RESUMO
Understanding the release and sequestration of specific radioactive signatures into the environment is of extreme importance for long-term nuclear waste storage and reactor accident mitigation. Recent accidents at the Fukushima and Chernobyl nuclear reactors released radioactive 137Cs and 134Cs into the environment, the former of which is still live today. We have studied the migration of fission products in the Oklo natural nuclear reactor using an isotope imaging capability, the NAval Ultra-Trace Isotope Laboratory's Universal Spectrometer (NAUTILUS) at the US Naval Research Laboratory. In Oklo reactor zone (RZ) 13, we have identified the most depleted natural U of any known material with a 235U/238U ratio of 0.3655 ± 0.0007% (2σ). This sample contains the most extreme natural burnup in 149Sm, 151Eu, 155Gd, and 157Gd, which demonstrates that it was sourced from the most active Oklo reactor region. We have discovered that fissionogenic Cs and Ba were captured by Ru metal/sulfide aggregates shortly following reactor shutdown. Isochrons from the Ru aggregates place their closure time at 4.98 ± 0.56 y after the end of criticality. Most fissionogenic 135Ba and 137Ba in the Ru migrated and was incorporated as Cs over this period. Excesses in 134Ba in the Ru point to the burnup of 133Cs. Cesium and Ba were retained in the Ru despite local volcanic activity since the reactor shutdown and the high level of activity during reactor operation.
RESUMO
The Paris carbonaceous chondrite represents the most pristine carbonaceous chondrite, providing a unique opportunity to investigate the composition of early solar system materials prior to the onset of significant aqueous alteration. A dual origin (namely from the inner and outer solar system) has been demonstrated for water in the Paris meteorite parent body (Piani et al. 2018). Here, we aim to evaluate the contribution of outer solar system (cometary-like) water ice to the inner solar system water ice using Xe isotopes. We report Ar, Kr, and high-precision Xe isotopic measurements within bulk CM 2.9 and CM 2.7 fragments, as well as Ne, Ar, Kr, and Xe isotope compositions of the insoluble organic matter (IOM). Noble gas signatures are similar to chondritic phase Q with no evidence for a cometary-like Xe component. Small excesses in the heavy Xe isotopes relative to phase Q within bulk samples are attributed to contributions from presolar materials. CM 2.7 fragments have lower Ar/Xe relative to more pristine CM 2.9 fragments, with no systematic difference in Xe contents. We conclude that Kr and Xe were little affected by aqueous alteration, in agreement with (1) minor degrees of alteration and (2) no significant differences in the chemical signature of organic matter in CM 2.7 and CM 2.9 areas (Vinogradoff et al. 2017). Xenon contents in the IOM are larger than previously published data of Xe in chondritic IOM, in line with the Xe component in Paris being pristine and preserved from Xe loss during aqueous alteration/thermal metamorphism.
RESUMO
The near-Earth carbonaceous asteroid (162173) Ryugu is expected to contain volatile chemical species that could provide information on the origin of Earth's volatiles. Samples of Ryugu were retrieved by the Hayabusa2 spacecraft. We measured noble gas and nitrogen isotopes in Ryugu samples and found that they are dominated by presolar and primordial components, incorporated during Solar System formation. Noble gas concentrations are higher than those in Ivuna-type carbonaceous (CI) chondrite meteorites. Several host phases of isotopically distinct nitrogen have different abundances among the samples. Our measurements support a close relationship between Ryugu and CI chondrites. Noble gases produced by galactic cosmic rays, indicating a ~5 million year exposure, and from implanted solar wind record the recent irradiation history of Ryugu after it migrated to its current orbit.
RESUMO
The Hayabusa2 spacecraft returned to Earth from the asteroid 162173 Ryugu on 6 December 2020. One day after the recovery, the gas species retained in the sample container were extracted and measured on-site and stored in gas collection bottles. The container gas consists of helium and neon with an extraterrestrial 3He/4He and 20Ne/22Ne ratios, along with some contaminant terrestrial atmospheric gases. A mixture of solar and Earth's atmospheric gas is the best explanation for the container gas composition. Fragmentation of Ryugu grains within the sample container is discussed on the basis of the estimated amount of indigenous He and the size distribution of the recovered Ryugu grains. This is the first successful return of gas species from a near-Earth asteroid.
RESUMO
The preserved record of decay of now-extinct 129I into 129Xe forms the basis of the I-Xe chronometer. Comparison of the high precision I-Xe and Pb-Pb ages of chondrules and pure mineral phases separated from eight meteorites suggests the 17.5 ÷ 14.6 Ma range for the 129I half-life, assuming that the 235U and 238U half-lives are correct. The mean value of 16 Ma indicates that the 15.7 Ma half-life of 129I used here for the I-Xe age calculations is most probably correct. Since the 129I half-life value only affects the relative I-Xe ages, the few Ma relative to the Shallowater standard, the absolute I-Xe ages are almost immune to this uncertainty in the 129I half-life.
RESUMO
Volatile element and compound abundances vary widely in planets and were set during the earliest stages of solar system evolution. Experiments or natural analogs approximating these early conditions are limited. Using silicate glass formed from arkosic sands during the first nuclear detonation at the Trinity test site, New Mexico, we show that the isotopes of zinc were fractionated during evaporation. The green silicate glasses, termed "trinitite," show +0.5 ± 0.1/atomic mass unit isotopic fractionation from ~200 m to within 10 m of ground zero of the detonation, corresponding to an α fractionation factor between 0.999 and 0.9995. These results confirm that Zn isotopic fractionation occurs through evaporation processes at high temperatures. Evidence for similar fractionations in lunar samples consequently implies a volatile-depleted bulk Moon, with evaporation occurring during a giant impact or in a magma ocean.
RESUMO
One of the major goals of the Genesis Mission was to refine our knowledge of the isotopic composition of the heavy noble gases in solar wind and, by inference, the Sun, which represents the initial composition of the solar system. This has now been achieved with permil precision: 36Ar/38Ar = 5.5005 ± 0.0040, 86Kr/84Kr = .3012 ± .0004, 83Kr/84Kr = .2034 ± .0002, 82Kr/84Kr = .2054 ± .0002, 80Kr/84Kr = .0412 ± .0002, 78Kr/84Kr = .00642 ± .00005, 136Xe/132Xe = .3001 ± .0006, 134Xe/132Xe = .3691 ± .0007, 131Xe/132Xe = .8256 ± .0012, 130Xe/132Xe = .1650 ± .0004, 129Xe/132Xe = 1.0405 ± .0010, 128Xe/132Xe = .0842 ± .0003, 126Xe/132Xe = .00416 ± .00009, and 124Xe/132Xe = .00491 ± .00007 (error-weighted averages of all published data). The Kr and Xe ratios measured in the Genesis solar wind collectors generally agree with the less precise values obtained from lunar soils and breccias, which have accumulated solar wind over hundreds of millions of years, suggesting little if any temporal variability of the isotopic composition of solar wind krypton and xenon. The higher precision for the initial composition of the heavy noble gases in the solar system allows (1) to confirm that, exept 136Xe and 134Xe, the mathematically derived U-Xe is equivalent to Solar Wind Xe and (2) to provide an opportunity for better understanding the relationship between the starting composition and Xe-Q (and Q-Kr), the dominant current "planetary" component, and its host, the mysterious phase-Q.
RESUMO
To evaluate the isotopic composition of the solar nebula from which the planets formed, the relation between isotopes measured in the solar wind and on the Sun's surface needs to be known. The Genesis Discovery mission returned independent samples of three types of solar wind produced by different solar processes that provide a check on possible isotopic variations, or fractionation, between the solar-wind and solar-surface material. At a high level of precision, we observed no significant inter-regime differences in 20Ne/22Ne or 36Ar/38Ar values. For 20Ne/22Ne, the difference between low- and high-speed wind components is 0.24 +/- 0.37%; for 36Ar/38Ar, it is 0.11 +/- 0.26%. Our measured 36Ar/38Ar ratio in the solar wind of 5.501 +/- 0.005 is 3.42 +/- 0.09% higher than that of the terrestrial atmosphere, which may reflect atmospheric losses early in Earth's history.