Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Cell ; 150(5): 961-74, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-22901742

RESUMO

Sister chromatid cohesion is mediated by entrapment of sister DNAs by a tripartite ring composed of cohesin's Smc1, Smc3, and α-kleisin subunits. Cohesion requires acetylation of Smc3 by Eco1, whose role is to counteract an inhibitory (antiestablishment) activity associated with cohesin's Wapl subunit. We show that mutations abrogating antiestablishment activity also reduce turnover of cohesin on pericentric chromatin. Our results reveal a "releasing" activity inherent to cohesin complexes transiently associated with Wapl that catalyzes their dissociation from chromosomes. Fusion of Smc3's nucleotide binding domain to α-kleisin's N-terminal domain also reduces cohesin turnover within pericentric chromatin and permits establishment of Wapl-resistant cohesion in the absence of Eco1. We suggest that releasing activity opens the Smc3/α-kleisin interface, creating a DNA exit gate distinct from its proposed entry gate at the Smc1/3 interface. According to this notion, the function of Smc3 acetylation is to block its dissociation from α-kleisin. The functional implications of regulated ring opening are discussed.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Acetilação , Acetiltransferases/metabolismo , Cromossomos Fúngicos/metabolismo , Replicação do DNA , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/citologia , Coesinas
2.
Mol Cell ; 70(6): 1134-1148.e7, 2018 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-29932904

RESUMO

Cohesin organizes DNA into chromatids, regulates enhancer-promoter interactions, and confers sister chromatid cohesion. Its association with chromosomes is regulated by hook-shaped HEAT repeat proteins that bind Scc1, namely Scc3, Pds5, and Scc2. Unlike Pds5, Scc2 is not a stable cohesin constituent but, as shown here, transiently replaces Pds5. Scc1 mutations that compromise its interaction with Scc2 adversely affect cohesin's ATPase activity and loading. Moreover, Scc2 mutations that alter how the ATPase responds to DNA abolish loading despite cohesin's initial association with loading sites. Lastly, Scc2 mutations that permit loading in the absence of Scc4 increase Scc2's association with chromosomal cohesin and reduce that of Pds5. We suggest that cohesin switches between two states: one with Pds5 bound that is unable to hydrolyze ATP efficiently but is capable of release from chromosomes and another in which Scc2 replaces Pds5 and stimulates ATP hydrolysis necessary for loading and translocation from loading sites.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/genética , Proteínas de Ciclo Celular/genética , Cromátides/genética , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/genética , Segregação de Cromossomos , DNA Fúngico/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Coesinas
3.
Mol Cell ; 33(6): 763-74, 2009 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-19328069

RESUMO

Cohesin's Smc1, Smc3, and Scc1 subunits form a tripartite ring that entraps sister DNAs. Scc3, Pds5, and Rad61 (Wapl) are regulatory subunits that control this process. We describe here smc3, scc3, pds5, and rad61 mutations that permit yeast cell proliferation and entrapment of sister DNAs by cohesin rings in the absence of Eco1, an acetyl transferase normally essential for establishing sister chromatid cohesion. The smc3 mutations cluster around and include a highly conserved lysine (K113) close to Smc3's ATP-binding pocket, which, together with K112, is acetylated by Eco1. Lethality caused by mutating both residues to arginine is suppressed by the scc3, pds5, and rad61 mutants. Scc3, Pds5, and Rad61 form a complex and inhibit entrapment of sister DNAs by a process involving the "K112/K113" surface on Smc3's ATPase. According to this model, Eco1 promotes sister DNA entrapment partly by relieving an antiestablishment activity associated with Scc3, Pds5, and Rad61.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteoglicanas de Sulfatos de Condroitina/genética , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Acetilação , Acetiltransferases/genética , Acetiltransferases/metabolismo , Sequência de Aminoácidos , Western Blotting , Proliferação de Células , Proteoglicanas de Sulfatos de Condroitina/metabolismo , DNA Fúngico/genética , DNA Fúngico/metabolismo , Dados de Sequência Molecular , Mutação/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Subunidades Proteicas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Coesinas
4.
Nature ; 454(7202): 297-301, 2008 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-18596691

RESUMO

Sister chromatid cohesion, which is essential for mitosis, is mediated by a multi-subunit protein complex called cohesin. Cohesin's Scc1, Smc1 and Smc3 subunits form a tripartite ring structure, and it has been proposed that cohesin holds sister DNA molecules together by trapping them inside its ring. To test this, we used site-specific crosslinking to create chemical connections at the three interfaces between the three constituent polypeptides of the ring, thereby creating covalently closed cohesin rings. As predicted by the ring entrapment model, this procedure produced dimeric DNA-cohesin structures that are resistant to protein denaturation. We conclude that cohesin rings concatenate individual sister minichromosome DNA molecules.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos Fúngicos/metabolismo , DNA Concatenado/metabolismo , DNA Fúngico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/química , Proteínas Cromossômicas não Histona/química , Estrutura Quaternária de Proteína/efeitos dos fármacos , Subunidades Proteicas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Dodecilsulfato de Sódio/farmacologia , Coesinas
5.
Nat Struct Mol Biol ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39227718

RESUMO

Tumor suppressor p53-binding protein 1 (53BP1) regulates DNA end joining in lymphocytes, diversifying immune antigen receptors. This involves nucleosome-bound 53BP1 at DNA double-stranded breaks (DSBs) recruiting Rap1-interacting factor 1 homolog (RIF1) and shieldin, a poorly understood DNA-binding complex. The 53BP1-RIF1-shieldin axis is pathological in BRCA1-mutated cancers, blocking homologous recombination (HR) and driving illegitimate nonhomologous end joining (NHEJ). However, how this axis regulates DNA end joining and HR suppression remains unresolved. We investigated shieldin and its interplay with the Ctc1-Stn1-Ten1 (CST) complex, which was recently implicated downstream of 53BP1. Immunophenotypically, mice lacking shieldin or CST are equivalent, with class-switch recombination coreliant on both complexes. Ataxia-telangiectasia mutated kinase-dependent DNA damage signaling underpins this cooperation, inducing physical interactions between these complexes that reveal shieldin as a DSB-responsive CST adaptor. Furthermore, DNA polymerase ζ functions downstream of shieldin, establishing DNA fill-in synthesis as the physiological function of shieldin-CST. Lastly, we demonstrate that 53BP1 suppresses HR and promotes NHEJ in BRCA1-deficient mice and cells independently of shieldin. These findings showcase the versatility of the 53BP1 pathway, achieved through the collaboration of chromatin-bound 53BP1 complexes and DNA end-processing effector proteins.

6.
bioRxiv ; 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38187711

RESUMO

53BP1 regulates DNA end-joining in lymphocytes, diversifying immune antigen receptors. This involves nucleosome-bound 53BP1 at DNA double-stranded breaks (DSBs) recruiting RIF1 and shieldin, a poorly understood DNA-binding complex. The 53BP1-RIF1-shieldin axis is pathological in BRCA1-mutated cancers, blocking homologous recombination (HR) and driving illegitimate non-homologous end-joining (NHEJ). However, how this axis regulates DNA end-joining and HR suppression remains unresolved. We investigated shieldin and its interplay with CST, a complex recently implicated in 53BP1-dependent activities. Immunophenotypically, mice lacking shieldin or CST are equivalent, with class-switch recombination co-reliant on both complexes. ATM-dependent DNA damage signalling underpins this cooperation, inducing physical interactions between these complexes that reveal shieldin as a DSB-responsive CST adaptor. Furthermore, DNA polymerase ζ functions downstream of shieldin, establishing DNA fill-in synthesis as the physiological function of shieldin-CST. Lastly, 53BP1 suppresses HR and promotes NHEJ in BRCA1-deficient mice and cells independently of shieldin. These findings showcase the resilience of the 53BP1 pathway, achieved through the collaboration of chromatin-bound 53BP1 complexes and DNA end-processing effector proteins.

7.
Dev Cell ; 56(22): 3100-3114.e4, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34758289

RESUMO

Protection of peri-centromeric (periCEN) REC8 cohesin from Separase and sister kinetochore (KT) attachment to microtubules emanating from the same spindle pole (co-orientation) ensures that sister chromatids remain associated after meiosis I. Both features are lost during meiosis II, resulting in sister chromatid disjunction and the production of haploid gametes. By transferring spindle-chromosome complexes (SCCs) between meiosis I and II in mouse oocytes, we discovered that both sister KT co-orientation and periCEN cohesin protection depend on the SCC, and not the cytoplasm. Moreover, the catalytic activity of Separase at meiosis I is necessary not only for converting KTs from a co- to a bi-oriented state but also for deprotection of periCEN cohesion, and cleavage of REC8 may be the key event. Crucially, selective cleavage of REC8 in the vicinity of KTs is sufficient to destroy co-orientation in univalent chromosomes, albeit not in bivalents where resolution of chiasmata may also be required.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Centrômero/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cinetocoros/metabolismo , Meiose/fisiologia , Animais , Camundongos , Oócitos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Separase/metabolismo , Coesinas
8.
Elife ; 102021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34259632

RESUMO

Cohesin's association with and translocation along chromosomal DNAs depend on an ATP hydrolysis cycle driving the association and subsequent release of DNA. This involves DNA being 'clamped' by Scc2 and ATP-dependent engagement of cohesin's Smc1 and Smc3 head domains. Scc2's replacement by Pds5 abrogates cohesin's ATPase and has an important role in halting DNA loop extrusion. The ATPase domains of all SMC proteins are separated from their hinge dimerisation domains by 50-nm-long coiled coils, which have been observed to zip up along their entire length and fold around an elbow, thereby greatly shortening the distance between hinges and ATPase heads. Whether folding exists in vivo or has any physiological importance is not known. We present here a cryo-EM structure of the apo form of cohesin that reveals the structure of folded and zipped-up coils in unprecedented detail and shows that Scc2 can associate with Smc1's ATPase head even when it is fully disengaged from that of Smc3. Using cysteine-specific crosslinking, we show that cohesin's coiled coils are frequently folded in vivo, including when cohesin holds sister chromatids together. Moreover, we describe a mutation (SMC1D588Y) within Smc1's hinge that alters how Scc2 and Pds5 interact with Smc1's hinge and that enables Scc2 to support loading in the absence of its normal partner Scc4. The mutant phenotype of loading without Scc4 is only explicable if loading depends on an association between Scc2/4 and cohesin's hinge, which in turn requires coiled coil folding.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas Cromossômicas não Histona/química , Cromossomos/química , Proteínas de Saccharomyces cerevisiae/química , Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromátides , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos/metabolismo , Microscopia Crioeletrônica , DNA/metabolismo , Dimerização , Regulação Fúngica da Expressão Gênica , Hidrólise , Domínios Proteicos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Coesinas
9.
Elife ; 92020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32930661

RESUMO

In addition to extruding DNA loops, cohesin entraps within its SMC-kleisin ring (S-K) individual DNAs during G1 and sister DNAs during S-phase. All three activities require related hook-shaped proteins called Scc2 and Scc3. Using thiol-specific crosslinking we provide rigorous proof of entrapment activity in vitro. Scc2 alone promotes entrapment of DNAs in the E-S and E-K compartments, between ATP-bound engaged heads and the SMC hinge and associated kleisin, respectively. This does not require ATP hydrolysis nor is it accompanied by entrapment within S-K rings, which is a slower process requiring Scc3. Cryo-EM reveals that DNAs transported into E-S/E-K compartments are 'clamped' in a sub-compartment created by Scc2's association with engaged heads whose coiled coils are folded around their elbow. We suggest that clamping may be a recurrent feature of cohesin complexes active in loop extrusion and that this conformation precedes the S-K entrapment required for sister chromatid cohesion.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , DNA Fúngico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , DNA Fúngico/química , DNA Fúngico/genética , Modelos Moleculares , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Coesinas
10.
Curr Biol ; 27(10): 1462-1476.e5, 2017 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-28502659

RESUMO

In mammalian females, germ cells remain arrested as primordial follicles. Resumption of meiosis is heralded by germinal vesicle breakdown, condensation of chromosomes, and their eventual alignment on metaphase plates. At the first meiotic division, anaphase-promoting complex/cyclosome associated with Cdc20 (APC/CCdc20) activates separase and thereby destroys cohesion along chromosome arms. Because cohesion around centromeres is protected by shugoshin-2, sister chromatids remain attached through centromeric/pericentromeric cohesin. We show here that, by promoting proteolysis of cyclins and Cdc25B at the germinal vesicle (GV) stage, APC/C associated with the Cdh1 protein (APC/CCdh1) delays the increase in Cdk1 activity, leading to germinal vesicle breakdown (GVBD). More surprisingly, by moderating the rate at which Cdk1 is activated following GVBD, APC/CCdh1 creates conditions necessary for the removal of shugoshin-2 from chromosome arms by the Aurora B/C kinase, an event crucial for the efficient resolution of chiasmata.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromossomos , Meiose , Animais , Subunidade Apc2 do Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Aurora Quinase B/metabolismo , Aurora Quinase C/metabolismo , Proteína Quinase CDC2/metabolismo , Proteínas Cdc20/fisiologia , Proteínas Cdh1/metabolismo , Centrômero , Proteínas Cromossômicas não Histona/metabolismo , Feminino , Centro Germinativo , Masculino , Camundongos , Camundongos Knockout , Modelos Teóricos , Separase/metabolismo , Fosfatases cdc25/fisiologia , Coesinas
11.
Cell Rep ; 14(9): 2108-2115, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26923598

RESUMO

Sister chromatid cohesion is mediated by cohesin, whose Smc1, Smc3, and kleisin (Scc1) subunits form a ring structure that entraps sister DNAs. The ring is opened either by separase, which cleaves Scc1 during anaphase, or by a releasing activity involving Wapl, Scc3, and Pds5, which bind to Scc1 and open its interface with Smc3. We present crystal structures of Pds5 from the yeast L. thermotolerans in the presence and absence of the conserved Scc1 region that interacts with Pds5. Scc1 binds along the spine of the Pds5 HEAT repeat fold and is wedged between the spine and C-terminal hook of Pds5. We have isolated mutants that confirm the observed binding mode of Scc1 and verified their effect on cohesin by immunoprecipitation and calibrated ChIP-seq. The Pds5 structure also reveals architectural similarities to Scc3, the other large HEAT repeat protein of cohesin and, most likely, Scc2.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas Cromossômicas não Histona/química , Proteínas Fúngicas/química , Saccharomycetales , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Homologia Estrutural de Proteína
12.
Nat Cell Biol ; 17(6): 771-81, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25961503

RESUMO

In addition to inter-chromatid cohesion, mitotic and meiotic chromatids must have three physical properties: compaction into 'threads' roughly co-linear with their DNA sequence, intra-chromatid cohesion determining their rigidity, and a mechanism to promote sister chromatid disentanglement. A fundamental issue in chromosome biology is whether a single molecular process accounts for all three features. There is universal agreement that a pair of Smc-kleisin complexes called condensin I and II facilitate sister chromatid disentanglement, but whether they also confer thread formation or longitudinal rigidity is either controversial or has never been directly addressed respectively. We show here that condensin II (beta-kleisin) has an essential role in all three processes during meiosis I in mouse oocytes and that its function overlaps with that of condensin I (gamma-kleisin), which is otherwise redundant. Pre-assembled meiotic bivalents unravel when condensin is inactivated by TEV cleavage, proving that it actually holds chromatin fibres together.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Segregação de Cromossomos/fisiologia , Proteínas de Ligação a DNA/metabolismo , Meiose/fisiologia , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/genética , Adenosina Trifosfatases/genética , Animais , Cromátides , Cromossomos/fisiologia , Proteínas de Ligação a DNA/genética , Meiose/genética , Camundongos , Camundongos Transgênicos , Complexos Multiproteicos/genética , Oócitos/citologia
13.
FEBS Lett ; 588(20): 3692-702, 2014 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-25171859

RESUMO

Sister chromatid cohesion involves entrapment of sister DNAs by a cohesin ring created through association of a kleisin subunit (Scc1) with ATPase heads of Smc1/Smc3 heterodimers. Cohesin's association with chromatin involves subunits recruited by Scc1: Wapl, Pds5, and Scc3/SA, in addition to Scc2/4 loading complex. Unlike Pds5, Wapl, and Scc2/4, Scc3s are encoded by all eukaryotic genomes. Here, a crystal structure of Scc3 reveals a hook-shaped protein composed of tandem α helices. Its N-terminal domain contains a conserved and essential surface (CES) present even in organisms lacking Pds5, Wapl, and Scc2/4, while its C-terminal domain binds a section of the kleisin Scc1. Scc3 turns over in G2/M while maintaining cohesin's association with chromosomes and it promotes de-acetylation of Smc3 upon Scc1 cleavage.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Acetilação , Sequência de Aminoácidos , Sítios de Ligação , Proteínas Cromossômicas não Histona/química , Pontos de Checagem da Fase G2 do Ciclo Celular , Dados de Sequência Molecular , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Proteólise , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA