Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Ano de publicação
Intervalo de ano de publicação
1.
Ecol Evol ; 14(3): e10704, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38455142

RESUMO

Top-down and bottom-up factors and their interaction highlight the interdependence of resources and consumer impacts on food webs and ecosystems. Variation in the strength of upwelling-mediated ecological controls (i.e., light availability and herbivory) between early and late succession stages is less well understood from the standpoint of influencing algal functional group composition. We experimentally tested the effect of light, grazing, and disturbance on rocky intertidal turf-forming algal communities. Studies were conducted on the South Island of New Zealand at Raramai on the east coast (a persistent downwelling region) and Twelve Mile Beach on the west coast (an intermittent upwelling region). Herbivory, light availability, and algal cover were manipulated and percent cover of major macroalgal functional groups and sessile invertebrates were measured monthly from October 2017 to March 2018. By distinguishing between algal functional groups and including different starting conditions in our design, we found that the mosaic-like pattern of bare rock intermingled with diverse turf-forming algae at Twelve Mile Beach was driven by a complex array of species interactions, including grazing, predation, preemptive competition and interference competition, colonization rates, and these interactions were modulated by light availability and other environmental conditions. Raramai results contrasted with those at Twelve Mile Beach in showing stronger effects of grazing and relatively weak effects of other interactions, low colonization rates of invertebrates, and light effects limited to crustose algae. Our study highlights the potential importance of an upwelling-mediated 3-way interaction among herbivory, light availability, and preemption in structuring contrasting low rocky intertidal macroalgal communities.

2.
Nat Ecol Evol ; 8(7): 1285-1297, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38831017

RESUMO

Long-term, large-scale experimental studies provide critical information about how global change influences communities. When environmental changes are severe, they can trigger abrupt transitions from one community type to another leading to a regime shift. From 2014 to 2016, rocky intertidal habitats in the northeast Pacific Ocean experienced extreme temperatures during a multi-year marine heatwave (MHW) and sharp population declines of the keystone predator Pisaster ochraceus due to sea star wasting disease (SSWD). Here we measured the community structure before, during and after the MHW onset and SSWD outbreak in a 15-year succession experiment conducted in a rocky intertidal meta-ecosystem spanning 13 sites on four capes in Oregon and northern California, United States. Kelp abundance declined during the MHW due to extreme temperatures, while gooseneck barnacle and mussel abundances increased due to reduced predation pressure after the loss of Pisaster from SSWD. Using several methods, we detected regime shifts from substrate- or algae-dominated to invertebrate-dominated alternative states at two capes. After water temperatures cooled and Pisaster population densities recovered, community structure differed from pre-disturbance conditions, suggesting low resilience. Consequently, thermal stress and predator loss can result in regime shifts that fundamentally alter community structure even after restoration of baseline conditions.


Assuntos
Estrelas-do-Mar , Animais , Estrelas-do-Mar/fisiologia , Oregon , California , Oceano Pacífico , Thoracica/fisiologia , Ecossistema , Bivalves/fisiologia , Mudança Climática , Dinâmica Populacional , Calor Extremo/efeitos adversos , Kelp
3.
PLoS One ; 19(5): e0297697, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38809830

RESUMO

A powerful way to predict how ecological communities will respond to future climate change is to test how they have responded to the climate of the past. We used climate oscillations including the Pacific Decadal Oscillation (PDO), North Pacific Gyre Oscillation, and El Niño Southern Oscillation (ENSO) and variation in upwelling, air temperature, and sea temperatures to test the sensitivity of nearshore rocky intertidal communities to climate variability. Prior research shows that multiple ecological processes of key taxa (growth, recruitment, and physiology) were sensitive to environmental variation during this time frame. We also investigated the effect of the concurrent sea star wasting disease outbreak in 2013-2014. We surveyed nearly 150 taxa from 11 rocky intertidal sites in Oregon and northern California annually for up to 14-years (2006-2020) to test if community structure (i.e., the abundance of functional groups) and diversity were sensitive to past environmental variation. We found little to no evidence that these communities were sensitive to annual variation in any of the environmental measures, and that each metric was associated with < 8.6% of yearly variation in community structure. Only the years elapsed since the outbreak of sea star wasting disease had a substantial effect on community structure, but in the mid-zone only where spatially dominant mussels are a main prey of the keystone predator sea star, Pisaster ochraceus. We conclude that the established sensitivity of multiple ecological processes to annual fluctuations in climate has not yet scaled up to influence community structure. Hence, the rocky intertidal system along this coastline appears resistant to the range of oceanic climate fluctuations that occurred during the study. However, given ongoing intensification of climate change and increasing frequencies of extreme events, future responses to climate change seem likely.


Assuntos
Mudança Climática , Animais , Ecossistema , Oregon , Oceanos e Mares , California , Temperatura , Estrelas-do-Mar/fisiologia , Biodiversidade , El Niño Oscilação Sul , Oceano Pacífico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA