Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Clin Anat ; 33(1): 56-65, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31444925

RESUMO

The arachnoid membranes' anatomy is a controversial topic in the literature, and the rhomboid membrane at the craniovertebral junction is an element of this system that has been described poorly. Hence, the objective of our study was to examine this membrane's anatomy and histology. A total of 45 fresh formalin-fixed human cadaveric heads were examined, and anatomic dissections and histologic examinations using standard staining methods were performed. The membrane was found to be a constant structure. It has a rhomboid shape and is located on the medulla oblongata and upper cervical spine's ventral surface within the subarachnoid space. Its average craniocaudal length is 49 mm and the short axis is 26 mm. The cranial apex is attached to the vertebral arteries' junction, and the caudal apex reaches the level of C4. The lateral apices are attached to the dura mater at the level of the denticulate ligament's second insertion. The C1 spinal nerves perforate the membrane, while the C2 roots are located dorsal to it. The membrane is attached strongly to the underlying pia mater. Histologically, it has a typical arachnoid structure, in which its adhesions to the vertebral arteries as well as to the pia mater could be verified histologically. This is the first detailed examination of the rhomboid membrane. Our results suggest that the membrane serves a valve-like function between the spinal and cranial subarachnoid spaces. Based on our findings, further hydrodynamic studies should clarify the membrane's physiological role. Clin. Anat. 32:56-65, 2019. © 2019 Wiley Periodicals, Inc.


Assuntos
Vértebras Cervicais/anatomia & histologia , Meninges/anatomia & histologia , Base do Crânio/anatomia & histologia , Medula Espinal/anatomia & histologia , Idoso , Idoso de 80 Anos ou mais , Cadáver , Humanos , Pessoa de Meia-Idade
2.
J Neurosurg ; : 1-11, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489821

RESUMO

OBJECTIVE: The medial forebrain bundle (MFB) is a novel promising deep brain stimulation (DBS) target in severe affective disorders that courses through the subthalamic region according to tractography studies. Its potential therapeutic role arose in connection with the development of hypomania during stimulation of the subthalamic nucleus (STN) in Parkinson's disease, offering an alternative explanation for the occurrence of this side effect. However, until now its course exclusively described by tractography had not yet been confirmed by any anatomical method. The aim of this study was to fill this gap as well as to provide a detailed description of the fiber tracts surrounding the STN to facilitate a better understanding of the background of side effects occurring during STN DBS. METHODS: Ten human cadaveric brains (20 hemispheres) and 100 healthy subjects (200 hemispheres) from the S500 Release of the Human Connectome Project were involved in this study. Nineteen hemispheres were dissected according to Klingler's method. One additional hemisphere was prepared for histological examinations to validate the macroscopical results and stained with neurofibril silver impregnation according to Krutsay. The authors also aimed to reconstruct the MFB using tractography and correlated the results with their dissections and histological findings. RESULTS: The white matter connections coursing through the subthalamic region were successfully dissected. The ansa lenticularis, lenticular fasciculus, thalamic fasciculus, ipsi- and contralateral cerebellar fibers, and medial lemniscus were revealed as closely related fiber tracts to the STN. However, the existence of a distinct fiber bundle corresponding to the MFB described by tractography could not be identified. Using tractography, the authors showed that the depiction of the streamlines representing the MFB was also strongly dependent on the threshold parameters. CONCLUSIONS: According to this study's findings, the streamlines of the MFB described by tractography arise from the limitations of the diffusion-weighted MRI fiber tracking method and actually correspond to subthalamic fiber bundles, especially the ansa lenticularis and lenticular fasciculus, which erroneously continue in the anterior limb of the internal capsule, toward the prefrontal cortex.

3.
J Neurosurg ; : 1-10, 2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-31374555

RESUMO

OBJECTIVE: The septum pellucidum is a bilateral thin membranous structure representing the border between the frontal horns of the lateral ventricles. Its most examined components are the septal veins due to their surgical importance during endoscopic septum pellucidotomy (ESP), which is a well-accepted method for surgical treatment of unilateral hydrocephalus. It is widely accepted that the septum pellucidum contains nerve fibers as well, but interestingly, no anatomical study has been addressed to its neural components before. The aim of the present study was to identify these elements as well as their relations to the septal veins and to define major landmarks within the ventricular system for neurosurgical use. METHODS: Nine formalin-fixed human cadaveric brains (18 septa pellucida) were involved in this study. A central block containing both septa pellucida was removed and frozen at -30°C for 2 weeks in 7 cases. The fibers of the septum pellucidum and the adjacent areas including the venous elements were dissected under magnification by using homemade wooden spatulas and microsurgical instruments. In 2 cases a histological technique was used to validate the findings of the dissections. The blocks were sliced, embedded in paraffin, cut in 7-µm-thick slices, and then stained as follows: 1) with H & E, 2) with Luxol fast blue combined with cresyl violet, and 3) with Luxol fast blue combined with Sirius red. RESULTS: The septum pellucidum and the subjacent septum verum form the medial wall of the frontal horn of the lateral ventricle. Both structures contain nerve fibers that were organized in 3 groups: 1) the precommissural fibers of the fornix; 2) the inferior fascicle; and 3) the superior fascicle of the septum pellucidum. The area directly rostral to the postcommissural column of the fornix consisted of macroscopically identifiable gray matter corresponding to the septal nuclei. The histological examinations validated the findings of the authors' fiber dissections. CONCLUSIONS: The nerve elements of the septum pellucidum as well as the subjacent septum verum were identified with fiber dissection and verified with histology for the first time. The septal nuclei located just anterior to the fornix and the precommissural fibers of the fornix should be preserved during ESP. Considering the venous anatomy as well as the neural architecture of the septum pellucidum, the fenestration should ideally be placed above the superior edge of the fornix and preferably dorsal to the interventricular foramen.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA