Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Org Chem ; 88(24): 17227-17236, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38019169

RESUMO

This study presents a convenient approach to the synthesis of indole- and benzofuran-based benzylic sulfones using unactivated alkynes containing aryl iodides and sodium sulfinates under visible light irradiation. The procedure involves a sequential series of dehalogenation, carbo-cyclization, and radical sulfonylation. Plausible insights into the reaction mechanism are derived from control experiments, leading to the proposal of a radical cascade reaction pathway.

2.
Plant J ; 101(1): 188-203, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31529551

RESUMO

CG methylation (m CG) is essential for preserving genome stability in mammals, but this link remains obscure in plants. OsMET1-2, a major rice DNA methyltransferase, plays critical roles in maintaining m CG in rice. Null mutation of OsMET1-2 causes massive CG hypomethylation, rendering the mutant suitable to address the role of m CG in maintaining genome integrity in plants. Here, we analyzed m CG dynamics and genome stability in tissue cultures of OsMET1-2 homozygous (-/-) and heterozygous (+/-) mutants, and isogenic wild-type (WT). We found m CG levels in cultures of -/- were substantially lower than in those of WT and +/-, as expected. Unexpectedly, m CG levels in 1- and 3-year cultures of -/- were 77.6% and 48.7% higher, respectively, than in shoot, from which the cultures were initiated, suggesting substantial regain of m CG in -/- cultures, which contrasts to the general trend of m CG loss in all WT plant tissue cultures hitherto studied. Transpositional burst of diverse transposable elements (TEs) occurred only in -/- cultures, although no elevation of genome-wide mutation rate in the form of single nucleotide polymorphisms was detected. Altogether, our results establish an essential role of m CG in retaining TE immobility and hence genome stability in rice and likely in plants in general.


Assuntos
Oryza/metabolismo , Proteínas de Plantas/metabolismo , Metilação de DNA/genética , Metilação de DNA/fisiologia , Elementos de DNA Transponíveis/genética , Elementos de DNA Transponíveis/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Genoma de Planta/genética , Oryza/genética , Proteínas de Plantas/genética
3.
New Phytol ; 223(2): 979-992, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30919978

RESUMO

Allopolyploidization, which entails interspecific hybridization and whole genome duplication (WGD), is associated with emergent genetic and epigenetic instabilities that are thought to contribute to adaptation and evolution. One frequent genomic consequence of nascent allopolyploidization is homoeologous exchange (HE), which arises from compromised meiotic fidelity and generates genetically and phenotypically variable progenies. Here, we used a genetically tractable synthetic rice segmental allotetraploid system to interrogate genome-wide DNA methylation and gene expression responses and outcomes to the separate and combined effects of hybridization, WGD and HEs. Progenies of the tetraploid rice were genomically diverse due to genome-wide HEs that affected all chromosomes, yet they exhibited overall methylome stability. Nonetheless, regional variation of cytosine methylation states was widespread in the tetraploids. Transcriptome profiling revealed genome-wide alteration of gene expression, which at least in part associates with changes in DNA methylation. Intriguingly, changes of DNA methylation and gene expression could be decoupled from hybridity and sustained and amplified by HEs. Our results suggest that HEs, a prominent genetic consequence of nascent allopolyploidy, can exacerbate, diversify and perpetuate the effects of allopolyploidization on epigenetic and gene expression variation, and hence may contribute to allopolyploid evolution.


Assuntos
Metilação de DNA/genética , Genoma de Planta , Hibridização Genética , Oryza/genética , Poliploidia , Diploide , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Padrões de Herança/genética
4.
Plant Cell Rep ; 38(2): 131-145, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30443733

RESUMO

KEY MESSAGE: Maize SWI3-type chromatin remodeler impacts alternative splicing contexts in response to osmotic stress by altering nucleosome density and affecting transcriptional elongation rate. Alternative splicing (AS) is commonly found in higher eukaryotes and is an important posttranscriptional regulatory mechanism to generate transcript diversity. AS has been widely accepted as playing essential roles in different biological processes including growth, development, signal transduction and responses to biotic and abiotic stresses in plants. However, whether and how chromatin remodeling complex functions in AS in plant under osmotic stress remains unknown. Here, we show that a maize SWI3D protein, ZmCHB101, impacts AS contexts in response to osmotic stress. Genome-wide analysis of mRNA contexts in response to osmotic stress using ZmCHB101-RNAi lines reveals that ZmCHB101 impacts alternative splicing contexts of a subset of osmotic stress-responsive genes. Intriguingly, ZmCHB101-mediated regulation of gene expression and AS is largely uncoupled, pointing to diverse molecular functions of ZmCHB101 in transcriptional and posttranscriptional regulation. We further found ZmCHB101 impacts the alternative splicing contexts by influencing alteration of chromatin and histone modification status as well as transcriptional elongation rates mediated by RNA polymerase II. Taken together, our findings suggest a novel insight of how plant chromatin remodeling complex impacts AS under osmotic stress .


Assuntos
Processamento Alternativo/genética , Pressão Osmótica , Proteínas de Plantas/metabolismo , Estresse Fisiológico , Zea mays/genética , Zea mays/fisiologia , Adaptação Fisiológica , Arabidopsis/genética , Arabidopsis/fisiologia , Montagem e Desmontagem da Cromatina , Éxons/genética , Regulação da Expressão Gênica de Plantas , Histonas/metabolismo , Lisina/metabolismo , Metilação , Nucleossomos/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , RNA Polimerase II/metabolismo , Estresse Fisiológico/genética , Transcrição Gênica
5.
Plant Mol Biol ; 97(4-5): 451-465, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29956114

RESUMO

KEY MESSAGE: The maize chromatin remodeler ZmCHB101 plays an essential role in the osmotic stress response. ZmCHB101 controls nucleosome densities around transcription start sites of essential stress-responsive genes. Drought and osmotic stresses are recurring conditions that severely constrain crop production. Evidence accumulated in the model plant Arabidopsis thaliana suggests that core components of SWI/SNF chromatin remodeling complexes play essential roles in abiotic stress responses. However, how maize SWI/SNF chromatin remodeling complexes function in osmotic and drought stress responses remains unknown. Here we show that ZmCHB101, a homolog of A. thaliana SWI3D in maize, plays essential roles in osmotic and dehydration stress responses. ZmCHB101-RNA interference (RNAi) transgenic plants displayed osmotic, salt and drought stress-sensitive phenotypes. Genome-wide RNA-sequencing analysis revealed that ZmCHB101 impacts the transcriptional expression landscape of osmotic stress-responsive genes. Intriguingly, ZmCHB101 controls nucleosome densities around transcription start sites of essential stress-responsive genes. Furthermore, we identified that ZmCHB101 associates with RNA polymerase II (RNAPII) in vivo and is a prerequisite for the proper occupancy of RNAPII on the proximal regions of transcription start sites of stress-response genes. Taken together, our findings suggest that ZmCHB101 affects gene expression by remodeling chromatin states and controls RNAPII occupancies in maize under osmotic stress.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Zea mays/genética , Montagem e Desmontagem da Cromatina , Secas , Nucleossomos/metabolismo , Pressão Osmótica , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Interferência de RNA , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Estresse Fisiológico , Zea mays/crescimento & desenvolvimento , Zea mays/fisiologia
6.
Microbes Environ ; 39(2)2024.
Artigo em Inglês | MEDLINE | ID: mdl-38763742

RESUMO

Microcystins (MCs) produced by Microcystis aeruginosa are harmful to animal and human health, and there is currently no effective method for their removal. Therefore, the development of biological approaches that inhibit cyanobacteria and remove MCs is needed. We identified strain MB1, confirmed as Morchella, using morphological and mole-cular evolution methods. To assess the impact of strain MB1 on M. aeruginosa, we conducted an experiment in which we inoculated M. aeruginosa with Morchella strain MB1. After their co-cultivation for 4| |d, the inoculation with 0.9696| |g MB1 completely inhibited and removed M. aeruginosa while concurrently removing up to 95% of the MC content. Moreover, within 3| |d of their co-cultivation, MB1 removed more than 50% of nitrogen and phosphorus from the M. aeruginosa solution. Therefore, the development of effective biological techniques for MC removal is paramount in safeguarding both the environment and human well-being. We herein successfully isolated MB1 from its natural habitat. This strain effectively inhibited and removed M. aeruginosa and also reduced the content of nitrogen and phosphorus in the M. aeruginosa solution. Most importantly, it exhibited a robust capability to eliminate MCs. The present results offer a new method and technical reference for mitigating harmful algal blooms.


Assuntos
Proliferação Nociva de Algas , Microcistinas , Microcystis , Nitrogênio , Fósforo , Microcistinas/metabolismo , Microcystis/metabolismo , Microcystis/crescimento & desenvolvimento , Microcystis/química , Fósforo/metabolismo , Nitrogênio/metabolismo
7.
RSC Adv ; 14(1): 700-706, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38173585

RESUMO

Selectively producing a variety of valuable compounds using controlled chemical reactions starting from a common material is an appealing yet complex concept. Herein, a photocatalytic approach for the selective synthesis of (E)-ß-aminovinyl sulfones and (E)-ß-amidovinyl sulfones from allenamides and sodium sulfinates was established. This reaction exhibits the traits of an eco-friendly solvent and adjustable amide cleavage, and can accommodate a diverse range of substrates with exceptional functional group tolerance. Based on control experiments and deuterium labeling experiments, a plausible radical reaction pathway is proposed.

8.
Front Plant Sci ; 11: 52, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117389

RESUMO

Nitrate is the main source of nitrogen for plants and an essential component of fertilizers. Rapid transcriptional activation of genes encoding the high-affinity nitrate transport system (HATS) is an important strategy that plants use to cope with nitrogen deficiency. However, the specific transcriptional machineries involved in this process and the detailed transcriptional regulatory mechanism of the core HATS remain poorly understood. ZmCHB101 is the core subunit of the SWI/SNF-type ATP-dependent chromatin remodeling complex in maize. RNA-interference transgenic plants (ZmCHB101-RNAi) display abaxially curling leaves and impaired tassel and cob development. Here, we demonstrate that ZmCHB101 plays a pivotal regulatory role in nitrate-responsive gene expression. ZmCHB101-RNAi lines showed accelerated root growth and increased biomass under low nitrate conditions. An RNA sequencing analysis revealed that ZmCHB101 regulates the expression of genes involved in nitrate transport, including ZmNRT2.1 and ZmNRT2.2. The NIN-like protein (NLP) of maize, ZmNLP3.1, recognized the consensus nitrate-responsive cis-elements (NREs) in the promoter regions of ZmNRT2.1 and ZmNRT2.2, and activated the transcription of these genes in response to nitrate. Intriguingly, well-positioned nucleosomes were detected at NREs in the ZmNRT2.1 and ZmNRT2.2 gene promoters, and nucleosome densities were lower in ZmCHB101-RNAi lines than in wild-type plants, both in the absence and presence of nitrate. The ZmCHB101 protein bound to NREs and was involved in the maintenance of nucleosome occupancies at these sites, which may impact the binding of ZmNLP3.1 to NREs in the absence of nitrate. However, in the presence of nitrate, the binding affinity of ZmCHB101 for NREs decreased dramatically, leading to reduced nucleosome density at NREs and consequently increased ZmNLP3.1 binding. Our results provide novel insights into the role of chromatin remodeling proteins in the regulation of nitrate-responsive gene expression in plants.

9.
Sci Rep ; 6: 38504, 2016 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-27917953

RESUMO

ATP-dependent chromatin remodeling complexes play essential roles in the regulation of diverse biological processes by formulating a DNA template that is accessible to the general transcription apparatus. Although the function of chromatin remodelers in plant development has been studied in A. thaliana, how it affects growth and development of major crops (e.g., maize) remains uninvestigated. Combining genetic, genomic and bioinformatic analyses, we show here that the maize core subunit of chromatin remodeling complex, ZmCHB101, plays essential roles in growth and development of maize at both vegetative and reproductive stages. Independent ZmCHB101 RNA interference plant lines displayed abaxially curling leaf phenotype due to increase of bulliform cell numbers, and showed impaired development of tassel and cob. RNA-seq-based transcriptome profiling revealed that ZmCHB101 dictated transcriptional reprogramming of a significant set of genes involved in plant development, photosynthesis, metabolic regulation, stress response and gene expressional regulation. Intriguingly, we found that ZmCHB101 was required for maintaining normal nucleosome density and 45 S rDNA compaction. Our findings suggest that the SWI3 protein, ZmCHB101, plays pivotal roles in maize normal growth and development via regulation of chromatin structure.


Assuntos
Montagem e Desmontagem da Cromatina , Desenvolvimento Vegetal , Proteínas de Plantas/metabolismo , Subunidades Proteicas/metabolismo , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Genes de Plantas , Nucleossomos/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/genética , Brotos de Planta/genética , Plantas Geneticamente Modificadas , Interferência de RNA , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Transcrição Gênica , Zea mays/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA