RESUMO
Nitrite and ammonia often coexist in waters. Thus, it is very significant to develop a photocatalytic process for the simultaneous removal of nitrite and ammonia. Herein, zinc ferrite/activated carbon (ZnFe2O4/AC) was synthesized and characterized by X-ray diffraction spectroscopy, transmission electron microscopy, Raman spectroscopy, and ultraviolet-visible diffuse reflectance spectroscopy. The valence band level of ZnFe2O4 was measured by X-ray photoelectron spectroscopy-valence band spectroscopy, and first-principles calculation was performed to confirm the band structure of ZnFe2O4. The as-synthesized ZnFe2O4/AC species functioned as a photocatalyst to simultaneously remove nitrite and ammonia under anaerobic conditions upon UV-visible light irradiation at the first stage. The results indicated that an average removal ratio of 92.7% with ±0.2% error for nitrite degradation for three runs was achieved in 50.0 mg/L nitrite + 100.0 mg/L ammonia solution with pH 9.5 under anaerobic conditions for 3 h at this stage; simultaneously, the removal ratio of 64.0% with ±0.2% error for ammonia was also achieved. At the second stage, oxygen gas was bubbled in the reactor to photocatalytically eliminate residual ammonia under aerobic conditions upon continuous irradiation. The results demonstrated that the removal ratios for nitrite, ammonia, and total nitrogen reached to 92.0, 90.0, and 90.2% at 12th hour, respectively, and the product released during photocatalysis is N2 gas, detected by gas chromatography, fulfilling the simultaneous removal of nitrite and ammonia. The reaction mechanism was exploited.
RESUMO
Near-infrared (NIR)-response photocatalysts are desired to make use of 44% NIR solar irradiation. A flower-like α-MnO2/N-doped graphene (NG) hybrid catalyst was synthesized and characterized by X-ray diffraction spectroscopy, transmission electron microscopy, Raman spectroscopy, UV-vis-NIR diffuse reflectance spectroscopy, and X-ray photoelectron spectroscopy. The flower-like material of α-MnO2/NG was oval-shaped with the semi major axis of 140 nm and semi minor axis of 95 nm and the petal thickness of 3.5-8.0 nm. The indirect band gap was measured to be 1.16 eV, which is very close to 0.909 eV estimated by the first-principles calculation. The band gap can harvest NIR irradiation to 1069 nm. The coupling of α-MnO2 with NG sheets to form α-MnO2/NG can significantly extend the spectrum response up to 1722 nm, improving dramatically the photocatalytic activity. The experimental results displayed that the α-MnO2/NG hybrid catalyst can recognize ammonia in methyl orange (MO)-ammonia, rhodamine B (RHB)-ammonia, and humic acid-ammonia mixed solutions and selectively degrade ammonia. The degradation ratio of ammonia reached over 93.0% upon NIR light irradiation in the mixed solutions, while those of MO, RHB, and humic acid were only 9.7, 9.4, and 15.7%, respectively. The products formed during the photocatalytic process were followed with ion chromatography, gas chromatography, and electrochemistry. The formed nitrogen gas has been identified during the photocatalytic process. A valence band recognition model was suggested based on the selective degradation of ammonia via α-MnO2/NG.
RESUMO
The sonocatalytic degradation of azo dyes; methyl orange (MO) and rhodamine B (RhB) were studied catalyzed by cadmium selenide (CdSe)-graphene in dark ambiance. The CdSe-graphene composites were prepared by simple hydrothermal method. The characterizations of composites were studied by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), specific surface area (BET) and with energy dispersive X-ray (EDX). The UV-spectroscopic analysis of the dyes was done by measuring the change in absorbance. The degradation of the organic dyes was calculated based on the decrease in concentration of the dyes with respect to regular time intervals. The rate coefficients for the sonocatalytic process were successfully established and the reusability tests were done to test the stability of the used catalysts.
RESUMO
TiO(2) nanoparticles modified with MWCNTs and CdS were synthesized by the sol-gel method followed by solvothermal treatment at low temperature. The chemical composition and surface structure of the CdS/CNT-TiO(2) composites were investigated by X-ray diffraction, specific surface area measurements, energy-dispersive X-ray spectroscopy, transmission electron microscopy, and scanning electron microscopy. Then a series of sonocatalytic degradation experiments were carried out under ultrasonic irradiation in the presence of CNT/TiO(2) and the CdS/CNT-TiO(2) composites. It was found that RhB was quickly and effectively degraded under different ultrasonic conditions. As expected, the nanosized CdS/CNT-TiO(2) photocatalyst showed enhanced activity compared with the non CdS treated CNT/TiO(2) material in the sonocatalytic degradation of RhB. The sonocatalyst CCTb with 34.68% contents of Ti heat treated at 500 °C for 1h showed the highest sonocatalytic activity. The synergistic effect of the greater surface area and catalytic activities of the composite catalysts was examined in terms of their strong adsorption ability and interphase interaction by comparing the effects of different amounts of MWCNTs and CdS in the catalysts and their roles. The mechanism of sonocatalytic degradation over the CdS/CNT modified TiO(2) composites under different ultrasonic conditions was also discussed.
RESUMO
CdSe, CdSe-TiO2, and CdSe-C60/TiO2 composites were prepared using sol-gel method, and their photocatalytic activity was evaluated by measuring the degradation of rhodamine B solutions under visible light. The surface area, surface structure, crystal phase, and elemental identification of these composites were characterized by nitrogen adsorption isotherms, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), and UV-visible (vis) absorption spectrophotometry. XRD showed that the CdSe-C60/TiO2 composite contained a typical single and clear anatase phase. SEM of the CdSe-C60/TiO2 composites revealed a homogenous composition in the particles. EDX revealed the presence of C and Ti with strong Cd and Se peaks in the CdSe-C60/TiO2 composite. The degradation of dye was determined by UV-vis spectrophotometry. An increase in photocatalytic activity was observed and attributed to an increase in the photoabsorption effect by fullerene and the cooperative effect of the CdSe. The repeatability of photocatalytic activity was also tested in order to investigate the stability of C60 and CdS-C60/TiO2 composites.
RESUMO
WO3-treated fullerene/TiO2 composites (WO3-fullerene/TiO2) were prepared using a sol-gel method. The composite obtained was characterized by BET surface area measurements, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis, transmission electron microscopy, and UV-vis analysis. A methyl orange (MO) solution under visible light irradiation was used to determine the photocatalytic activity. Excellent photocatalytic degradation of a MO solution was observed using the WO3-fullerene, fullerene-TiO2, and WO3-fullerene/TiO2 composites under visible light. An increase in photocatalytic activity was observed, and WO3-fullerene/TiO2 has the best photocatalytic activity; it may attribute to the increase of the photo-absorption effect by the fullerene and the cooperative effect of the WO3.