividade , Especificidade por Substrato , Superóxido Dismutase/genética
15.
J Enzyme Inhib Med Chem ; 24(1): 234-40, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18608781

RESUMO

The present work focused on the kinetics of the inhibitory effects of the leaf extract of Siberian Crabapple, named Shan jingzi in China, on chicken liver fatty acid synthase. The results showed that this extract had much stronger inhibitory ability on fatty acid synthase than that from green teas described in many previous reports. The inhibitory ability of this extract is closely related to the extracting solvent, and the time of extraction was also an important influencing factor. The inhibitory types of this extract on diffeerent substrates of chicken liver fatty acid synthase, acetyl-CoA, malonyl-CoA and NADPH, were found to be noncompetitive, uncompetitive and mixed, respectively. The studies here shed a new light on the exploration for inhibitors of fatty acid synthase.


Assuntos
Ácido Graxo Sintases/antagonistas & inibidores , Malus/química , Extratos Vegetais/isolamento & purificação , Animais , Galinhas , Cinética , Extratos Vegetais/farmacologia , Folhas de Planta/química , Solventes
16.
Acta Biochim Biophys Sin (Shanghai) ; 41(8): 689-98, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19657570

RESUMO

The low-molecular-weight protein tyrosine phosphatases (PTPase) exist ubiquitously in prokaryotes and eukaryotes and play important roles in the regulation of physiological activities. We report here the expression, purification and characterization of an active and soluble PTPase from Thermus thermophilus HB27 in Escherichia coli. This PTPase has an optimum pH range of 2.8-4.8 when using p-nitrophenyl phosphate as the substrate. The thermal inactivation results indicate a high thermal stability of this enzyme, with the optimum temperature of 75 degrees C for activity. It can be activated by Mn(2+), Mg(2+), Ca(2+), Ba(2+), and Ni(2+), but inhibited by Zn(2+), Cu(2+), Cl(1-), and SO(4)(2-). These results suggest that this heat-resistant PTPase may play important roles in vivo in the adaptation of the microorganism to extreme temperatures and specific nutritional conditions.


Assuntos
Expressão Gênica , Proteínas Tirosina Fosfatases/metabolismo , Thermus thermophilus/enzimologia , Clonagem Molecular , Ativação Enzimática/efeitos dos fármacos , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Cinética , Metais/farmacologia , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/isolamento & purificação , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Temperatura
17.
Int J Mol Sci ; 10(6): 2849-2859, 2009 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-19582233

RESUMO

Inorganic pyrophosphatase (PPase, EC 3.6.1.1) is an essential constitutive enzyme for energy metabolism and clearance of excess pyrophosphate. In this research, we investigated the sodium dodecyl sulfate (SDS)-induced inactivation and unfolding of PPase from Thermus thermophilus (T-PPase), a hyperthermophilic enzyme. The results indicated that like many other mesophilic enzymes, T-PPase could be fully inactivated at a low SDS concentration of 2 mM. Using an enzyme activity assay, SDS was shown to act as a mixed type reversible inhibitor, suggesting T-PPase contained specific SDS binding sites. At high SDS concentrations, T-PPase was denatured via a two-state process without the accumulation of any intermediate, as revealed by far-UV CD and intrinsic fluorescence. A comparison of the inactivation and unfolding data suggested that the inhibition might be caused by the specific binding of the SDS molecules to the enzyme, while the unfolding might be caused by the cooperative non-specific binding of SDS to T-PPase. The possible molecular mechanisms underlying the mixed type inhibition by SDS was proposed to be caused by the local conformational changes or altered charge distributions.


Assuntos
Pirofosfatase Inorgânica/química , Dodecilsulfato de Sódio/química , Thermus thermophilus/enzimologia , Dicroísmo Circular , Pirofosfatase Inorgânica/genética , Pirofosfatase Inorgânica/metabolismo , Desdobramento de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Espectrofotometria Ultravioleta
18.
Inflamm Bowel Dis ; 25(10): 1644-1655, 2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31067299

RESUMO

BACKGROUND: Superoxide dismutase (SOD) is an attractive therapeutic agent to ameliorate oxidative stress that is critical for the initiation and progression of inflammatory bowel disease (IBD). However, the short life of SOD limits its clinical application. In this study, we aim to examine the therapeutic effects of a hyperthermostable SOD from the Thermus thermophilus HB27 (TtSOD) for treatment of experimentally induced IBD. METHODS: A recombinant TtSOD was expressed and purified from Escherichia coli, and its therapeutic effects were examined in 2 experimental IBD animal models. RESULTS: In IBD induced by 2,4,6-trinitrobenzenesulfonic acid in zebrafish, TtSOD treatment decreased intestinal enlargement and attenuated neutrophil infiltration, resulting in alleviation of enterocolitis. In mice, SOD activity was substantially increased in the intestine after oral gavage of TtSOD, which ameliorated gut inflammation, preserved gut barrier function, and attenuated the severity of dextran sulfate sodium-induced colitis. Furthermore, TtSOD inhibited lipopolysaccharide-induced production of reactive oxygen species and inflammatory responses in mouse bone marrow-derived macrophages. CONCLUSIONS: Our results demonstrate that TtSOD possesses therapeutic activities toward experimentally induced IBD, offering new clinical treatment options for patients with IBD.


Assuntos
Colite/imunologia , Inflamação/prevenção & controle , Macrófagos/imunologia , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Thermus thermophilus/enzimologia , Animais , Colite/induzido quimicamente , Colite/enzimologia , Colite/patologia , Sulfato de Dextrana/toxicidade , Inflamação/enzimologia , Inflamação/etiologia , Lipopolissacarídeos/toxicidade , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos/efeitos dos fármacos , Ácido Trinitrobenzenossulfônico/toxicidade , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA